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Abstract

This paper considers the problem of simultaneous selection of k£ populations
in comparison with a known standard. The empirical Bayes method is employed
to incorporate information from among the k populations to improve the decision
for each of the ¥ component problems. Under the assumption of the linearity of
the posterior mean, an empirical Bayes procedure for simultaneous selection of
good populations is derived. The asymptotic optimality of the empirical Bayes
selection procedure is investigated. Three statistical distribution models are stud-
ied in detail. For each of the three models, it is shown that the relative regret

risk of the empirical Bayes selection procedure has a rate of convergence of order

O(k1).

1. Introduction

Consider k independent populations 71, ..., 7. For each 7, the population 7; is char-
acterized by a parameter ;. Let §; denote a known standard or an unknown control value.
A population 7; is said to be good if §; > 6y, and bad otherwise. In this paper, we study
the problem of selecting all good populations as compared with a known standard 8y. This
selection problem may arise, for example, in the industrial applications in which one may
be interested in finding all the manufacturing processes with product quality satisfying a
specified standard. Also, in the developing stage of clinical trials, an experimenter may be
interested in seeking a potential drug (treatment) which would achieve a certain require-

ment of efficacy as compared with the standard. In the literature, this selection problem
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has been studied extensively. Bechhofer [1] has made multiple comparisons with a con-
trol for multifactor experiments involving variances of normal populations. Bechhofer [2],
Bechhofer and Nocturne [3] and Bechhofer and Turnbull [5] have considered the problem
of optimally allocating the observations when comparing several treatments with a control.
Dunnett [9] and Gupta and Sobel [22] have considered problems of selecting a subset con-
taining all populations better than a control. Lehmann [23] and Spjgtvoll [30] have treated
the problem using methods from the theory of testing hypothesis. Randles and Hollander
[27], Miescke [26] and Gupta and Miescke [18] have derived optimal procedures via the
minimax or I-minimax approaches. Gupta and Liang [15] have developed empirical Bayes

simultaneous testing procedures for Poisson populations.

It should be noted that the problem of comparing populations with a control under
different types of formulation has been investigated in the literature. We mention a few
here: Bechhofer and Turnbull (6], Dunnett [10], Wilcox [31], Dudewicz and Taneja [8]
and Gupta, Liang and Rau [17] have discussed problems of selecting the best population
provided it is better than a control. Gupta and Singh [21] and Gupta and Hsiao [14] have
derived Bayes, I'-minimax and minimax procedures for selecting populations close to a
control. Mee, Shah and Lefante [25] have developed multiple testing procedures to com-
pare the means of k£ normal populations with respect to a control. Liang [24] has studied
simultaneous selection procedures for selecting normal populations close to a control based
on Kullback-Leibler discrimination information. Also, Chapter 5 of Bechhofer, Santner
and Goldsman [4], Chapter 20 of Gupta and Panchapakesan [19], and Gupta and Pancha-
pakesan [20] have provided comprehensive overviews and good references on this research

area.

In this article, we study the problem of selecting good populations versus a control
using an empirical Bayes approach. A simultaneous empirical Bayes selection procedure
1s constructed under the assumption that the posterior expectation of the parameter 6;
is a linear function of the sample observations. Such a property is, thus, referred to as
posterior linearity. This assumption holds in many statistical models, for example, when
the sampling distribution is normal distribution with mean 6, and 6 also follows a normal
prior distribution; or, the random observation follows a binomial B(n, 8) distribution and

¢ has a Beta prior distribution. For more general statistical models with posterior linearity
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see Goldstein [13] and Diaconis and Ylvisaker [7]. Also Ghosh and Lahiri [12] have studied
some empirical Bayes estimation of means from stratified samples under the posterior

linearity assumption.

This paper is organized as follows. We formulate the selection problem in Section 2.
A Bayes selection procedure to the selection problem is derived. Since the Bayes selec-
tion procedure depends on certain unknown parameters, in Section 3, by incorporating
information from each of the & populations, we first present estimates for the unknown
parameters. Then, by mimicking the behavior of the Bayes selection procedure, we propose
an empirical Bayes procedure. The asymptotic optimality of the empirical Bayes selection
procedure is investigated. In Section 4, we study the rate of convergence of the relative
regret risk of the empirical Bayes selection procedure for three statistical distribution mod-
els. For each of these models, it is shown that the empirical Bayes selection procedure has

a rate of convergence of order O(k™1).

2. Formulation of the Selection Problem and a Bayes Procedure

Let m,...,7x be k& independent populations with unknown means
01,...,0¢ respectively. For a given standard 6y, population 7; is said to be good if §; > 6,
and bad otherwise. Our goal is to derive selection procedures to select all good populations

and to exclude all bad populations.

Let Q = {6 = (61,...,0%)|0;: € Z, i =1,...,k} be the parameter space, where 7 is an
interval in R. Let ¢ = (a1,...,ax) be an action, where a; =0, 1, i =1,...,k. When ¢ is
taken, a; = 1 means that population ; is selected as good while a; = 0 means that =; is

excluded as bad. For the parameter § and action g, the loss function is given by

k
L(9,a) = ZLi(9i,az’) (2.1)
and
L,-(G,-,ai) = a,-(Go — 91).](90 — 9,) + (1 - a,)(e, - GO)J(QZ —_ 90), (2.2)
where J(z) = 1(0) if > 0 (otherwise).

