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Abstract

Hyperbolic branching Brownian motion is a branching diffusion process in which in-
dividual particles follow independent Brownian paths in the hyperbolic plane H?, and
undergo binary fission(s) at rate A > 0. It is shown that there is a phase transition in A:
For A < 1/8 the number of particles in any compact region of H? is eventually 0, w.p.1,
but for A > 1/8 the number of particles in any open set grows to oo w.p.1. In the sub-
critical case (A < 1/8) the set A of all limit points in 8H? (the boundary circle at co) of
particle trails is a Cantor set, while in the supercritical case (A > 1/8) the set A has full
Lebesgue measure. For A < 1/8 it is shown that w.p.1 the Hausdorff dimension of A is

§=(1—vI=8x)/2
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ABSTRACT. Hyperbolic branching Brownian motion is a branching diffusion process in
which individual particles follow independent Brownian paths in the hyperbolic plane HZ2,
and undergo binary fission(s) at rate A > 0. It is shown that there is a phase transition
in A: For A < 1/8 the number of particles in any compact region of H? is eventually 0,
w.p.1, but for A > 1/8 the number of particles in any open set grows to co w.p.1. In the
subcritical case (A < 1/8) the set A of all limit points in 8H? (the boundary circle at co)
of particle trails is a Cantor set, while in the supercritical case (A > 1/8) the set A has
full Lebesgue measure. For A < 1/8 it is shown that w.p.1 the Hausdorff dimension of A

is 6= (1— vI—8X)/2.

1. INTRODUCTION

Hyperbolic branching Brownian motion is a branching diffusion process in which individ-
ual particles execute (independent) Brownian motion(s) in the hyperbolic plane H?, and
undergo binary fission(s) at exponentially distributed random times independent of the mo-
tions. The rate A of fission is assumed to be constant. The model is no different from
standard branching Brownian motion (see [1], ch. VI) ezcept that the motion takes place
in the hyperbolic plane instead of Euclidean space.

Hyperbolic branching Brownian motion, unlike branching Brownian motion in a Eu-
clidean space, exhibits a phase transition in A. For A < 1/8, the process is subcritical in the
following sense: with probability 1, for any compact subset K of the hyperbolic plane, the
number of particles located in K is eventually 0. For A > 1/8 the process is supercritical:
for each nonempty open set U, the number of particles in U is, w.p.1, eventually positive.
At the critical value A = 1/8 the process dies out in compact sets. These facts follow from
the exponential decay of the heat kernel, which may be written explicitly as

n_ ¢ V2 /°° rexp{—r?/4t}
pi(z,2) = exp{ 4} ((47rt)3/2> d(z7') v/coshr — coshd(z, 2)

where d(z, 2’) denotes the hyperbolic distance between z and 2': see, e.g., [4], ch. 7. Ele-
mentary arguments (not using the heat kernel) will be given below.

Similar phenomena have been observed in a number of related growth models. Pemantle
[6] found that for the contact process on a homogeneous tree, it is possible for the popula-
tion to grow exponentially (in cardinality) but nevertheless to ultimately die out in every
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compact region, if the infection rate is below a certain critical value. Results of Benjamini
and Peres [3] imply that the same is true of branching random walk on a homogeneous tree
or a hyperbolic space. The phenomenon is a manifestation of the exponential growth of
volume as a function of radius in the phase space, which forces exponential decay of return
probabilities for random walks (and Brownian motions) in these spaces.

The main objective of this paper is to show how the phase transition manifests itself in
the behavior of the process “at infinity”. The (directed) paths in H? traced out by the
particles of a branching Brownian motion form a random binary tree 7. (More precisely,
there is a continuous embedding of the full binary tree into H? whose nodes are located at
the points of fission and whose branches follow the particles’ paths.) In the supercritical
regime, there are infinite (directed) paths in this tree that remain forever in bounded regions
of H? (Corollary 3 below); however, in the critical and subcritical regimes there are no such
paths — all infinite directed paths in 7" diverge to the boundary circle OH? at co. Define A
to be the set of all accumulation points of 7" in H?. Observe that, with probability 1, A is
a nonempty, compact subset of H2. Our main result is the following.

Theorem 1. For 0 < A < 1/8 the Hausdorff dimension of A is, with probability 1, equal
to

(1) 6=6(A):—;—(1—M).

The upper bound HD(A) < é will be proved in section 6, and the lower bound HD(A) > §
in section 7.

Note that it is irrelevant whether OH? is viewed as the real axis (the half-plane model
of H?) or the unit circle (the disk model) because any (hyperbolic) isometry between the
Poincaré half-plane and the Poincaré disk is a linear fractional transformation with a smooth
extension to the boundary, and diffeomorphisms preserve Hausdorff dimensions. Observe
that as A 7 1/8 the Hausdorff dimension increases continuously to 1/2, not to 1, as one might
at first suspect. In the supercritical regime, the complement of A has Lebesgue measure 0
(see Proposition 10 below), so the Hausdorff dimension is discontinuous at the critical value
A=1/8.

2. HyPERBOLIC BROWNIAN MOTION AND BBM

2.1. The Hyperbolic Plane. There are several representations of the hyperbolic plane,
the most useful for our purposes being the Poincaré half-plane and the Poincaré disk rep-
resentations [2]. In the half-plane model, H? is the complex manifold {z = z + iy : y > 0}
with the Poincaré metric ds = |dz|/y. In the disk model, H? is the complex manifold
{z =re*® : 0 < r < 1} with the Poincaré metric ds = 2|dz|/(1 — 72). The linear fractional
transformation

z—1

) o(5) =2

maps the upper half-plane onto the disk and takes the Poincaré metric for the half-plane
to the Poincaré metric for the disk. For later reference note that ¢ maps each horocyle
I; = {z: S(2) = e?} to a circle p(I';)inside the unit disk tangent to the unit circle
at p(00) = 1. The hyperbolic isometries of the Poincaré half-plane are precisely the linear
fractional transformations represented by matrices from the group PSL(2, R); these include

(1) translations z —» z+ 7, r € R,
(2) homotheties z — az, a > 0,
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(3) hyperbolic rotations z — @~ 1(ep(z)), and
(4) the inversion z — —1/z.

