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Let Pi,..., Pk be k > 2 independent Bernoulli populations with success probabilities

01,...,0%, respectively. Suppose we want to find the population with the largest success
probability, using a Bayes selection procedure based on a prior density (), which is the
product of k known Beta densities, and a linear loss function L(8,1), 8 = (61,.--,0k), ¢ =
1,...,k. Assume that k independent samples of sizes ni,...,nk, respectively, have been
observed already at a first stage, and that m more observations are allowed to be taken
at a future second stage. The problem considered is how to allocate these m observations
in suitable manner among the k populations, given the information gathered so far. Sev-
eral allocation schemes are examined and compared analytically as well as numerically. A
simple look-ahead-one-observation-at-a-time allocation rule is shown to have good perfor-

mance properties.

1. Introduction

Let P1,...,Px be k > 2 independent Bernoulli populations with success probabilities
0,...,0r € [0,1], respectively. Suppose we want to find that population which has the
largest 6-value, using a Bayes selection rule which is based on a known prior density
(@), 8 = (61,...,6k) € [0,1]F, and a given loss function L(f,4) for selecting population
P;, 1 € {1,2,...,k} at 8 € [0,1]F. Assume that k independent samples of sizes ny,...,n,
respectively, have been observed already at a first stage, and that m additional observations
are planned to be taken at a second stage. Several sampling designs for allocating these

m observations to the k populations will be considered in this paper.

Multi-stage selection procedures have been studied extensively in the past. In their

1This research was supported in part by US Army Research Office Grant DAAHO04-
95-1-0165 at Purdue University.



pioneering monograph, Bechhofer, Kiefer, and Sobel (1968) derived, in the frequentist
approach, optimum sequential rules based on a vector-at-a-time sampling without elimi-
nation of populations. Gupta and Miescke (1984) considered Bayes truncated sequential
procedures with elimination of populations. Overviews in this direction can be found in
Gupta and Panchapakesan (1979, 1991) and in Miescke (1984). Elimination of popula-
tions from further sampling and final selection can lead to a conflicting situation: the data
collected from a population before it was eliminated may later make it look better again,
after further sampling from other populations turn out to be less favorable for them. This
suggests to use adaptive sampling, i.e. to keep all population in the selection pool, but to
allow for temporary exclusions of suitable populations from sampling. Such a soft elim:-
nation can be incorporated conveniently in the Bayesian approach, since Bayes procedures
utilize all the data that have been collected. This approach allows also the use of non-
symmetric priors, which occur in a natural way as updated priors at various intermediate
sampling steps. Gupta and Miescke (1993) have derived in this way simultaneous selection
and estimation procedures for Bernoulli populations, taking into consideration the cost
of sampling. For simplicity of presentation, estimation and cost of sampling will not be
considered here. The former would affect selection through the posterior expected loss
due to estimation, whereas the latter would involve stopping rules. Modifications in this

respect of the allocations considered later on are straightforward.

Looking ahead m allocated but not yet drawn observations, using the expected poste-
rior Bayes risk, given the prior and all the observations collected so far, and then minimizing
it across all possible allocations of m observations, does not only provide an optimum al-
location of the next m observations. It also allows to assess how much better the final
decision can be expected to be after further sampling has been done, following this op-
timum allocation. Finding the minimum expected posterior risk is intimately connected
with finding the single-stage Bayes selection rule for each of the allocations considered.
This problem for binomial populations with Beta priors, in a nonsymmetric setting, has

been treated in Abughalous and Miescke (1989).

Once the optimum sampling allocation of m observations has been found, the following
natural question arises: Why allocate all m observations at once, rather than allocate only

a few observations (or just one), learn more through them (it), and then continue with



more appropriate allocations of the remaining observations?

Apparently, the best allocation scheme can be found, in principle, in an m-truncated
sequential approach in which one observation at a time is observed. After finding the
Bayes terminal selection rule for every possible allocation and realization of m observations,
backward optimization could be used to optimize successively every single allocation before.
Although the former are not too hard to find, the latter appears too cumbersome to
be carried out in practice. Therefore, one reasonable procedure proposed in this paper
is to allocate in an optimum way one observation at a time, pretending that it is the
last one to be drawn before the final selection, and then to iterate this process until m
observations have been drawn. Allocating more than one observation at a time appears
to be less appealing, since with each new observation more is learned about the unknown
parameters. In some practical situations it may be required to always choose a next
observation according to the state-of-the-art, i.e. from that population which appears to
be the best at present. This policy, which is different from the one proposed here, will also

be considered later in making comparisons.

Bayes look ahead techniques, which have been used by Dunnett (1960) for selecting
the largest of k normal population means, and by Govindarajulu and Katehakis (1991)
in survey sampling, are discussed in various settings in Berger (1985), including also the
relevant work by Amster (1963). Work for k normal populations, which is closely related
to the present approach, can be found in Gupta and Miescke (1994,95). One particular
result found there is that just for £ = 2, but not for £ > 2 populations, the outcome of the
observations from the first stage are irrelevant for any further optimum allocations. As
will be seen below, in the Bernoulli case, first stage observations will always be relevant

for the same purpose.