In (2.2), the first term is the loss due to selecting 7; as good when ; is bad, and the

second term is the loss due to excluding 7; as bad while it is good.
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Foreach: =1,...,k, let X;1,..., X, be a sample of size m taken from population
m;. Denote X; = (Xi1,...,Xim) and X = (X4,...,X k). It is assumed that Xq,..., X

satisfy the following assumptions:

Al. Foreach:=1,...,k, given 0;, X;1,...,X;m are iid with
E[X;;10;)=6; and Var (X;;|6;) = V(6,).

A2, Foreach:=1,...,k, 6; is a realization of a random variable ©;; ©4,...,0; are iid
with the mean p and a finite variance 02, and 0 < 72 = E[V(0;)] < co.
A3. E[0;|X;] = aX; + b for some constants a and b, where X; = % > Xije

j=1

A4. X,,..., X are marginally iid.

Note that these assumptions are satisfied, for example, when X;; follows a normal
distribution with mean 6; and ©; also has a normal prior. One may also see that the
assumptions hold when X;; belongs to an exponential family with ©; having a conjugate

prior distribution.

Under the assumptions A1-A4, it follows from Ericson [11] that a = 0% /(¢% + %) and
b= (1—a)u. Hence E[0;|X;] = aX;+ (1 —a)p. Thus the posterior mean of ©; is a linear
function of the sample mean X ;. This property is referred to as posterior linearity. Note

that the posterior mean is also a weighted average of the sample mean X; and the mean
.

Let fi(z:|0;) denote the probability density function (or probability function in discrete
case) of X; given 6; and let f(z|f) = ﬁl fi(z:|6;). Also, let Gi(6;) denote the prior

distribution of ©;, 1 = ,k, and let G(9) = H Gi(6;). Note that Gi,...,Gy are
identical since ©1,..., 0 are marginally iid. Fmally, let fi(zi) = [ fi(z:]6:)dG:(6;) and

k
flz)= '1:[1 fi(zq).
Let X be the sample space generated by X. A selection procedure § = (6y,...,6;)is a

mapping defined on X into [0, 1]¥, such that for each i and g € X, 6;(z) is the probability

of selecting population 7; as good when X = g is observed. Denote the Bayes risk of the
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selection procedure § by Rg(d, k). Then, with the loss L(§,a) given in (2.1)—(2.2), we have

k
Rg(8,k) = _Z Ri(6:), (2.3)

and
Ri(E) = [ 8a)it0 — BOX: = 2} (2)dz + C, (2.4)
where C' = E[(©; — 6,)J(0; — 6y)].

From (2.4), a Bayes selection procedure §g = (6p1,...,0Bx) which minimizes the
Bayes risks Rg(8,k) among the class of all selection procedures is given by: For each

1=1,...,kand z € &,

1 if B[O X: = 2] > 6
épi(z) = )

otherwise. (2.5)
B R A 1
0 otherwise.

From (2.5), we see that for each ¢, §pi(z) depends on z only through the sample
mean value Z;. Let h;(Z;) denote the marginal pdf of X;. Note that h; = --- = hy, since
X1,...,X are marginally iid. Then,

k
Re(ép,k) = Z Ri(éBi) (2.6)
and
Ri((SB,') = /53,'(@){90 — go,(:f,)}hz(a_c,)d:fz + C. (2.7)

where ¢;(Z;) = az; + (1 — a)p.

3. Empirical Bayes Approach

Note that, from (2.5), the Bayes selection procedure § g depends on the parameters 72,
o? and p. When the values of these parameters are unknown, it is not possible to implement
the Bayes procedure ¢ for the selection problem. In such a situation, we incorporate the
information from among the k populations and construct estimates for these parameters.
Then, by mimicking the behavior of the Bayes procedure §5, we propose an empirical

Bayes selection procedure.
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For each i, the data X = (Xy,...,X}) is partitioned into two parts, namely, X; and
X(@) = X1,y Xic1, Xittseoo, Xg). Let

1 e~
T
k
SSB(i) = Y. m(X; — i), MSB(i) = SSB()/(k— 1),
T

E m
SSW(@E) = > > (Xje—X;)?, MSW(i) = SSW()/[(k - 1)(m — 1)].
=1 ¢=1
]J'#i
A straightforward computation shows that E{MSW(:)] = 72, E[MSB(:)] = 7% + mo?
and E[i(i)] = p. Therefore, we use #2(1) = MSW (i), MSB(i) and (i) to estimate 72,
72 + mo? and p, respectively, and use m62(:) = max(0, MSB(:) — MSW (i) to estimate

ma2.