For any two points 21, 22 of H? there is an isometry of H2 taking z; to 2s.

Hyperbolic circles are Euclidean circles, and vice versa. To see this, observe that it
is enough to consider the hyperbolic circles in the disk model centered at z = 0, since
hyperbolic isometries, being linear fractional transformations, map Euclidean circles to
Euclidean circles. That the hyperbolic circles in the disk model centered at z = 0 are also
the Euclidean circles centered at z = 0 follows from the rotational invariance of the Poincaré
metric. Finally, note that a hyperbolic circle of radius r has (hyperbolic) area 47 sinh?(r/2)
and perimeter 27 sinhr (see [2], Th. 7.2.2).

The boundary OH? of the hyperbolic plane H? may be identified with the unit circle
|z] = 1 (in the disk model) or with R U {oo} (in the half-plane model). The topology of
OH? is that of the unit circle. Convergence of a sequence or a continuous path in H? to
a point of the boundary OH? means convergence relative to the usual Euclidean metric
on the closed unit disk. (Although it will sometimes be more convenient to use the half-
plane representation, it should be understood that in either representation the topology of
H? U OH? is that induced by the Euclidean metric on the closed unit disk.)

2.2. Hyperbolic Brownian Motion. Brownian motion in the Poincaré half-plane started
at z = ¢ may be constructed in two different ways, (1) as a solution to a stochastic differ-
ential equation, (2) as a time-change of a two-dimensional (Euclidean) Brownian motion
stopped at the z—axis. Brownian motion started at any other point of the Poincaré half-
plane may be obtained by isometry: If ¢ is a hyperbolic isometry and if Z; is a hyperbolic
Brownian motion started at a point z, then ¢(Z;) is a hyperbolic Brownian motion started
at o(2).

In the first representation, hyperbolic Brownian motion Z; = (X, ¥;) with starting point
z = i (written in the usual rectangular coordinates) may be defined as the solution of the
stochastic differential equation(s)

dY; = YdYF
dX; = YidX [

subject to the initial condition Xo = 0, Yp = 1, where (XF,Y;®) is an ordinary (Euclidean)
two-dimensional Brownian motion. This representation, together with Ito’s formula, implies

Lemma 1. logV; is a standard Brownian motion with drift —1/2.
Standard results for one-dimensional Brownian motion with constant drift therefore imply

Corollary 1. DefineT =T(a) =inf{t:Y; = e 2} and T = oo if there is no such t. Then
for everya #0 and A <1/8,

(3) EeT = exp{%(l —v1—=8\)}, fora>0;
(4) ESTHT < 0} = exp{%(l ++vV1-8\)}, fora<O.

For a #0 and A > 1/8 both expectations are co.

In the half-plane model, hyperbolic Brownian motion Z; = (X, Y;) started at (0, 1) may
also be defined by the requirement that Z,; be a two-dimensional Euclidean Brownian
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motion, where
R .
A p(s) "

Note that as t — o0, p(t) — 7, where 7 < oo is the first passage time to the z—axis y = 0.
Consequently, as { — oo, Z; converges to a unique (random) point Z., of the boundary
R = OH? of the hyperbolic plane. Similarly, in the disk model hyperbolic Brownian motion
Z; = (Ry,©;) started at (0,0) may be defined as a time change of Euclidean Brownian
motion, with the time change depending only on the radial process. By the rotational
invariance of Euclidean Brownian motion, the limit point Z is uniformly distributed on
the circle OH?.

2.3. Hyperbolic Branching Brownian Motion. The most natural construction of hy-
perbolic branching Brownian motion uses a countable collection of independent hyperbolic
Brownian motion processes and an independent sequence Y7 of rate A Poisson processes.
The initial particle follows the first Brownian motion, fissioning at the occurrence times of
the Poisson process Y!. The nth particle, born at a time ¢ > 0 and location z, follows the
nth Brownian motion, moved (by an isometry) to the starting point z and the starting time
t, and fissions at the occurrence times of the Poisson process T, shifted by ¢. The number
N; of particles born by time ¢ is a binary fission process. Observe that if an isometry ¢ of
H? is applied to the positions of all particles in a branching Brownian motion started at z,
the resulting process is a branching Brownian motion started at ¢(z).

At any time ¢ > 0 the state of the branching Brownian motion is determined by the total
number N(t) of particles and their current locations Z%, Z2,---,Z}®. For 0 < t < oo,
define

Fi=o(N(s); Zi, Zs2; T ,Zév(s))ogsgv

Observe that (F3:):>o is a filtration. Consequently, by Lévy’s martingale convergence theo-
rem, for every event A € F,

14 = tll)I&P(Alﬂ)

3. PHASE TRANSITION

3.1. The Horocycle GW Processes. Fix an integer n # 0, and consider the following
modification of branching Brownian motion started at z = 4 in the Poincaré half-plane. Let
the process evolve in the usual way, but make the horocycle I'y, an absorbing barrier. Thus,
upon reaching I',, a particle will be “frozen”—its motion will cease, and it will undergo no
more fission. As ¢ — oo, more particles will become stuck at I',. Let P, denote the point
process consisting of the locations (z—coordinates) of all stuck particles, and let M, be the
cardinality of P, (note that M, might be o).