Selecting the population with the largest (overall) sample mean, with ties broken at
random, is usually called the natural selection rule, since it is the uniformly best permu-
tation invariant selection procedure, in the frequentist sense, for a general class of loss
functions, provided that the sample sizes are equal. For unequal sample sizes, however,
the natural selection rule loses much of its quality, as it has been shown in Risko (1985) for

k = 2, and in Abughalous and Miescke (1989) for k£ > 2. Similar results for comparisons



of binomial populations can be found in Bratcher and Bland (1975). Nevertheless, for
the binomial, normal, and other models, the natural selection rule apparently continues to

enjoy rather unquestioned popularity.

Finally, it should be noted that adaptive sampling from k& Bernoulli populations has
been considered in the frequentist approach, with objectives different from the present, by
many authors. One particular approach by Bechhofer and Kulkarni (1982), which has been
followed up in several papers, is to save observations in the natural single stage procedure
for equal sample sizes without any loss of performance power. The results in this respect,
many references, and a thorough overview of the related literature can be found in the

recent monograph by Bechhofer, Santner, and Goldsman (1995).

In Section 2, a general outliﬁe of the proposed Bayes look ahead sampling approach
is presented. An application of these general results to the case of k Bernoulli populations
with independent Beta priors and a linear loss is worked out in details in Section 3. Finally,
in Section 4, numerical results from computer evaluations and simulations, at suitable
parameter settings, are presented which provide the basis for a critical comparison of
all sampling allocation schemes considered. It is found that the Bayes look-ahead-one-
observation-at-a-time allocation scheme performs similarly to the Bayes allocation of all

m observations at once, and better than three others also considered.

2. Bayes Look Ahead Sampling Allocations

In this section, a general outline of the proposed Bayes look ahead sampling approach
is presented. After a standard reduction of the data by sufficiency, the model assumptions
can be summarized as follows: At 8 = (6,,...,6:) € [0,1]%, the parameter space, let X;
and Y; be real valued sufficient statistics of the samples from population P; at Stage 1 and
Stage 2, resp., ¢ = 1,...,k, which altogether are assumed to be independent. A priori, the
parameters are considered as realizations of a random variable © = (04,...,0) which
follows a given prior distribution. Let the loss for selecting P;, at both stages, be L(§, 1),
at § € [0,1]F, s = 1,...,k. Cost of sampling, which would require the incorporation of
a stopping rule, is not included in the loss in order to simplify the presentation of basic
ideas. Modification of the allocations discussed below to this more general setting are

straightforward.



Having observed X = z at Stage 1, based on samples of sizes ny,...,nx, every (it

may not be unique) nonrandomized Bayes selection rule dj(z) satisfies
E{L(®,di(z))|X =z} = min E{L(,{)|X =z}. (1)

Likewise, after ¥ = y has been observed at Stage 2, every nonrandomized Bayes rule

d3(z,y) satisfies

E{L(8,d(z, )X =z, Y =y} = min E{L(©,)|X =2,Y = y}. (2)

After the observations have been drawn at Stage 1 or Stage 2, the set of Bayes selec-
tions consists of all possible random choices among the respective nonrandomized Bayes

selections, which in the following is assumed to be made with equal probabilities.

Many results for Bayes selection rules in symmetric models can be found in the lit-
erature. An overview of the earlier literature is provided by Gupta and Panchapakesan
(1979). Only recently, however, attention has been given also to nonsymmetric models.
The binomial case has been treated in Abughalous and Miescke (1989), the normal case in
Gupta and Miescke (1988), and more involved models have been considered in Berger and
Deely(1988) and in Fong and Berger (1993). Let us assume now that the selection rules
of type d} and dj have been derived already, are ready to be used by the experimenter,
and that all that is left to do is to allocate sample sizes in an optimum manner. Then the

Bayes allocation of a fixed number of observations can be determined as follows.

Before entering Stage 1, by looking ahead one stage, one has to minimize the expected
posterior risk subject to n; + ... + ng = n, where n is the total number of observations

allowed to be taken at Stage 1. Thus, one has to find ny,...,ng which yield

min ~ E( min E{L(®, £)|X}). 3)

Likewise, before entering Stage 2, at which m observations are to be drawn, one has to

find m,,...,mg which yield



where the outer expectation is with respect to the conditional distribution of Y, given
X = z. In case of tied allocations, it is assumed that one of them is chosen at random

with equal probabilities.

These two minimization problems under side conditions can be seen to be equivalent
within the present framework. (3) is of the type (4) if one assumes that some Stage 0, say,
with no observations at all has proceeded Stage 1 and X is taking over the role of Y in
(4). On the other hand, (4) is of the type (3) if the information of X = z is incorporated
into an updated prior (cf. Berger (1985), p. 445) and Y is taking over the role of X in
(3). The latter approach will be adopted in Section 3 where it turns out to be the more

convenient tool.