Empirical Bayes Selection Procedure §* = (6},...,6})

By mimicking the Bayes selection procedure §p of (2.5), we propose an empirical
Bayes selection procedure §* = (6%,...,65) as follows: For each ¢z =1,...,k and ¢ € X,
define

' 1 if mé2(2)z; + 72(2)a(i) — MSB(3)8; > 0,
§5(2) = 6%(7:, 2(3)) = { if m&2(4)z; 4+ 72(2) (i) (1)8y > (3.1)

0 otherwise.

When mé2(z) > 0, we let C; = MSB(i)0°;(+;(i)’1(i). Then, the empirical Bayes selection

mé&(z
procedure 6 can be expressed as:
1 ifz; >C;,

6150, 2()) = { S (3.1

0 otherwise.
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Asymptotic Optimality of the Selection Procedure §*

We denote the Bayes risk of the empirical Bayes selection procedure §* by Rg(8*, k).
Then,

k
Ra(8", k) = Z Ri(87) (3.2)
where Ri(6%) = E;[Ri(87|X(5))] and
R;(8¥1X(3)) = [ 6:(%i, X (i))[00 — i(%:)]hi(Z:)dz; + C. (3.3)

Note that R;(67|X(¢)) is the conditional Bayes risk of the :th component selection proce-
dure 67 conditioning on X (7) and the expectation F; is taken with respect to the probability

measure generated by X (7).

Since ¢ is the Bayes selection procedure, R;(6F|X (2)) > R;(ép;) for all X(z) and all
i =1,...,k. Therefore, Ri(67) > Ri(85i), i = 1,...,k. Hence, Rg(§* k) — Ra(§5, k) =
_Zk: [Ri(6F) — Ri(6Bi)] > 0. Ra(é*,k) — Ra(8B, k) is called the regret risk of the selection
procedure §*. Define pa(8", k) = [Ra(6*, k) — Ra(8n, B)l/Ra(8s, k). Then, pa(6* k) is
called the relative regret risk of the procedure ¢*. In the following, pa(8*, k) is used as a

measure of performance of the empirical Bayes selection procedure §*.

Definition 3.1 (a) A selection procedure § is said to be asymptotically optimal relative

to the prior distribution G if pg(d, k) — 0 as k — oo.

(b) A selection procedure § is said to be asymptotically optimal relative to the prior
distribution G' with a rate of convergence of order {ex} if pg(é, k) = O(er) where {e} is

a sequence of positive numbers such that klim ex = 0.
— 00

According to the statistical model described before, one can see that R;(6*|X(2)),7 =
1,...,k, are identically distributed. Therefore, R1(6}) = --- = Ry(6}). Also, for the
Bayes selection procedure g, R1(61) = -+ = Ri(6px). Hence, Ra(§*,k) = kRy(6}).
Rg(éB,k) = kR1(8B1), and pa(8*, k) = [R1(6F) — R1(6B1)]/R1(6B1), where Ry(6p1) is a
fixed positive value. That is, the relative regret risk of the selection procedure §* and the
regret risk of the component procedure 6 have the same asymptotic behavior. Therefore,
it suffices to investigate the asymptotic behavior of the difference Ry(67) — R1(ép1) for
sufficiently large k.
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From (2.5), (2.7), (3.1) and (3.3),
0 < R1(67) — R1(6B1)
= [ Bu{61(00,X(1) = (@) b0 — pa(@0)a(o)das

- /CO P{§1(21,X(1)) = 1,6B1(Z1) = 0}[0o — ¢1(Z1)]h1(Z1)dZy (3:4)

— o0

+ [ P8I X)) = 0,6m (@) = (@) — bols (31

co

where
P{61(21,X(1)) =1, 6p1(%1) = 0}
= P{mé&*(1)z, +73(1) = a(1) — MSB(1)6, > 0, (3.5)
mo?%, + 72u — (mo? 4+ 7%)8y < 0},
and

P{61(21,X(1)) =0, é1(71) = 1}
= P{mé&*(1)z; + #*(1)a(1) — MSB(1)6, < 0, (3.6)
moZy + m2u — (mo? + 7%)8 > 0}.

To show the asymptotic optimality of the empirical Bayes selection procedure §* we
proceed as follows. By Corollary 1 of Robbins [28], it suffices to prove that P{é7(Z1,
X(1)) =1, 6B1(Z1) =0} — 0 and P{65(Z1,X(1)) =0, éB1(Z1) =1} — 0 as k — oo. For
this purpose, one only need to show that for each z1, [m&?(1)z1 +72(1)i(1))] — MSB(1)b,
converges to (mo?z; + 72p) — (mo? + 72)6y in probability, which is true, since mé?(1),
72(1), (1) and M SB(1) are consistent estimates of mo?, 72, y and mo? + 72, respectively.

Hence, we have the following theorem.

Theorem 3.1. Let §* be the empirical Bayes selection procedure constructed previously.
Then, under the assumptions A1-A4, §* is asymptotically optimal. That is, pg(8*,k) — 0

as k — oo.