Observe that a version of hyperbolic branching Brownian motion may be constructed by
attaching to each point (z,e™"), where z € P, its own branching Brownian motion (with
time adjusted to account for the time the stuck particle at (z, e™) took to reach its position
on I'y). These attached branching Brownian motions should be independent of each other
and of the pre-I', branching Brownian motion process. That this construction does in fact
yield a version of hyperbolic branching Brownian motion is a routine consequence of the
strong Markov property.
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Proposition 1. The sequence M,, n > 0, is a Galton-Watson process whose offspring
distribution is nondegenerate and has mean

(5) ,u=exp{%(1—\/1—8/\)}:e‘S
for A<1/8 and u = oo for A > 1/8.

Proof. Consider the particles counted in M, 1. Each particle £ among these is a descendant
of a particle { € P,. Now the process consisting of the descendants of ¢ born after the
time of (’s first visit to I',, is itself a branching Brownian motion,as noted above, with
_initial point located on I',. This process is (in distribution) an isometric replica of the
original branching Brownian motion; the isometry (multiplication by €™ followed by a real
translation) takes each horocycle I';, to the horocycle I'y_,. Thus, the number M¢ of
descendants of { counted in M, has the same distribution as M;. Moreover, the post-I',,
processes engendered by different particles ¢ counted in M, are independent branching
Brownian motions, so the random variables M¢, where ¢ ranges over the particles counted
in My, are conditionally independent. It follows that M, is a GW process. The offspring
distribution is clearly nondegenerate since with positive probability the initial particle may
reach I'y before fissioning.

That M; has the advertised expectation is a routine consequence of Corollary 1 above. [

The same argument proves

Proposition 2. The sequence M,, n < 0, is a Galton-Watson process whose offspring
distribution is nondegenerate and has mean

(6) p,=exp{—%(1+\/1—8/\>} =1
for A< 1/8 and p= oo for A > 1/8.

3.2. Critical and Subcritical Cases. When A\ < 1/8 the GW process {Mp, }n<o is sub-
critical, and when A = 1/8 it is critical, by (6) above. In either case extinction is certain:
with probability 1, for all sufficiently large n, M_, = 0. In particular, there is a (random)
ns such that no particle of the branching Brownian motion ever reaches the region above
the horocycle I'_,,, .

Corollary 2. Assume that A < 1/8. Then for every horocycle Ty, the number of particles
of the branching Brownian motion above Iy, is eventually 0, with probability 1. Hence, for
every compact subset K of H2, the number of particles located in K is eventually 0, with
probability 1.

Proof. For any pair of integers ni,ng there exists p = p(ng — n1) > 0 with the following
property. For any time ¢ > 0, on the event that a particle { of the branching Brownian
motion is located on or above I'n, at time ¢, the conditional probability that a post-t
descendant of ¢ will visit I'y,, given the history F; of the BBM up to time t, is at least p.
Consequently, on the event V' (n1) that there are particles on or above the horocycle I'y,, at
arbitrarily large times,

tlim Py, isnever hit | F;) <1—-p< 1.
—00

Since
1{T"s,never hit} = tlim P(I'y,, is never hit | ),
— 00
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by the martingale convergence theorem, it follows that on the event V (n1) it is certain that
every I'y, will be visited. But the event that every Iy, is visited is the same as the event
that M, > 0 for all n < 0, and this happens with probability 0, since the GW process
{M,}n<o is subcritical when A < 1/8. Thus, for every n,

P(V(n)) =0.

If K is a compact subset of HZ2, then for some integer n, K lies entirely above I',. The
event that there are particles in K at arbitrarily large times is contained in the event
V(n) that there are particles on or above I'y, at arbitrarily large times; consequently, it has
probability 0. |

3.3. Supercritical Case. When A > 1/8 both of the horocycle GW processes { My, }n<o
and {Mpy}n>0 are supercritical. Thus, particles reach every horocycle I',, n < 0, above i,
and those particles all have descendants that eventually return to I'y.

Corollary 3. Assume that A > 1/8. With probability 1, there exist infinite paths in the
tree T that remain forever in compact regions of H2.

Proof. Consider the modification of the branching Brownian motion in which particles are
frozen upon reaching the horocycle I'_;. By Proposition 2, EM_; = co. Consequently, for
k > 1 sufficiently large, the expected number of particles in P_; whose trajectories did not
reach I'y, before freezing at I'_; is (strictly) greater than 1.

Let C7 and C; be hyperbolic circles with the same center iy (in the half-plane representa-
tion) and with hyperbolic radii logy — 1 and logy + k, repectively. These circles are situated
so that C lies above and is tangent to I'_; and C; lies above and is tangent to ['. For large
Y, these circles closely approximate the horocycles I'_; and I'y, to which they are tangent.
Consequently, by the result of the preceding paragraph and the Monotone Convergence
Theorem, if y is sufficiently large, the expected number of particles in the branching Brow-
nian motion that reach C; before Cs is greater than 1. But branching Brownian motion is
invariant (in law) under hyperbolic isometries, in particular hyperbolic rotations centered
at 4y, so, for branching Brownian motion started at any point on the circle Cs centered at iy
with radius log y, the number of particles that reach C; before Cs has the same distribution
F' as when the branching Brownian motion is started at i. Since the mean of F is greater
than 1, any Galton-Watson process with offspring distribution F is supercritical, and so
may explode with positive probability.

Such a GW process is embedded in the branching Brownian motion. Let Cy, C, and C,
be the circles centered at ¢ with hyperbolic radii logy — 1,log y, and logy + k, respectively.
Follow the initial particle from its initial position 7 until its first hit of the circle Cp; then
track it and all of its subsequent offspring that return to C, before hitting C,; after their
return(s) to C, follow these particles (ignoring their offspring) back to Cp; etc. The number
K, of particles in the nth cycle of this process is the nth term of a GW process with
offspring distribution F. On the event K, — oo (which has positive probability) there is
an infinite path in 7 that remains forever inside the circle C,.