As mentioned already in Section 1, allocating all m observations at once for Stage 2
misses the chance of learning more about the unknown parameters at some intermediate
sampling, which in turn would provide a better basis for further sampling. Breaking down
the allocation of m observations into more than one step can be done in various fashions.
Let R: denote the optimum allocation of ¢ < m observations determined by (4), with m
replaced by t there, where ties among several possible allocations are broken at random
with equal probabilities. The latter will be seen, later in Section 4, to be not only natural
and convenient but relevant if more sampling is planned to be done afterwards. Allocating
only one of the £ observations determined by R, at random and with equal probabilities
1/t, results in yet another type of allocation, which will be denoted by R; 1, say. Finally,
let B; denote the optimum allocation of one new observation, knowing all future allocation

and selection rules, whatever their choice may be in a particular situation.

These three basic allocations can be put together in various ways to build complete
allocation rules for allocating all m observations at Stage 2. For example, (B1, Rm—1)
allocates the last m — 1 observations through (4) and allocates the first observation by
backward optimization. Similarly, (R.;,—1, 81 ) allocates the first m—1 observations through
(4) and then uses R; to allocate the last observation, i.e. this allocation scheme is equal
to (Rm-1,R1). It should be noted that R; and R;; are stand-alone procedures, i.e.
procedures which can be used directly without knowing future actions, whereas B; is only

meaningful in connection with completely specified future actions.



Using the basic fact that every relevant (conditional) expectation of a minimum is
smaller than the minimum of the respective (conditional) expectations, except for trivial
cases where equality may hold, a partial ordering of allocation rules can be established
with respect to their expected posterior Bayes risks, and thus with respect to their overall
Bayes risks. In this respect, one can see that (By,B,...,B1,R1), with m — 1 repetitions
of B, is the best possible allocation of m observations. Since it is hard to implement in
practice, as it requires an extensive backward optimization programming, other allocation

rules will be considered in the following.

Looking ahead one observation at a time in m consecutive steps, and allocating all
m observations at least as good as (R,,) in terms of the Bayes risk, can be achieved by
using (Rm,1, Rm—1,1,--,R2,1, R1), where in fact any type of randomization for breaking
ties may be used. However, each application of an allocation R ; is numerically quite
involved, whereas the allocation rule (R;,R1,...,R1) is much simpler to use and ap-
pears to be a reasonable approximation. Whenever in an allocation rule a certain step
Rt is replaced by a step Ri, one may be tempted to assume that the latter picks one
population from those from which R;; made its choice, i.e. from those given by R;. Al-
though this is not always true, it seems to occur quite frequently. To determine, whether
(Rm,1,Rm=1,1,..,Rz2,1,R1), perhaps with a properly determined choice for each single
allocation instead of pure randomization, is much better than (Ry,R1,...,R;1), and thus
preferable, requires further research in this direction. It will be shown below for the
Bernoulli case that the latter allocation rule is not only simple to use, but also performs
about as well as (Rn,) and favorably to three other allocation rules, in terms of the Bayes

risk.

The proposed allocation rule (Ri,Ri,...,R1) allocates at each step one more ob-
servation in an optimum manner, pretending that it would be the last one before final
selection. Thus for every single observation, it allocates it to that population which ap-
pears to be the most promising to improve the pretended final selection decision after it
has been drawn. As it has been mentioned already in Section 1, this allocation policy is
different from the state-of-the-art allocation, which would at each of the m steps find those
populations which appear at that moment to be the best, i.e. having the largest posterior

means of ©1,...,0, and then allocate the next observation to one of them at random.



3. Allocations for Bernoulli Populations

The Bayes look ahead sampling allocation approach, which has been introduced in a
general framework in the previous section, will now be applied to independent Bernoulli
sequences with independent Beta priors under the linear loss L(8,7) = by — 0;, ¢+ =
1,...,k, 8 € [0,1]%, where 6] = maz{6:,...,0;}. Justifications for adopting this type
of loss in the present setting, and reasons for not using the 0 — 1 loss, which is another

standard loss for selections, are provided in Abughalous and Miescke (1989).

Given © = 0, using sufficiency, the observations at Stage 1 can be combined into
X = (X1,...,Xx) with X; ~ B(n;,0;), i = 1,...,k, and the observations at Stage 2 can
be combined into Y = (Y3,...,Ys) with Y; ~ B(m;,6;), ¢ = 1,...,k, where all these 2k
binomial random variables are independent. A priori, the k parameters © = (©y,...,0%)
are assumed to be independent Beta random variables with ©; ~ BE(a;, 8;), where o; > 0,

and 3; > 0,7 =1,...,k, are known.