Comparison with a Natural Selection Procedure

Consider a natural selection procedure (jN = (6 ,...,5,]cv ) which is based on the

sample means and defined as follows:

aN(z) = {1 if 3 2 bo, (3.7)

0 otherwise.
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The selection criterion of the procedure § N is simple and natural. It just compares the
sample means with the control 8y, and selects those populations with sample mean values
at least equal to 6y as good populations. The Bayes risk associated with the selection

procedure § is:

k
Ro(8",k) =) Ri(6]"), (38)
i=1
and
Note that Ry(6V) = --- = Ry(6L). Hence the regret risk and relative regret risk of §"

with respect to the Bayes procedure §p are RG(QN, k)— Rg(6B,k) = k[R1(6)) — R1(6B1)]
and pg(§~, k) = [Ri(6)Y) — R1(651)]/R1(6B1), respectively. Since R;(6N) — Ry(6p1) is
a positive constant and independent of k, the natural selection procedure ch does not
possess the asymptotic optimality. We define the relative performance of §* with respect

to §N as: N
pa(8™,k) _ Ri(8) — Ra(8m1)
pc(6*,k)  Ru(6f) — Ri(6p1)

Since §* is asymptotically optimal, while Ry (6{¥) — R1(851) is a fixed positive value inde-

pG(é*a éNa k) =

pendent of k, it can be seen that pg(é*,QN, k) — co as k — oo.

Small Sample Performance: A Simulation Study

A simulation study was carried out to investigate the small sample performance of
the empirical Bayes selection procedure §*. For each i, let D;(X) = [65(X;, X (i) —
88:(X:)|[60 — (X)), and D(X, k) = &, Di(X). Note that

ED;(X)

= Ei[E{[67(X:, X(3) — 6B:(X:)]f0 — ¢i(X:)]}]
= Ei[Ri(671X(2)) — Ri(6Bi)]

= Ri(§7) — Ri(6B:).

(3.10)

In (3.10), the expectation E(;) is taken with respect to the probability measure gen-
erated by X;, and E; denotes the expectation taken with respect to the probability mea-
sure generated by X (z). Therefore, from (3.10), one can see that ED(X,k) = Rg(6*,k)
— Ra(éB, k).
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Note that pg(6*, k) = [Ra(8*,k) — Ra(8B,k)]/[kR1(6B1)], where R1(6p1) is a fixed
value, independent of the value k. Hence, pg(é*, k) depends on k only through the part
[Ra(8", k) — Ra(8m, k)| /k = E[D(X, k)/k].

Let D(k) be the sample mean based on n independent repetitions of D(X, k)’s. By the
law of large numbers, D(k) is a consistent estimator of Rg(6*, %) — Rg(6p, k). Therefore,
we use D(k)/k to estimate [Rg(§*, k) — Ra(é, k)]/k.

Two statistical distribution models were used for the simulation study. They are
normal-normal model and binomial-beta model, respectively. In the simulation study, the
random variables are generated by using the subroutines DRNNOA, RNBET and DRNUN
from IMSL STAT/LIBRARY. The simulation scheme used in this paper is described as

follows.
(1) Foreach:=1,...,k, generate X; = (Xi1,...,Xim) by the following:
(a) Normal-normal model:
(a') Generate ©; from a N(u,o0?) distribution;

(a?) Given ©; = 6;, generate random sample X;1,..., X;m from a N(6;,7%) dis-

tribution.
(b) Binomial-beta model:
(b') Generate ©;/N from a Beta (p,q) distribution,

(b?) Given ©; = §;, generate random sample X;1,..., Xim from a B(N,6;/N)

distribution.

(2) Based on the data X = (X,...,X}), construct the Bayes and the empirical Bayes

selection procedures g and §* and compute D(X, k).

(3) For each k, steps (1) and (2) were repeated n=1000 times. Then D(k) is the sample
mean based on n=1000 independent repetitions of D(X, k)’s

The results of the simulated small sample performance of the empirical Bayes selection
procedure §* based on 1000 repetitions are reported in Tables 1 and 2. In the Tables, S.D.
denotes the estimated standard deviation of D(k)/k. In each of the two tables, the D(k)
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decreases in k quickly for £ < 20. For the normal-normal model case, for moderate values
of k, D(k) seems oscillating about some value, say 1.5000 x 10~3. For the binomial-beta
model case, it seems that D(k) tends to decrease in k for moderate values of k. These
results indicate that the relative regret risk of the empirical Bayes selection procedure §*

has a rate of convergence of order O(k™1).

Note: In Table 2, for binomial-beta case, it is assumed that for each i = 1,...,k, X;; ~
B(N,%),j =1,...,m, % ~ Beta(p,q). Therefore, u = 22,02 = N’pq/[(p+4)*(p+q-+1)]

and 72 = Npq/[(p + ¢)(p + g + 1)].

4. Rate of Convergence

In this section, we study the rate of convergence of the empirical Bayes selection
procedure §*. Three statistical distribution models are investigated: (1) normal-normal;
(2) Poisson-Gamma, and (3) Case where the random variables are bounded, |X;;| < B,
and 0 < hy(Z;|6;) < M for all T; and 6;, but both the sampling density function h;(Z;|6;)

and the prior distribution G;(6;) are unknown.