It now follows that with probability 1 there is an infinite path in 7 that remains forever
in a compact region of H2. If K,, — oo there is certainly such a path. If K, - oo, start
from scratch with the post-C, branching Brownian motion initiated by the first particle
to reach C,. If this process again fails to produce an infinite path that remains bounded,
proceed to the next available particle, etc. By the SLLN, one of these processes will produce
an infinite bounded path. O
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Corollary 4. Assume that A > 1/8. Then with probability 1, for every nonempty open
subset U of H2, there are particles in U at indefinitely large times.

Proof. Let B, be the ball of radius r centered at the initial point i of the B. B. M., and let
A, be the event that there are particles in B, at all times ¢ > 0. By the preceding corollary,
P(A,) can be made as close to 1 as desired by making r large.

For any fixed open set U and any fixed r > 0, there exists p > 0 so that for any z € B,,the
probability that a hyperbolic Brownian motion started at z will visit U at time 1 is af least
p. On the event A,, there is a particle of the branching Brownian motion inside B, at every
timen =0,1,---, and conditional on its location z its subsequent movement is a hyperbolic
Brownian motion started at z. Consequently, for each m =1,2,--- and each n > m,

P(U visited after time m | F,) > pla,.

(Recall that F; is the o— algebra generated by the history of the branching Brownian motion
up to time ¢.) But by Lévy’s martingale convergence theorem,

nlggo P(U visited after time m | F,,) = 1{U visited after time m},

so A, C {U visited after time m}. Since P(A,) — 1 as r — oo, this proves that the event
{U visited after time m} has probability 1 for every m.
O

3.4. The Horocycle GW Process in the Critical Case.

Proposition 3. Assume that A =1/8. Then lim,_, Mn/e"/ 2=0.

Remarks: (1) This will be of central importance in determining the Hausdorff dimension
of A in the critical case A = 1/8. (2) The critical case differs from the subcritical case in
this regard: it can be shown that when \ < 1/8, lim,_o, M,,/€™ > 0 with probability 1.

Proof. Consider first the backward horocycle GW process { My }n<o. The mean offspring
number is p = exp{—1/2}, so {Mp}n<o is subcritical. By a standard result in the theory
of subcritical GW processes, there is a constant C' > 0 such that

(7 P{M_,, # 0} ~ 2Ce™"™/?

as n — oo. The event M_,, # 0 is the same as the event that a particle of the branching
Brownian motion hits the horocycle I'_,,. By the invariance of B. B. M. under isometry,
this event has the same probability as the event that a branching Brownian motion initiated
by a single particle on the horocycle I', has a particle reach the horocycle 'y eventually.

For n > 1 let 7, be the time that the horocycle Ty, is first visited by a particle of the
branching Brownian motion. Since all particle trails lead to OH?, 7, < oo a.s. Moreover,
Tn — 00 a8 n — oo, with probability 1, because for each ¢ < oo the number of particles
born before time ¢ is finite, and their paths up to time ¢ are bounded away from OHZ.
Consequently, by Corollary 2,

nli_}rrolo P{T'y not hit after time 7,,} = 1.
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But by (7), for each € > 0 there exists n. < oo such that for all n > n,,
P{Ty not hit after time 7,,}
< P{no descendant of a particle in P, reaches I'o}
< B(1 — Ce~™?)Mn
<1—(1—e%)P{M, > e?%}.

Thus, for every € > 0,
lim P{M, > ¢*%} =0.

This implies that the a.s. limit of M, /e™?2, which exists because {M,/e™?},>; is a non-
negative martingale, must be 0.
W

4. DIAMETER OF THE LIMIT SET

Recall that 7 is the random binary tree embedded in H? whose nodes are located at
the points of fission of the branching Brownian motion and whose (directed) edges follow
the paths of particles between successive fissions. Define A to be the set of all points in
OH? = R U {co} that are accumulation points of 7, and define

D = diameter(A).

(The diameter refers to the usual metric on R.) The following estimate on the tail of D will
be our primary tool for establishing the topological and dimensional properties of A in the
subcritical and critical regimes.

Proposition 4. For each A < 1/8 there exists a constant 0 < C < oo such that for all
sufficiently large t,
P{D >t} <Ct*~L.

Proof. Recall that D is the diameter of A as measured using the usual Euclidean distance
on OH? = R. On the event D > ¢ it must be the case that some point of A has absolute
value at least ¢/2; consequently, it is enough to prove that for a suitable constant C' < oo,

(8) PAZ [-t,1)) < Ct®!

for all sufficiently large t.

Recall that branching Brownian motion in the Poincaré disk may be obtained from
branching Brownian motion in the half-plane by applying the isometry ¢ defined by (2).
The mapping ¢ takes R onto the circle |z| = 1, with p(o0) = 1, ¢(i) = 0, (0) = —1; the
complement [—t,¢]° of [—t,%] is mapped onto an open arc of the unit circle centered at 1
with arclength ~ 4/t (as ¢ — oo). Consequently, the probability in (8) is the same as
the probability that the limit set Ap of branching Brownian motion in the Poincaré disk
intersects an open arc A; of arclength ~ 4/t centered at z = 1.