In what follows, it is assumed that Stage 1 has been completed already, i.e. that
X = z has been observed, and that all further considerations are focused on Stage 2. In
this setting, it proves convenient to update the prior with the information gained through
X = z, resulting in ©; ~ BE(a;i + i, 0 + ni — ), ¢ = 1,...,k, which in turn are
independent. The optimum allocation of all m observations at Stage 2, i.e. (Rm), can
then be found by using criterion (3), with the prior, ny,...,n, and X replaced by this
updated prior, my,. .., mk, and Y, respectively. For simplicity of notation, let a; = a; +:
and b; = B; + n; — x;, i = 1,...,k, in the sequel. Later on, we will return to the original

notation to allow for an interpretation of the numerical findings.

To determine now (R,,), one has to find sample sizes my,...,mg, subject to mq +

...+ mg = m, which yield the smallest expected posterior loss

min E,( min E.{L(©®,)|Y}) )
m1'11'+;:;k=m —i=1,..,k —

= E,(Oy) — ,max E4( ._nllaxkE_z_{@AX})

.....

mi+...+mp=m

a; +Y;
= BaOw) = nmex, Bl e, o

)7

where the subscript at expectations, and below at probabilities, indicates the use of the
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updated prior, based on the observations X = z, before entering Stage 2. Thus E,(O;)
is the expectation of the maximum of the k£ independent Beta random variables ©; ~
BE(ai bi), ¢ = 1,...,k, and the last expectation in (5) is with respect to the marginal
distribution of Y at the end of Stage 1, which in Gupta and Miescke (1993) is shown to be

b (i I(ai + b:)C(a; + yi)I'(bi + ms — i)
n =9 =11 () gttt by ©

yi=0,....,m; ,1=1,...,k,

i=1

i.e. it is the product of k¥ Pédlya-Eggenberger distributions, cf. Johnson and Kotz (1969),
p. 230.

To summarize the findings about allocation procedure (Ry,), one can state the fol-

lowing theorem.

Theorem 1. The allocation rule (R,,) chooses, with equal probabilities, one of the

allocations (my, ..., mg) which satisfy m; + ...+ mp = m and maximize
a; + Yi _ ]
. ii?f?{.,k{a,-+b,-+m,-} P(Y =y), (7)

where the distribution of Y is given by (6).

For any other allocation rule for m observations, one can see that the expected pos-
terior loss under the linear loss is, similar as for (R,,) in (5), equal to the difference of
E,(O[;) and, say, the expected posterior gain of that particular rule. Therefore, it suf-
fices to deal only with the latter in the following, where besides (R, ), four other specific
allocation rules will be considered. The first is (R1,R1,...,R1), where in each of the first
m — 1 allocations R; ties are broken at random with equal probabilities. The second rule
allocates one observation at a time according to the, at each incidence, largest posterior
expectation of ©y,...,0%, i.e. the state-of-the-art, with ties broken in the same fashion
as before. The third rule allocates one observation at a time, each purely at random, and
the fourth rule is the fixed sample size rule which allocates m/k observations, provided
that m is divisible by k, to each of the k populations. In Section 4, numerical comparisons
will be made between these five allocation rules, where the look ahead expected posterior

gains of (R,,) and the fixed sample size rule are computed directly, whereas those of the
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other three allocation rules are determined through computer simulations. As it will be
seen there, the two allocation rules (R,,) and (R1, R4, ..., R1) perform similarly well, but

better that the other three rules.

Next we will examine in some detail how the allocation rule (R1, R4, ..., R1) operates.
Each of its m steps is of the type R;, based on the respective updated prior. Thus, without
loss of generality, let us consider how it allocates the first of the m observations. This is
done by choosing with equal probabilities one of those populations P;, j € {1,...,k}, for

which the look ahead one observation expected posterior gain g;, say, is maximized:

o a; +Y; |
9; = By(max{_= =g max{ui}}) (8)
_ aj +1
= max ,-F@-p1’n§¥““}}“’
.40
+ max { r;%+1,m§dmﬂ(1—m),

where y; = a;/(a: + b:),t = 1,..., k for brevity. As it will be seen below, this type of allo-
cation is done in a simple and specific way, which also reveals an intuitively understandable

mechanism.

In the sequel, let gy < ppg) < ... < ppyy denote the ordered posterior means of the
parameters Oj,..., 0 at the end of Stage 1. Let P(;) be any population associated with
g, t =1,...,k, but in some specific way that all k populations are included. Moreover,
let agg), bey, M1y, 9(1), and €y in turn be associated with Py), where ¢y =1 /(e + bey)
for brevity, t = 1,...,k. Then R; allocates the next observation,with equal probabilities,
to one of those populations which are tied for a maximum expected posterior gain, i.e. for
the maximum of the k£ quantities

By (1 = per)) } 9)

g(k) = Kx) t max{ 0, (1- #(k))ﬂ(k—l) -

1+ ew
Ot 2 0))
“ﬂ=#wr“mﬂ{0,ﬂ—um)mn ——Qﬁﬁifl}
j=1..,k-1,

which can be derived from (8) in a straightforward manner. Facilitating this are the facts

that g(x), the first summand in (8) turns out to be (p(x) + €x))/ (1 + € ) (x), and that for
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9g(k) With j < k, the second summand in (8) turns out to be p(x)(1 — p(j)). Of course, all of
the gains in (9) have to be at least as large as y(x), since observing one more observation can
never decrease the Bayes posterior risk achieved already, which in the present situation is
equal to p(x). It is also interesting to find out under which conditions one more observation
from any particular one of the k populations would yield an expected posterior gain larger
that p(x). Although this is not relevant for the performance considerations of allocation

rules later in Section 4, it will be done below of (10) for completeness.