Case 1. Normal-Normal Case

It 1s assumed that conditioning on 6;, X;;, j =1,...,m, is a sample of size m arising
from a normal population 7; with mean 6; and variance 72. Also, the parameter 6; is a
realization of a normal random variable ©; with mean u and variance 0?. Hence, given

— m —
0i, X == > Xi; ~ N(6;, ;—2), and marginally, X; ~ N(u,0% + :n—z) Hence, h;(T;) is the
Jj=1
probability density function of a N(u,o? + :n—z) distribution. In the following analysis, we
2
assume that u < 8y and 6y > 0, so that ¢y = % + 6y > 6p. From (3.4)—(3.6),

R1(87) — Ri(6p1)

< [ o —s@la(2)Pma(1) > 0, ma* (1) + (0a(1)
— MSB(1)8y > 0}di;

+/ 8 — pr(@0)ha (1) P{ms*(1) > 0,ma2(1)z: + 22(1)(1)

— MSB(1)8, > 0}dz,
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Table 1. Simulated Small Sample Performance of §* for Normal-Normal

Case with © =10, 62 =2, 72 = 1.5, 6y = 10 and m = 10.

k D(k)/k D(k) S.D.
10 12.5432 x 104 12.5432 x 103 92.8273 x 10~*
20 1.7004 x 104 3.4008 x 1073 7.4388 x 104
30 0.7050 x 10~* 2.1151 x 1072 2.4761 x 10~*
40 0.5324 x 10~* 2.1294 x 1072 1.7029 x 104
60 0.3153 x 10™* 1.8917 x 103 1.0336 x 10~*
80 0.1856 x 104 1.4848 x 1073 0.7394 x 10~
100 0.1599 x 10™* 1.5993 x 103 0.4729 x 104
120 0.1522 x 104 1.8258 x 1073 0.4178 x 104
140 0.0991 x 10~* 1.3871 x 1073 0.3215 x 10~%
160 0.1076 x 10~* 1.7208 x 1073 0.2710 x 10~*
180 0.0808 x 10~* 1.4552 x 1073 0.2004 x 104
200 0.0751 x 10~* 1.5009 x 103 0.2108 x 10~
240 0.0537 x 10~* 1.2892 x 1073 0.1473 x 104
280 0.0544 x 10~* 1.5225 x 103 0.1346 x 104
320 0.0472 x 104 1.5096 x 103 0.1107 x 10~4
360 0.0389 x 104 1.4005 x 10~3 0.0996 x 104
400 0.0356 x 10~* 1.4240 x 1073 0.0878 x 10~*

Table 2. Simulated Small Sample Performance of §* for Binomial (V)-

Beta(p,q) Case with N =10, p=2, g =1, 6p = 5.5 and m = 5.

k D(k)/k D(k) S.D.
10 24.4245 x 10™4 24.4245 x 1073 184.9388 x 10~%
20 3.0943 x 10~* 6.1887 x 1073 13.8346 x 10~*
30 2.0912 x 10~* 6.2736 x 1073 11.1489 x 10~¢
40 1.4222 x 104 5.6886 x 1073 4.0207 x 10~*
60 0.8726 x 10~* 5.2358 x 1072 2.7469 x 10~*
80 0.7535 x 10~* 6.0283 x 1073 2.5808 x 10~*
100 0.6369 x 104 6.3679 x 1073 2.1940 x 10~*
120 0.4717 x 1074 5.6603 x 103 2.0161 x 104
140 0.4124 x 10~* 5.7735 x 1073 1.7238 x 10~%
160 0.4175 x 104 6.6792 x 1073 1.6754 x 10~*
180 0.2500 x 104 4.5000 x 103 1.2816 x 10~*
200 0.2561 x 10~* 5.1226 x 1073 1.4074 x 10~*
240 0.1675 x 10~* 4.0188 x 103 1.1077 x 10~*
280 0.1071 x 10~* 3.0000 x 103 0.8258 x 104
320 0.0531 x 1074 1.6981 x 103 0.5400 x 10™%
360 0.0613 x 10—* 2.2075 x 103 0.6409 x 10~*
400 0.0340 x 10~* 1.3584 x 1073 0.4304 x 10~*
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+:L?Wo—wﬂfﬁ%ﬂfﬂthﬁﬂj>(um&%nfl+$%Uﬂﬂ)
— MSB(1)6, > 0}dz;

+/MWK@)—%Mﬂ@ﬂqmya)>mm2anl+ZOMG)
’ — MSB(1)8y < 0}dz,

+ [ o0 = er(@) (@) Pma*(1) = 0}

— 00

(4.1)

= A, + Ay + As + Ay + As.

Under the normality assumption, £(1), MSB(1) and MSW(1) are mutually indepen-
dent, and (1) ~ N(y, (62+Z- )/(k 1)), E=LMSBQ) x%(k—1) and E=D(m=-DMSW(Q)

0'2+T2 2

x?((k —1)(m — 1)). Then, following an argument similar to that of Gupta and Liang [16],
one can obtain that, for each term on the right hand side of (4.1), 4, = O(k™!). We

summarize the result as a theorem as follows.