Let C1,C2, C3 be Euclidean circles of radius 2/t interior and tangent to the unit circle
at 1, 21, 22, respectively, where 21, z; are the endpoints of the arc A;. Any continuous path
from z = 0 that enters a neighborhood of the arc A; must first intersect at least one of the
circles C;. Thus, Ap N A; # 0 only if a particle of the branching Brownian motion hits one
of the circles C;. Because branching Brownian motion in the disk is rotationally invariant
(in law), the probability that a particle hits C; is the same as the probability that a particle
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hits C1; hence, the probability that a particle hits one of the circles C; is no larger than 3
times the probability that a particle hits C;.
Now return to the Poincaré half-plane via the mapping ¢~!: this maps the circle C; onto
the horocycle
F={z=z+iy|ly=t/2—-1}.
Consequently, the preceding paragraph implies that
P(A € [—t,t]) < 3P{a particle hits I'}.

The latter probability may be bounded with the aid of the upper horocycle GW process
{Mp}n<o introduced in sec. 3. A particle of the branching Brownian motion reaches
the horocycle I', = {y = e ™"} iff M, > 0. By Proposition 2, {Mn}n<o is a subcritical
Galton-Watson process with mean offspring number p = exp{1 — 6}. Thus, by the Markov
inequality, P{M, > 0} < EM, = pu™ The estimate (8) follows easily from this: for
n = —[log(t/2 — 1)],

t 5—1
P{A & [—t,8]} < 3P{M, > 0} < 3¢1~¢ (5 _ 1)
O

Remark: Similar arguments give an inequality in the reverse direction: there exists a
constant ¢’ < oo such that P{D >t} > C't5-1.

5. TOPOLOGICAL CONSEQUENCES
5.1. Critical and Subcritical Cases A <1/8. Assume that A\ <1/8.

Proposition 5. With probability 1, A is a totally disconnected closed subset of OH? with
Lebesgue measure 0.

Proof. That A is closed follows from its definition as the set of accumulation points of T
in OH2. Proposition 4 implies that w.p.1, the point co € H? is not an element of A.
Now recall that branching Brownian motion is invariant (in law) under hyperbolic rotations
about the initial point. Since the point at co may be mapped to any other point of OH? by
such a rotation, it follows that for every fixed ¢ € OHZ?,

E¢ Aa.s.

Fubini’s theorem therefore implies that, w.p.1, A has Lebesgue measure 0. Moreover, for any
countable dense subset D of 8H2, DN A = () almost surely, so A is totally disconnected. [

Define a path in 7 to be a continuous function v : R, — 7 such that the arcs of v
between successive nodes follow the Brownian trajectories at their natural speed. It follows
from Corollary 2 that, under the assumption A < 1/8, infinite paths v in 7 must eventually
exit any compact subset of H? and therefore converge (as t — oo) to OHZ.

Proposition 6. With probability 1, every infinite continuous path y(t) in the tree T con-
verges to a unique point of OH?.

Proof. Since w.p.1 every continuous path in 7 eventually exits every compact subset of
H?, by Corollary 2, it suffices to show that with probability 1 no continuous path in 7°
has more than one accumulation point in OH?. Suppose that v is a continuous path in
H? that eventually exits every compact subset of HZ? and has two distinct accumulation
points £1,£2 in OH2. Then 7 accumulates at every point on one of the two arcs of dH?2



10 STEVEN P. LALLEY AND TOM SELLKE PURDUE UNIVERSITY

connecting &; and &. But this contradicts Proposition 5, which asserts that w.p.1 A is
totally disconnected. O

Proposition 7. With probability 1, for every & € A there is an infinite path -y in the tree
T that converges to £.

Proof. If £ € A then there is a sequence 2, of points in (the image of) 7 that converge to &.
For each n there is a finite path v, in 7 that terminates at z,. Let D,, be the hyperbolic
disk of radius m centered at the initial point of the branching Brownian motion. Since
2, — OH?, for every m all but finitely many of the paths -y, must exit D,, a first time.
But there are only finitely many finite paths in 7" that stay in D,, and terminate on the
boundary of D,,, in view of Corollary 2; consequently, for each m there is a finite path 5,
in 7 that stays in D,, and terminates on the boundary of D,, such that infinitely many of
the paths <, begin with the segment 8,,. Moreover, these may be chosen so that for each
m, Bm+1 is an extension of G,,. Thus, there is an infinite path in 7 that extends all of the
finite paths B,,. By Proposition 6, 3 converges to a unique point { € A.

That ¢ = ¢ follows from Proposition 5. If { were distinct from &, then for every neigh-
borhood U of ¢ and every neighborhood V of £ there would be a path in 7 beginning in
U and ending in V (just take the appropriate terminal segments of the paths ,). These
paths would have to accumulate on one of the boundary arcs connecting ¢ and £. But this
is impossible, because A is totally disconnected. |

Proposition 8. With probability 1, A is a perfect set, i.e., every point £ € A is an accu-
mulation point of A — {£}.

Proof. Suppose that £ € A is an isolated point of A. Then there is an infinite path 7 in
T that converges to £&. There are infinitely many points of fission along this path, because
w.p.1 there are no particles that fail to fission in an infinite time interval.

From every fission emerge two particles, each of which initiates its own branching Brow-
nian motion from the point of fission, independent of the other. The particles themselves
follow (conditionally) independent Brownian paths to (random) points of OHZ2, and the dis-
tribution(s) of these exit points are absolutely continuous. Let (1, (a,... be the termination
points of the trajectories of particles 1,2,.... Then w.p.1, {, # (m for alln # m, ¢, & € OH2.

Now take a sequence of fissions along 7y leading to &, and let &, be the termination points
of the trajectories of the particles born at these fission points. By the previous paragraph,
the points &, are distinct, and they are certainly elements of A. The points &, must converge
to £, because otherwise there would be a sequence of trajectories in 7 accumulating along
a nonempty open arc of OH?, contradicting Proposition 5. |

5.2. Supercritical Case A\ > 1/8. Assume now that A > 1/8. Then the GW process
{M, }n<o is supercritical, with probability of extinction 0. Consequently, every horocycle is
visited by particles of the branching Brownian motion. It follows that oo is a cluster point
of the tree 7. The following is a stronger assertion.