To summarize the findings about allocation procedure (R,,R1,...,R1), one can state

the following theorem.

Theorem 2. The first allocation R; in (Ry,R1,...,R1) is made, with equal probabili-
ties, to one of those populations P(y) with gy = max{gq),...,9m)}, t =1,...,k, where
g@1)s - - - §(x) are given by (9). All consecutive allocations of the type R, are made analo-
gously, with p(y) and €y, t = 1,...,k, properly updated by all previous allocations and

observations.

Finding all populations which are tied for the maximum value of the expected posterior
gains given by (9) can be done through paired comparisons. One of these is seen to be
different from all others: the comparison of g(;—1) and g(x) is made only through the
respective fractions in (9). A similar phenomenon occurs in the normal case, as it is shown
in Gupta and Miescke (1995), where the comparison of the state-of-the-art population and

its runner-up is different from all other comparisons.

Another representation of (9), which allows further insight into the behavior of R,

also with respect to a(y), (), (1), and z(y) associated with P(y), is the following.

H(k
9k = k) + max{ 0, (1- #(k))(ﬂ(k—l) =1 +(61k))} (10)
B () T €() :
N = USSR £ : =1,....k—1.
90 #(k)+maX{ 0, ( 1+ M) #u)} J=1...,k=1

From this one can see that g() is bigger than p () if and only if allocating one more
observation to P(xy would lead, in case of a subsequent failure, to an updated posterior
expectation p(x)/(1 + €x)) for this population which falls below of p(x_1). In such case,

(k) is decreasing in f(x), increasing in fi(x—1) and €(x), and thus decreasing in nz).

11



On the other hand, for j € {1,...,k—1}, g(;) is bigger than px) if and only if allocating
one more observation to P(;) with a subsequent success would lead to an updated posterior
expectation (u(j) + €(;))/(1 + €(j)) for this population which exceeds p(x). In such case,

g(j) is decreasing in p(r), increasing in u(;) and €(;), and thus decreasing in n(;).

In conclusion of this section, it should be pointed out that while using (R1, R1,...,R1),
at some intermediate steps equality may occur for all populations in the associated updated
version of (9). Considering such a step solely on its own, this would suggest that it is not
worth taking one more observation. However, in the bigger picture, where all m steps are
considered acting one after another, it may be well worth continuing the sampling process,
since at a later step the situation may turn around. In the present setting, however, where

it is assumed that m observations are to be taken, this point is of no further concern.

4. Numerical Results and Comparisons

In this section five allocation rules, each designed for m additional observations at
Stage 2, will be compared numerically in terms of their respective expected posterior
gains. The smallest possible number of populations for which the particular features of
selection procedures can be studied is ¥ = 3, which is thus chosen in the following for

simplicity. The five allocation rules considered are explained as follows.

RAN Assign one observation at a time, each purely at random.
EQL Assign m/3 observations to each population Py, P2, Ps.
SOA Assign one observation at a time, following state-of-the-art.
LAH Assign one observation at a time, using (R1,Ry,...,R1).
OPT Assign m; observations to Ps,t = 1,2,3, using (Rn,)-

Several clarifying comments should be made hereby. Below, m is chosen to be 1,3,9,
and 15. Thus for m = 1, to be specific, procedure EQL has been set to take that one
observation from population P;, rather than leaving the respective spaces empty in the
tables. As to procedure SOA, state-of-the-art means the largest posterior expectation
of ©;,...,0; at any present moment. Finally, all procedures but EQL are assumed to
breaking ties at random, with equal probabilities, whenever they occur. Several other ways

of breaking ties at random have been also tried out but proved to be less efficient.
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The comparisons of these five allocation rules are made below by means of three
examples, each with specifically chosen values for a; and b;, ¢+ = 1,2,3. The results are
reported in Tables 1, 2, and 3, respectively. Although there are several ways of interpreting
the values of a; = o; + z; and b; = B; + n; — z;, i = 1,2,3, one appears to be the easiest
to follow intuitively and is thus adopted for convenience. It is assumed from now on that
a; = fi =1, i =1,2,3, i.e. that the prior is noninformative (uniform), and thus that
n; = a; + b; — 2 observations with z; = a; — 1 successes and n; — z; failures have been

collected from population P; previously at Stage 1,:=1,2,3.