Theorem 4.1 For the empirical Bayes selection procedure §*, under the normal-normal

statistical model, we have pg(§*, k) = O(k™1).

Case 2. Poisson-Gamma Case

It is assumed that conditioning on 0;, X;j,j = 1,...,m, is a sample of size m arising
from a Poisson distribution P(6;) and the parameter 6; is a realization of a random variable

O; having a I‘(a ) prior distribution with pdf ¢(6;) = 90‘ 1¢=8% . Then, conditioning

on#b;, X; = E Xi; ~ P(m#;) and X; has a marginal probablhty function h(z;) = % X
=1 "

%—; Furthermore, E[X;|0;] = 0;, Var (X;;]6;) = 6;, p = E[@Z] = % 02 = Var

(©:) = 45, 7 = E[Var(X,;]0;)] = E[0i] = p = §, and E[6;[X] = X + hgn =
m_,_ﬂX + m+,3'u' P(Xi). Let A= {z|)(z) < 6o} and B = {z]sp(z) > 90} Define

. {supA if A+ ¢,
a =
-1 if A= ¢,

and
w_FﬁBﬁB¢¢
" leo  ifB=¢.
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Note that lim ¥(z) = co. So B # ¢ and therefore b* < co. Also, A = ¢ iff )(0) > 6.

r—r0o0
Let I(E) denote the indicator function of the event E. Now, according to the defini-
tions of a*, b* and (2.5) and (3.1),

a*

Ry (871X (1)) — Ry(6p1) = > _[6o — (=) I(8} (2| X (1)) = 1)h(2)
=0 (4.2)
+ ) [(z) — 6ol I(65 (=] X (1)) = 0)h(z)

z=b*

where > =01if a* = —1. For 0 < z < a*,

1612l X (1)) = 1)
= I(mé2(1) > 0, 62Dz + 72(1)(1) — MSB(1)6, > 0) 43
+ I(m62(1) = 0, 62%(1)z + 2(1)a(1) — MSB(1)6, > 0) 3)

< I(mé&*(1) > 0, 6%(1)a* + #2(1)a(1) — MSB(1)8, > 0) + I(mé&?*(1) = 0),
and for b* < z < oo,
I(67(=|X (1)) = 0)
= I(mé&*(1) >0, 6*(1)z + #*(1)a(1) — MSB(1)6, < 0) 24)
+ I(mé%(1) =0, 6%(1)z 4+ #*(1)a(1) — MSB(1)6, < 0) (*

< I(mé*(1) > 0, 6%(1)b* +#2(1)a(1) — MSB(1)8y < 0) + I(mé?(1) = 0).
Plugging (4.3) and (4.4) into (4.2), we obtain
Ry (671X(1)) — Ra(éB1)

< b I(mé?(1) > 0, 6%(1)a* ++%(1)a(1) — MSB(1)6, > 0)
+ b I(mé?(1) > 0, 62(1)b* 4+ #2(1)f(1) — MSB(1)8, < 0)
+ b3 I(mé?(1) = 0),

(4.5)

*
o0

where by = ) [0 — ¢(2)]h(z), b = > [¢(z) — 6o]h(z) and b3 = b; + b;. Note that
z=0 r=b*

0<b; < o0,i=1,2,3. Therefore,
Ry (87) — Ra(6B1)

= E[Ry(67]1X(1))] — R1(651)

< b P{mé*(1) > 0, 6*(1)a* + 7%(1)a(1) — MSB(1)8, > 0} (4.6)
+ by P{mé&*(1) > 0, 6%(1)b* + +#2(1)a(1) — MSB(1)8, < 0}
+ b3 P{mé*(1) = 0}.
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Thus, it suffices to study the asymptotic behaviors of the three terms on the right hand

side of (4.6). For this, we first present certain useful preliminary results.

Note that SSB(1) = Yk, m(X; — 4(1))? = m Xk_, X; —m(k—1)a2(1); SSW(1) =
S (X~ X = L, S X - m Yt X Xy = 1,..., k, are iid with
E[X;] = pand Var (X;) = Vi < oo; 72 Jj=1,...,k, areiid with E[Yj] = ?r'n—z—l—,uz-l—a2 and
Var (X )=Va <005 gty Xy 5 =1,...,k, are iid with E[Y )2, X% = m(r? +p® 4 0?)
and Var (2 X3%,) = Vs < oo. Note that the finiteness of the variances V;, ¢ = 1,2,3, is

guaranteed under the Poisson-Gamma model.

Then from Tchebychev inequality, we have the following results.

Lemma 4.1 Forc >0,

(a) P{|2”2Xg/<k—1)—m<r F 40?2 o) < e,

A 5
(b) P{IJZ;Xj/(k— D= (& +u?+0) 2} < gy

(¢) P{la(1) — pl > ¢} < xiyer

d) P{32(1) — u? < Vi
( ) {lu' ( ) lu’ > C} — (k—l)(\/ﬂ2+c—l1‘)27

P{a2(1) =2 < —c} < ViJ(u2—c)
W) = < =} < G5 o

where J(z) = 1(0) if z > 0 (otherwise).