Proposition 9. With probability 1 there is a path in T that converges to oo.
Proof. Recall that M_; is the number of particles “frozen” upon reaching I'_;. Since

EM_1 = oo, the monotone convergence theorem implies that there exists an integer k > 1

such that EMﬁkl) > 1, where Mikl) is the number of particles counted in M_; that reach
I'_, without first having visited I';. Consequently, a GW process with offspring distribution

E(Mikl)) is supercritical. Such a process is contained in {Mp}n<o: beginning with M._,
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throw away all particles and their descendants that visit 'y before being frozen at I'_g;
then at each subsequent I'_,,, throw away all particles (not already thrown away) and their
descendants that visit ['_,x before being frozen at I'_,, (and after being “unfrozen” from
F_n+1).

The GW process so constructed is supercritical, but may reach extinction. However,
each of the particles in the branching Brownian motion begets its own branching Brownian
motion, and embedded in each of these is a copy of the GW process built above. By the
ergodic theorem, at least one of these will explode. Now any path « that follows a sequence
of nodes corresponding to the particles in such an exploding GW process must converge to
00, because after reaching each horocycle I'y, n < 0, it never again drops below 'y, O

Proposition 10. Define Ag to be the set of points in OH? to which paths in T converge.
With probability 1, the complement of Ao in OH? has Lebesque measure 0.

Proof. Here it is convenient to work in the disk model. Since hyperbolic branching Brownian
motion is rotationally invariant (in law), Proposition 9 implies that for every ¢ € OH?, with
probability one, there is a path in 7" that converges to £. Fubini’s theorem therefore implies
that with probability 1 the set Ao has full Lebesgue measure. O

Corollary 5. With probability 1, A = 6HZ.

Proof. Clearly, Ao C A. By the preceding proposition, with probability 1, the complement
of Ag is a set of Lebesgue measure 0; hence, with probability 1, the complement of A has
Lebesgue measure 0. Since A is necessarily closed, it follows that with probability 1 its
complement is empty. O

6. HAUSDORFF DIMENSION: THE UPPER BOUND

Assume that A < 1/8. To show that the Hausdorff dimension of A is no larger than the
constant § defined by (1) it suffices to exhibit, for each small € > 0 and each n > 1, a
covering Cnof A by arcs J, such that w.p.1

M,
9 D 1l — 0

k=1
as n — oo. (For any arc J, |J| is its length.) It is sufficient to show convergence in
probability, because this implies the existence of an almost surely convergent subsequence.

6.1. Coverings of A. We will work in the Poincaré half-plane model. Fix an integer
n > 1 and consider again the modification of the branching Brownian motion process in
which particles are “frozen” upon reaching I',, (sec. 3). Recall that to construct a version
of the entire branching Brownian motion process (with no freezing), one attaches to each
particle in P, its own branching Brownian motion, each independent of the rest and of the
pre-I',, process. For each of these attached branching Brownian motions there will be a

limit set Ak, and clearly
M,

A= U Ank-
k=1
Conditional on My, the random sets Ank, 1 < k < M,, are independent and identically
distributed. Moreover, conditional on M,, the random sets A,x are independent scaled
replicas (in distribution) of A, with scale factor e=". (This is because the branching Brow-
nian motion engendered by a particle in P, is an isometric replica of the whole branching
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Brownian motion, via an isometry gotten by composing translations with the homothety
z—emz.)

Define J,x to be the smallest closed interval in 9H? = R that contains Apx. Then for
each integer n > 1, the collection

Crn = {Jnk}i1<k<m,

is a covering of A by intervals. We will prove that for every sufficiently small ¢ > 0, (9)
holds for this sequence of coverings. This is equivalent to proving

M-

~né—ne nb+e
e Dire — 50 a.s.,
k=1

where Dy = exp{né + ne}|Jnk| is the scaled diameter of Ak.
Conditional on M, the random variables Dy, for 1 < k < M, are independent and
identically distributed, each with the same distribution as

D = diameter(A).

6.2. Subcritical Case. Assume now that A < 1/8. In this case, § <1/2 and 1 -6 > 1/2,
and so for sufficiently small € > 0, § + ¢ < 1 — 6. The tail probability estimate given in
Proposition 4 therefore implies that for all sufficiently small € > 0,

ED** < 0.

Recall that |Jpk| = € ™Dy, and that conditional on M, the random variables D, are
independent and identically distributed, with the same distribution as D. Proposition 1
implies that EM,, = e™. Consequently,

M, My,
E (Z |Jnk|6+s) — e—né—neE (Z D;SL-}C-6> — e—nsED5+e_

k=1 k=1
As n — oo, this quantity converges to zero. Hence, the convergence (9) holds in probability.

6.3. Critical Case. Assume that A=1/8. Then§=1-6= %, so the argument used in
the subcritical case breaks down. The tail probability estimate given in Proposition 4 must
now be used in a more delicate manner.

Lemma 2. There is a constant C < oo such that for everye >0 andn > 1,

14 2¢

E{eD1{e "D < 1}}%+€ <C ( o ) exp{—g} + exp{—% —ne}.

Proof. Let C < 0o be the constant in Proposition 4. Then
n/2+ne

1., €
E{e™D1{e D < 1}}4* < exp{-7 — ne} / P{D}* >t} dt
0

n/2+ne

n ¢ 1 n
< eXP{~§ —ne} /1 Ct™ T dt + exp{—7 — ne}

14 2¢ n n
< —_—— — ——— .
C < % ) exp{ 2} + exp{ 5 na}

To prove that (9) holds in probability it suffices to prove
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Lemma 3. For everye >0 and p > 0,

M,
. 1
(10) 7g&P{ggﬁmVH>P}=0

Proof. For any a > 0,

M
P{Z [T ¥ > p} < P{My > ae/?}
k=1

+ P(m?lenk| > 1| M, < ae™?)