The three example share several common features which should be described first.
Given the specific choice of a1, az, as, b1, b2, b3, allocation rules RAN, EQL, SOA, LAH,
and OPT are compared, in terms of their expected posterior gains, for allocations of
m = 1,3,9,15 observations at Stage 2. The populé.tions P1, P2, and P are labelled in
such a way that always n; < ny < ng holds. Within each case of m, eight configurations of
ai,ay,as, b, by, by are considered, where the consecutive seven configurations result from
the first by exchanging the values of a; and b;, or equivalently the number of successes
and failures, for one or more population P;, ¢ € {1,2,3}. The latter allow to cover various
different situations which will be discussed later on in the examples in more details. Finally,
for each particular configuration of a1, az, as, by, b2, bs, one possible solution m;, ma, m3 of
allocation rule (Ry,), with m = my + mgy + mgs, is reported in the tables. Since it is not

always unique, the lexicographically smallest choice has been made throughout.

The numerical results reported in the tables have been calculated on an IBM-type
Pentium 66MHz computer with Microsoft QuickBASIC Version 4.5 software. Calculations
for allocation rules EQL and OPT have been performed directly, using routines BICO,
FACTLN, and GAMMLN from Sprott (1991). Every single result in the tables for alloca-
tion rules RAN, SOA, and LAH is the average over 100,000 computer simulation runs,
using the random number generator RND of QuickBASIC, where the seed has been reset
with RANDOMIZE(TIMER) at the beginning of each of these 100,000 runs. As to the
precision, each expected posterior gain reported in the tables is, due to rounding, accurate
only up to + .0001. All programs used for this purpose are available from the authors

upon request.
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EXAMPLE 1. In this example as well as in the other two examples, a; = f; =
1, ¢ = 1,2,3 are chosen for convenience of interpretation. This makes the original prior
noninformative (uniform) and allows to represent all relevant information up to Stage 2

by the data observed at Stage 1.

To begin with, it is first assumed that at Stage 1 samples with the following sizes
and numbers of successes have been observed: n; = 10 and z; = 4 from population Py,
ng = 15 and 5 = 6 from Pz, and n3 = 20 and z3 = 8 from P;. The resulting parameter
configuration (a1, az, as, b1, b2, b3) = (5,7,9,7,10,13) is shown in Table 1 as the first one
for each of the cases m = 1,3,9,15. The seven other parameter configurations are obtained
by exchanging the number of successes and failures, i.e. the values of a and b, within one

or more populations.

Each configuration can be interpreted conveniently through the sample size n; = a; +
b;—2 and success rate z; = z;/n; = (a;—1)/(a;+b;—2) from population P;, ¢ = 1,2,3. The
parameter values have been chosen in such a way that situations of the type Z; = T, = 73
are included. As one can see, this occurs at the first and last configuration with common
success rates .4 and .6, respectively. The six configurations in between represent all other

combinations of success rates .4 and .6 with sample sizes 10, 15, and 20.

Comparing now the expected posterior gains of the five allocation rules, one can see
from Table 1 that overall, LAH and OPT are performing similarly well, but better than
RAN, EQL, and SOA, and that the latter effect is increasing with m.

EXAMPLE 2. In this example again a; = f#; =1, 1 = 1,2, 3 are chosen for convenience
of interpretation. To begin with, it is assumed that at Stage 1 samples with sizes and
number of successes n; = 5 and £; = 3 from P1, nz = 14 and z2 = 9 from P,, and
n3g = 18 and z3 = 11 from P; have been observed. The resulting parameter cénﬁguration
(ay,as,as,by,bz,b3) = (4,10,12,3,6,8) is shown in Table 2 as the first one for each of the
cases m = 1,3,9,15. The seven other parameter configurations are obtained, as in the
previous example, by exchanging the number of successes and failures, i.e. the values of a

and b, within one or more populations.

Interpretation of the parameter configurations can be done again conveniently through
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the sample sizes n; = a; + b; — 2 and success rates Z; = (a;i — 1)/(a; + b; — 2) from
P;, i = 1,2,3. The parameter values have been chosen in such a way that situations are
included where %1, T2, and Z3 are close to each other, but based on different sample sizes.
As one can see from Table 2, this occurs at the first parameter configuration with z; = .6,
Ty = .6429, 3 = .6111 and n; = 5, ny = 14, ng = 18, and at the last one with z; = 4,
Ty = .3571, T3 = .3889 and n; = 5, ny = 14, n3 = 18. The six configurations in between
represent all other combinations of success rates .6 or .4, .6429 or .3571, and .6111 or .3889

with sample sizes 5, 14, and 18, respectively.

Comparing this time the expected posterior gains of the five allocation rules, one can
see from Table 2 that overall again, LAH and OPT are performing similarly well, but
better than RAN, EQL, and SOA, and that the latter effect is increasing with m.