Lemma 4.2 Forc> 0,

4Va + 4m2V2
r—D)(m—1)2c2 T (k=1)(m—1)2c2"

(a) P{MSW(1)—12>¢c} <

(b) P{MSW(1) - 7% < —c} < = 1)(m N2z T (s 1%?1mv1)2 7

2 2 4m2V; Vi J(p? — 3
(C) P{MSB(].) —(7' + mo ) > C} < (k—l)c22 + (k—1)(p— \/IL 222’

(2 2 . 4m2V; \%
(d) P{MSB(].) (T + mo )< C} S (k—l)c22 + (k—l)(\/,u.;—i-ﬁ—p,)2'

Proof: We prove (a) and (c) only. (b) and (d) can be obtained in a similar way.

(a) P{MSW(1)—-7%> ¢}
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SSW(1)
(k—1)(m —1)
k m
> 2 X7, k

j=2£=1 m 1 72 m 2 2 2
— - X -
A\ p— m—1xk~1jz=; e (AR S

= P{ — 72> ¢}

2
+ (2 0?) > e
m—1"m

> Y X,

7=24£=1

<P

—m(r? + u® 4+ 0%) >
k
+P{-—1——272-—(i+,u2+02)<———
k—1j=2 T 'm

< 4V, + 4m2V,
~(k-1)(m—-1)2c  (k—1)(m—1)2c%

(c) P{MSB(1) — (* + ma®) > ¢}
 py 555D
k
m Z_: X3

k-1

< P{ 1 zk:yz_(T_z+az_|_ 2)>L}
ST T #77 om

— (1?2 + ma?) > ¢}

= P{ —mp*(1) — (72 + mo? + mp?) + mp? > ¢}

~2 1) — 2 ___E_
4 PR - 7 < =52
Am?V, ViJ(u? — 55

= (k —1)c? * (k—1)(p — /12— 2 )2

Let d(a*) = maz% +72u — (2 + mo?)6p and d(b*) = maz% +72u — (12 + mo?)by.
Then d(a*) < 0 < d(b*), by the definitions of a* and b*. Then,

P{mé3(1) >0, m&2(1)%; +72(1)a(1) — MSB(1)8, > 0}

< P{IMSB(1) — MSW(l)]% + MSW(L)i(1) — MSB(1)6y > 0}
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[MSB(1) — (% + ma?))(% — o)
=Py +MSW()(i(1) — p) > —d(a*)
+(MSW(1) - 72)(p — %)

< P{IMSB(1) — (v + moz)](% — ) > M} (4.7)

+PSW (1) — ) > - 220y

FPLMSW() — ) - Ty > AT

4,

Note that P{{MSB(1) — (% + mo?)] (& — 9) > —"‘(“ )} =0if £ — ¢, = 0 and
P{(MSW(1)—1*)(pu— %) > 4 )} = 0if p— % = 0. Hence, without loss of generality,
we assume i < % < 8. Therefore from Lemma 4.2,

P{(MSB(1) - (r* + mo-z)][f:;;i — 8] > d(“ )

}

= P{MSB(1) — (r? + mo?) < 3(9i(f1;)}

- 36m2V,(fp — L-)2 N Vi
~—  (k—=1)d*(a*) (k — 1)(\/#2 —d(a* ) — p)?

6771.(00
= 0(k™).

(4.8)

PLMSW() — ) — L) > A8
d(a*) }
3 — 1) (4.9)
36V3 (% — 1) 36m2V, (L — )
= (= )(m - 12d2(a) | (k= 1)(m — 1)?d*(a")
— O(k ).

44,

= P{MSW(1) -2 <

Also,
d(a* )}

d( ), IMSW(1) — 72| < 123}

a “) Jaswi) -2 > )

P{MSW(1)(i(1) — p) > —

= P{MSW(1)(a(1) -

+ P{MSW(L)(i(1) — p) >
d(a

(4.10)

< PU1) ~ 1> 5y )}+P{|MSW<1> >

Vi(372)? N 4V, N 4m2V,
T (k=1d* (@) (k-1)(m-1)25 " (k- 1)(m—1)2%
= O(k™").
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Combining (4.7)—(4.10) yields that
P{m&2(1) > 0, m&z(l)% +#2(Da(l) — MSB(1)8y > 0} = O(k™Y). (4.11)
Similarly, one can see that
P{m&*(1) > 0, m&Z(l)% +#2(1)a(1) — MSB(1)6p < 0} = O(k™1). (4.12)
Also
P{mé*(1) =0}
= P{MSB(1)— MSW(1) <0}

= P{[MSB(1) — (t? + mo?)] — [MSW (1) — %] £ —mo?}

< P{MSB(1) — (v + mo?) < _%02} (4.13)

m02

+ P{MSW(1)—1%> }

= O(k™') by Lemma 4.2.
Substituting the results of (4.11)-(4.13) into (4.6), we obtain that
R1(6}) — R1(6B1) = O(k™!). We summarize this result as a theorem as follows.