+ P (Z | Tk 771 | k] < 1} > p| M, < ae”/2>
k
Proposition 3 implies that for every a > 0,
lim P{M, > ce™?} = 0.
n—>00

Conditional on M, the random variables D, = e"|J,t| are independent and identically
distributed, with the same distribution as D, so Proposition 4 implies that

P(m,?x|Jnk| >1|M, < aen/z) < ae"?P{D > €"} < Ca,

which is small when « > 0 is small. Finally, by the Markov inequality and Lemma 2,

M,
P(S. il 241 Jnk] < 1} > p| My, < 0e™?)

k=1
<p'E (Z Ik 41| Jni] < 1} | My < ae“/Z)
k
-1_.n/2 -n -n 3+e
< p rae™?E (e7"D1{e "D < 1})?
142
< —1 —ne
<p o (C( % ) +e )
which is also small when o > 0 is small. O

7. HAUSDORFF DIMENSION: THE LOWER BOUND

7.1. Frostman’s Lemma. Assume that A < 1/8. To show that the Hausdorff dimension
of A is no smaller than the constant § defined by (1), we will use the following variation of
a well known criterion due to Frostman.

Lemma 4. (Frostman) Let A be a compact subset of a Euclidean space. If there exists a
probability measure v with support contained in A such that for v—a.e. z,

Lw2) = [ lz -y dv(y) < oo
then the Hausdorff dimension of A is at least t.

Proof. The usual Frostman Lemma states that if there is a probability measure v, such that

Li(v) = /It(u*,w) dv(z) < 00
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then the Hausdorff dimension of A is at least ¢: see, e.g., [6], Corollary 6.6. Suppose, then,
that v is a probability measure for which I;(v,2) < oo for v— a.e. 2. Choose a < oo s0
large that v(B,) > 0, where B, = {z : I;(v,2) < a}, and define a probability measure v,
by v«(A) =v(AN B,)/v(B,). Then

[ [yt in@an) < s [ [ -t d@a) < S
O

7.2. Construction of Measures v, on A. The use of Frostman’s Lemma requires suit-
able probability measures on the set A. We will define a sequence of probability measures
Um on A, each the exit measure of a certain random walk on the tree of the branching Brow-
nian motion. It is most convenient to work in the half-plane representation. Recall that P,
is the set of (x—coordinates of) particles “frozen” on the horocycle I'y, in the modification
of the branching Brownian motion introduced in sec. 3. Fix m > 1, and fix a realization of
the entire branching Brownian motion. Conditional on this realization, construct random
variables X1, Xo, ... as follows. First, choose an element X; of Py, at random. Conditional
on X1, choose an element X, at random from among those elements of Py, representing
particles descendant from the particle at (X1,e~™). Conditional on X3, Xa, ..., Xk, choose
an element Xj.; at random from among those elements of Pym+m representing particles
descendant from the particle at (X, e™*™).

Lemma 5. With probability 1, limg_,o, X = £ exists, and (£,0) € A.

Proof. By construction, for each k the particle at location (Xg,e™*™) is a (post-T'km—_m)

descendant of the particle at (Xx—_1, e *™*™). Thus, for each k there is a finite path v in
T terminating at (X, e~*™), and for each k the path 7,1 is an extension of ;. The paths
Yk, k < 0o, may be knitted together to form an infinite path v in 7. By Proposition 6,
converges to a unique point (£,0) € A. Since the points (Xz, e *™) converge to OH? and
are all on v, it must be that X, — &. |

Define v, to be the conditional distribution of ¢ given the realization of the branching
Brownian motion. Call the sequence X a Pp, random walk on the tree 7, and & the exit
point of the random walk.

Observe that the construction just outlined does not require that the initial point of the
branching Brownian motion be at z = 4: If 77 is the tree of a BBM started at any point
z =z +1e~™ of a horocycle I'ym,n =0,1,2,---, a Pp,— random walk on 7’ will converge
w.p.1 to an exit point (£,0) € A. Note, however, that the unconditional distribution of
¢ depends on the initial point z. In fact, if £ and £ are the exit points of P,,— random
walks on the trees of branching Brownian motions started at z = ¢ and z = z + ie™™",
respectively, then & has the same distribution as e™™¢ + z.

Lemma 6. The unconditional distribution of & has a bounded density with respect to
Lebesque measure on R = OH? (in the upper half-plane representation of H).

Proof. Assume that the branching Brownian motion is defined on a probability space
sufficiently large to accomodate an independent random variable U with density 2z for
0 < z < 1. Let C, and B, be the hyperbolic circle and disk, respectively, of radius r cen-
tered at i. Consider two modifications of branching Brownian motion started at ¢: in the
first, particles are “frozen” upon reaching the circle C1; in the second, particles are “frozen”
upon reaching the circle Cyy. Since U < 1, the mean number & of particles created in the
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first modification is no smaller than the mean number of particles created in the second
modification. Let Q be the point process consisting of the positions on Cy of all particles
created in the second modification. Then the intensity measure of Q has a density relative
to Lebesgue measure on the ball B; that is bounded by & — this follows from the rotational
symmetry of B.B.M. and the choice of density of U.