EXAMPLE 3. This example is similar to the previous example and thus it will be
discussed only briefly. o; = f; = 1, i = 1,2,3 are again chosen for convenience of
interpretation. Now we assume first that at Stage 1 samples with ny =5 and z; =3 from
P1, nz = 12 and 3 = 7 from P;, and n3 = 17 and z5 = 9 from P3; have been observed
with respective success rates z; = .6, T, = .5833, and Z; = .5294. The resulting parameter
configuration (ay, az, a3, b1, b2, b3) = (4,8,10,3,6,9) is shown in Table 3 as the first one for
each of the cases m = 1,3,9,15. The seven other parameter configurations are obtained

in the same manner as described in Example 2.

The main difference to Example 2 is that this time in the first (last) parameter con-
figuration, the second largest of the success rates zi, Zs, and Z3 is associated with the
second largest of the sample sizes ny, ny, and ng, rather than with the largest (smallest)
sample size as it was done in Example 2. The present setting allows to study two situations
where 71, Zo, Z3 are close together and where extreme success rates and sample sizes are
associated with each other. For completeness, yet another example could be considered
where in the first parameter configuration, the second largest success rate is associated

with the smallest sample size. But this is omitted for brevity.

Comparing now the performances of the five allocation rules shown in Table 3 is

leading to the same conclusions as before in Example 1 and in Example 2.
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Finally, after the results of the three examples have been discussed, some conclusions
can be drawn. It has been shown that allocation rule LAH compares favorably with the
rules RAN, EQL, and SOA, and that overall its performance is close to the one of OPT.
That LAH is not always as good as OPT indicates clearly that it cannot be a version,
i.e. with any type of tie breaking, of the rule (Rm,1, Rm—1,1,---,R2,1, R1) considered at
the end of Section 2, since the latter is at least as good as OPT = (R,.,). However, in
comparison to these two allocation rules, the proposed rule LAH = (R1,R4,...,R1) is
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more flexible in terms of the predetermined number of observations m at Stage 2,

Table 1 Expected Posterior Gains in Example 1

ay as ag bl b2 b3 RAN EQL SOA LAH OPT mimaoms
m =1

579 71013 4282 4325 4325 4325 4325 1 00
5713 710 9 .5909 5909  .5908 .5909  .5909 010
510 9 7 713 .b882 5882 .5882 .5882  .5882 1 00
51013 7 7 9 .5981 5909 .6004 .6028 .6028 010
779 51013 5834 .5833 .5834 .5833  .5833 1 00
7713 510 9 0982 6052 .5982 .6052 .6052 1 00
710 9 5 713 5972 6041  .5996 .6041 .6041 1 00
71013 5 7 9 .6028 6052 .6004 .6052 .6052 1 00
m = 3

579 71013 4384 4394 4410 4432 4435 2 10
5713 710 9 5910 5909  .5910 .5908  .5909 0 3 0
510 9 7 713 .5882 5882 .5882 .5882  .5882 2 10
51013 7 7 9 .6034 .6028 .6068 .6077 .6081 0 2 1
779 51013 .5835 .5833 .5831 .5834  .5833 1 20
7713 510 9 .6047 6052 .6063 .6112 .6119 3 00
710 9 5 713 .6045 .6041 .6084 .6105 .6109 3 00
71013 5 7 9 6119 6101 .6111 .6184 .6172 2 10
m = 9

579 71013 4540 4543 4554 4582 4575 5 3 1
5713 710 9 .5910 5910 .5910 .5912 5918 9 0 0
510 9 7 713 .5885 .5885 .5882 .5886  .5892 6 3 0
51013 7 7 9 6125 6122 6159 .6159 .6176 0 90
779 51013 .5836 .5837 .5847 .5839  .5845 8 1 0
7713 510 9 6153 6157 6173 .6212 .6241 9 0 0
710 9 5 713 .6161 .6161 .6196 .6207 .6226 9 0 0
71013 5 7 9 .6274 6272 6273 .6322 .6305 6 3 0
m = 15

579 71013 4631 4638 4628 .4663  .4660 9 5 1
5713 710 9 .5915 5917 5912 5919 5930 12 O 3
510 9 7 713 .5892 5896  .5895 .5904  .5909 9 6 0
51013 7 7 9 6178 .6181 .6210 .6208 .6231 012 3
77951013 .5847 .b851 5864 .5859 5864 11 4 O
7713 510 9 .6216 6222 6232 .6262 6292 13 0 2
710 9 5 713 6224 6231 .6260 .6258 .6291 11 4 O
71013 5 7 9 6364 6369 .6354 .6399 .6390 9 6 0
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Table 2

Expected Posterior Gains in Example 2

ai ds ag b1 b2 b3 RAN EQL SOA LAH OPT mimaoms
m =1

41012 3 6 8 .6270 6250 .6294 .6294 .6294 010
410 8 3 612 .6250 6250 .6248 .6250 .6250 0 01
4 612 310 8 .6048 .6143 .6000 .6143 .6143 1 00
4 6 8 31012 5714 5714 5713 5714 5714 0 01
31012 4 6 8 6271 6250 .6294 .6294 .6294 0 1 0
310 8 4 612 .6251 6250 .6252 .6250 .6250 0 0 1
3 612 410 8 .6000 .6000 .6000 .6000 .6000 0 0 1
368 41012 4333 4429 4428 4429 4429 1 00
m = 3