Theorem 4.2. For the empirical Bayes selection procedure §*, under the Poisson-Gamma

statistical model, we have pg(8*, k) = O(k™1).

Case 3. Bounded Random Variables with Bounded Sampling Probability Den-
sity

It is assumed that for each i = 1,...,k, |X;;| < B and 0 < 7(Z;]6;) < M for all 6;

and z;, with no further assumption on the model. Under the assumptions,

In this case, it is also assumed that |6y| < B.

Let D denote the event that |m&?(1) — mo?| < tmo?, and D€ its complement. Also,

let Ip be the indicator function of the event D.
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Then, from (2.5), (2.7), (3.1) and (3.3), we have

Ry1(671X(1)) — R1(éB1)
Ci
- / (1) — 6] (71)dz I

+ /c;[eo - gO(.’El)]hl(.’fl)IDcI(m&z(l)fl + 7:2(1)/1(1) — MSB(1)90 Z O)dfl

(4.14)

B
+/ [0(Z1) — 60]h1(Z1)Ip I(m&*(1)Z, +72(1)a(1) — MSB(1)8, < 0)dz,

Co

< / jl[go(gzl)_eo]hl(:zl)d:zlfDJr /

B
lo(Z1) — 80|h1(Z1)dZ1 Ipe
B

where Cy = [MSB(1)8, — 72(1)ia(1)]/mé2(1).

Note that ©(Z1) = aZ1 + (1 — a)p, ¢(co) = aco + (1 —a)p = 6y and 0 < h(z1) < M

for all ;. By the mean-value theorem, there exists a C] between C; and ¢¢ such that

C
[ pt@r) ~ fala(en)da = [o(CF) = GRl(C1 - ca)n(C)
= a(CY — ¢0)(C1 — ¢0)h1(CT) (4.15)
S G(Cl - Co)zM.
Also
B
/_B [go(a_cl) — 90|h1(51)d51 S B. (416)

Therefore, by combining (4.14)—(4.16), we obtain

R1(67) — R1(8B1) = Eq[Ra(67|1X(1))] — Ri(6B1)

(4.17)
S aMEl [(Cl — Co)ZID] + BEl [IDC]-
Now, by the definition of mé?(1), we have
Ey[Ipe] = P{|mé?(1) — mo?| > %mﬂ}
_p [MSB(1) — (7% + mo?)] — [MSW(1) — 72] > imo?
- or [MSB(1) — (1? + mo?)] — [MSW (1) — 7] < —imo?
(4.18)

< P{IMSB(1) = (r* +mo?)| > imaz}

+ P{MSW(1) - r?| > imaz}
_ o).
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In (4.18), the last equality can be obtained by an argument similar to that of Lemma 4.2

by noting that | X;;| < B.
Next, on the event D, mé2(1) = MSB(1) — MSW(1) > %ma2 and —B < C; =

~ 02 1_2 ___7_2
MSPSHSIND < 5 N, 1 < o = In S < B, e, on D,

|C1 — ¢o| < 2B. Then, using Lemma of Singh [29],

E1[(Cy — ¢0)*Ip]

MSB(1)8y — MSW(1)a(1)  (mo? + 72)6p — 72y 2
< B arssy —aswoy — | n2B
< (73-2)—2& (MSB(1)o — MSW(1)i(1)) ~ (mo? + %)y — 72)]? (4.19)
* %E S B(1) — MSW(L) — mo[(PTF T T hye oy
= 0(k™"),
T B(MSB) — MSW(A)) — (me® +72)6 — 7))
< 3E1[MSB(1)8y — (mo® + 72)8]? + 3EL [MSW(1)(2(1) — p)]?
- FSEL[(MSW(L) - 77)4] (4.20)
< 303 E1[MSB(1) — (Ma® + )2 + 3B*E1 [i(1) — u]?
+3B*Ey[MSW(1) — 7%)?
=0(k™)
and
Ei[MSB(1) — MSW(1) — mo?)?
< 2E[MSB(1) — (mo? + 72)]? + 2E; [MSW (1) — 7%]? (4.21)
= O(k™h).
Therefore, we obtain that
R1(67) — R1(6p1) = O(k™1). (4.22)

Thus, we have the following theorem.

Theorem 4.3. Assume that |X;;| < B and 0 < hy(%;]6;) < M for all Z; and 6;. Also

assume Al-A4 hold. Then, the empirical Bayes selection procedure §* is asymptotically
optimal and pg(§*, k) = O(k™1).
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Remark: We have studied the problem of simultaneous selection of k populations in com-
parison with a known standard 6y. When 6§y is an unknown control, supposed to be the
mean of the control population, we may first estimate 6, by 8, based on a sample of
size £ taken from the control population. We then construct a selection procedure, say
(5, by replacing 6y in §* by the estimator 6y. In order to possess the asymptotic opti-
mality, the sample size £ should be large enough. However, one may or may not achieve
the same rate of convergence as claimed in Theorem 4.3. Actually the rate of conver-
gence for the 8y unknown case depends on the sample size [, the property of the marginal

pdf hi(Z:),i=1,...,k and the properties related to the estimate 6.
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