Now consider the modified branching Brownian motion in H? defined in section 3, in
which particles are frozen upon reaching the horocycle I';,. A version of this process may
be obtained from the second modification of the previous paragraph by attaching to each
particle in Q its own branching Brownian motion (independent of the others, and of the
pre-Cy process), with time shifted to account for the time it took to reach Cy, and freezing
particles when they hit I',,. Consider the intensity measure ., of the point process Pp, of
particles frozen at I'y,: Since each of these particles is an offspring of one of the particles in

Q,
um:/ ufndfg(z)Sn/ firm, A2,
B B

where dz denotes Lebesgue measure on the ball By, Ig the intensity measure of Q, and
pZ, the intensity measure of the point process of frozen particles in I';, descended from a
single ancestor located originally at z. Observe that (a) if z = z + iy and 2/ = 2/ + iy
then pZ is the 2’ — z translate of uZ,; and (b) the total mass of uZ, is bounded above by
E|Pmi1] = €™+ for every z € B;. It therefore follows by an easy argument from the
integral representation of ., above that m, has a bounded density h(z) = duy, /dz relative
to Lebesgue measure on the horocycle I'y,.

Finally, consider the exit random variable ¢ for a Pp,—random walk Xj. The first step
X is to a point of P,,, chosen at random; conditional on X; = z, the distribution of £ is the
same as the unconditional distribution of e~™(¢ — ). Thus, the distribution of ¢ may be
bounded above by summing the conditional distributions over all € Pp,, then integrating
against the distribution of P,,. Consequently, for any Borel subset B of R,

P{te B} < / P{e~™(¢ — z) € B}h(z) d.

This shows that ¢ has a density bounded by max, h(x).
O

Corollary 6. Let&, &' be the ezit points of independent Pp,—random walks (Xi)k>0, (X} k>0
on the (same) tree T of a branching Brownian motion started at z =1i. Fori=1,2,---, let

N; = N™ denote the number of descendants in Pm; of the particle with x—coordinate X;_1

N Prmi—m, and define G to be the o—algebra generated by the random variables Xy and N;.

For k > 0, define events

A = {Xi = Xp},
By =A N Ai-i—l-
Then there exists a constant C < oo such that for all k > 0 and all € > 0,
P(l¢ — €| < e|GV By) < Cek™e.
Here G V By, denotes the smallest o—algebra containing G and By.

Proof. On the event By the random walks X;, X J’ follow the same path through 7 for the
first k steps, then proceed through the (different) subtrees attached at the distinct points
Xie+1, Xk, +1 € Pemam- Now the event By and the random variables Xy11, X, 4 41 depend only
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on the pre-Pgmim section of 7, and conditional on the pre-Prm4m process, the subtrees
attached at distinct points z,2’ of Prmym are conditionally independent B.B.M. trees.
Therefore, conditional on G V By, the exit random variable ¢, scaled by €™, has the same
law as (a translate of) the exit random variable for a branching Brownian motion started
at i. The result now follows from the preceding lemma. |

7.3. Energy of v,,. By Frostman’s Lemma, to prove that the Hausdorff dimension of A
is almost surely at least 6 it suffices to prove

Lemma 7. For every e > 0 sufficiently small, there exists an integer m > 1 such that with
probability 1, for vy,—a.e. z,

Is_e(Vm, ) < 0.

Proof. Let Fo be the c—algebra generated by the entire history of the branching Brownian
motion, and let £ and & be conditionally independent given F.,, each with conditional
distribution vy,. It suffices to show that for any € € (0, §/3), if m is sufficiently large then

(11) E(|6 — &3 | Fuo VE) < 00 as.

Let X1, Xa2,... and X1, X}, ... be conditionally independent P,,—random walks on 7. De-
fine H to be the o—algebra generated by the branching Brownian motion and the random
walk (Xg)r>1, and define G to be the o—algebra generated by the random walk (Xg)k>1
and the random variables (N;);>1 defined in Corollary 6. Note that Fo, C H and G C H,
and that H = F V & (because for any given value of £ there is only one path through 7
that converges to £, so the steps of the random walk X} are determined by &). Let the
events Ag, By be as in Corollary 6; then

k
P(Ax|H) = 1/ [ N = P(4 | 9),
i=1

the last because the random variables NN; are measurable relative to G. Unconditionally,
(Ns)i>1 are independent and identically distributed, each with the same distribution as Mp,.
By the SLLN,

P 1/k
lim (H Ni> = exp{F log M}
i=1

ko0
almost surely, and by Lemma 8 below,
lim m~1Elog M,, = 6.
m—o0

Consequently, for each ¢ > 0 there exists a finite, nonnegative, G—measurable random
variable Kk = k¢ such that for every k > 1, with probability 1,

P(A;|G) < kexp{km(6 —¢)}.
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Now let A, = {|¢ — ¢'| < e=™™}. By Corollary 6, for any n > 1,

P(8n]0) =" E(P(An|GV Bo)1p, |0)
k=0

<Y E(P(An|GV Br)la, |G)
k=0

<Y Ce~=Pmp(4,|g)
k=0

< Z(Ce—(n-—k)m)(ﬂe—kmw—a))
k=0

< Clh_’e—nm(é—Ze).

Thus, for all € > 0,
E(l¢ - ¢'17°%1G) < oo.

Since G C H = Foo V&, (11) follows. O
Lemma 8. Let Z, be a Galton-Watson process whose offspring distribution has mean e >
1 and is supported by {1,2,...} (i.e., there is no extinction). Then

lim n~Elog Z, = 6.

n—oQ

Proof. By Jensen’s inequality, Elog Z, < né for every n. Thus, it suffices to show that
liminf n~!Elog Z, > 6. Routine arguments using the generating function ¢ of the offspring
distribution (or alternatively the Seneta-Heyde theorem) show that for any e > 0,

Zn, / emﬁ—ne — 00
in probability. Consequently, for all sufficiently large n,
n~ElogZ, > § —¢.
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