41012 3 6 8 6359 6359 .6345 .6418 .6429 3 00
410 8 3 612 .6322 6329 .6311 .6377  .6429 3 0 0
4 612 310 8 6135 .6143 .6115 .6238 .6238 2 01
4 6 8 31012 8715 5714 5713 5716 5714 01 2
31012 4 6 8 .6307 6319 .6345 .6338 .6355 0 3 0
310 8 4 612 .6250 6250 .6249 6251 6250 0 1 2
3 612 410 8 .6000 .6000 .6000 .6001 .6000 1 0 2
368 41012 4437 4468  .4453 4539 4540 210
m =9

41012 3 6 8 .6531 .6551 .6478 .6586  .6591 6 3 0
410 8 3 612 .6453 6466 .6419 .6512 .6554 8 1 0
4 612 310 8 6281 6295 .6240 .6369 .6410 9 0 O
4 6 8 31012 5744 5742 5772 5748  .5780 9 0 O
31012 4 6 8 .6391 .6400 .6434 .6423  .6440 07 2
310 8 4 612 .6260 6263 .6251 .6270 .6290 8 1 0
3 612 410 8 .6019 .6019 .6000 .6034 .6066 9 0 0
368 41012 4624 4642 4624 4691 4701 7 2 0
m = 15

41012 3 6 8 .6636 .6646 .6559 .6680 .6676 8 6 1
410 8 3 612 6527 .6534 .6481 6577 6612 13 2 O
4 612 310 8 .6356 6371 6296 6421 6458 15 0 O
4 6 8 31012 D779 5781  .5801 5788 5812 13 1 1
31012 4 6 8 .6458 .6462 .6483 .6480 .6494 0 10 5
310 8 4 612 .6281 .6284 6252 .6295 6316 11 4 O
3612 410 8 .6046 .6049 .6004 .6065 .6091 12 0 3
368 41012 4730 4741 4703 4775 4780 10 4 1
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Table 3 Expected Posterior Gains in Example 3

ai ag as b1 b2 b3 RAN EQ.L SOA LAH OPT mimamg
m =1

4 810 3 5870 .6020 .5949 .6020 .6020 1 00
4 893 5871 6020 .5949 .6020 .6020 1 00
4 610 3 5750 5827  .5827 .5827  .5827 1 00
4693 5715 5714 5714 5714 5714 0 0 1
3 810 4 5713 b714 5714 .5714 5714 0 0 1
3894 5715 5714 5714 5714 5714 0 0 1
3610 4 .5264 5263 .5263 .5263  .5263 0 0 1
3694 ATT5 4850 .4737 .4850  .4850 1 00
m = 3

4 810 3 .6000 .6037 .6071 .6113 .6122 3 00
4 893 .5991 .6020 .6048 .6107 .6122 3 00
4 610 3 .5814 5827  .5892 .5924  .5940 3 00
4693 5738 5714 5776  .5759  .5802 3 00
3 810 4 5745 5752 8767 .5764  .5770 0 3 0
3894 BT17 5714 8717 5726  .5748 3 00
3 610 4 .5286 5263  .5263 .5310 .5351 3 00
3694 4861 A871 4793 4964 4962 3 00
m = 9

4 810 3 6185 6203 .6222 .6260 .6271 7 2 0
4 893 .6158 6173 .6195 .6233 .6254 9 0 0
4 610 3 .5951 .5963 .6001 .6030 .6068 9 0 0
4693 .5829 5838  .587T1  .5875  .5908 9 0 0
3 810 4 5852 .5856  .5861 .5878  .5876 5 4 0
3894 5782 5787 .5763 .5806  .5815 5 4 0
3610 4 5379 5386  .5302 .5425  .5457 9 0 0
3694 .5037 5050 .4946 .5110 .5096 7 2 0
m = 15

4 810 3 6 9 .6296 .6303 .6300 .6348 .6338 9 6 0
4 893 610 6251 6261 .6265 .6305 .6327 9 6 0
4 610 3 8 9 .6033 .6043 .6054 .6092 6119 14 0 1
4693 810 .5904 5911 5936 .5b941 5955 12 0 3
3810 46 9 .5932 5935 .6914  .5955  .5949 7 8 0
3894610 .5841 5849  .5799 .5868  .5875 9 6 0
3610 4 8 9 .5453 5462 .5349 .5492 5500 13 0 2
3694810 .5146 5153 .5035 5191 5179 9 4 2
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since its individual steps are of type R; which do not depend on m. Thus, if in an ongoing
experiment the number m of observations at Stage 2 has to be changed at any time and
by any reason, the allocation rule LAH can be adapted very easily to such a change by

just reducing or extending the number of repetitions of the steps of type R, accordingly.
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