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Abstract

In this article, a general theory for the construction of confidence intervals or
regions in the context of nonstationary dependent data is presented. The basic
idea is to approximate the sampling distribution of a statistic based on the val-
ues of the statistic computed over smaller subsets of the data. This method was
first proposed by Politis and Romano (1994b) for stationary observations. We
extend their results to nonstationary observations, and prove a general asymp-
totic validity result under minimal conditions. In contrast the usual bootstrap
and moving blocks bootstrap are typically valid only for asymptotically linear
statistics and their justification requires a case by case analysis. Our general
asymptotic results are applied to a regression setting with dependent nonsta-

tionary errors.
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1 Introduction

It has been almost two decades since Efron (1979) introduced the bootstrap procedure
for estimating sampling distributions of statistics based on independent and identically
distributed (i.i.d.) observations. It is well known that, in the i.i.d. setup, the bootstrap often
gives more accurate approximations than classical large sample approximations (e.g. Singh
(1981), Babu (1986)). However, when the observations are not necessarily independent the
classical bootstrap no longer succeeds. Singh (1981) showed that Efron’s bootstrap fails to
capture the dependence structure even for the sample mean of m-dependent data. Following
this observation, there have been several attempts to modify and extend Efron’s idea to

dependent data.

Most extensions in the literature so far only apply to the stationary case. They can

roughly be divided into resampling and subsampling methods.

There are, broadly speaking, two approaches to using resampling methods for strictly
stationary dependent data. One is to apply Efron’s bootstrap to an approximate i.i.d. set-
ting by focusing on the residuals of some general regression model. Such examples include
linear regression (Freedman(1981), Freedman (1984), Wu (1986), Liu (1988)), autoregres-
sive time series (Efron and Tibshirani (1986), Bose (1988)), nonparametric regression and
nonparametric kernel spectral estimation (Hirdle and Bowman (1988), Franke and Hirdle
(1987)). In all of the above situations the residuals are resampled, not the original ob-
servations. In addition to being restricted to relatively simple contexts where structural
models are both plausible and tractable, little is known how this approach would perform
for nonstationary observations. The fitted residuals will in general no longer behave like
ii.d. observations but exhibit some form of heteroskedasticity. However, it is known that
Efron’s bootstrap works reasonably well even when the data are independent but not iden-
tically distributed (Freedman (1981), Liu ( 1988), Liu and Singh (1992)), so one might hope
for some robustness to nonstationariy as well. As a second approach, resampling methods
for less restrictive contexts have been suggested more recently. They are based on “block-
ing” arguments, in which the data are divided into blocks and these blocks, rather than
individual data values or estimated residuals, are resampled. Carlstein (1986) proposed
non-overlapping blocks, whereas Kiinsch (1989) and Liu and Singh (1992) independently
introduced the ‘moving blocks’ method which employs overlapping blocks. Subsequent re-
search seems to have favored this scheme. It turns out that Kiinsch’s bootstrap enjoys some
robustness property to nonstationarity, as was pointed out by Lahiri (1992) in the case of

the sample mean. In both Carlstein’s and Kiinsch’s bootstrap blocks of fixed length are



resampled, so that the newly generated pseudo time series is no longer stationary. To fix
this shortcoming, Politis and Romano (1994a) suggested the stationary bootstrap. This
procedure is based on resampling blocks of random lengths, where the length of each block

has a geometric distribution.

As an alternative to resampling methods, Politis and Romano (1994b) proposed the
subsampling approach. Rather than resampling blocks from the original time series as in-
gredients to generating a new pseudo time series, each individual subblock or subseries of
observations is looked upon as a valid ‘sub time series’ in its own right. The motivation is
as follows. Each block, as a part of the original series, was generated by the true underlying
probability mechanism. It then seems reasonable to hope that one can gain information
about the sampling distribution of a statistic by evaluating it on all subseries, or ‘subsam-
ples’. On the other hand, building new pseudo time series by joining randomly sampled,
independent blocks together induces a different probability mechanism. Dependency will
be reduced, and, for Carlstein’s and Kiinsch’s bootstrap, stationarity will be lost. However,
in typical applications the underlying dependence is sufficiently weak. Therefore the main
contributions come from short lags which are well approximated by the ‘blocking’ methods,

ensuring that these methods nevertheless work.

Another attractive feature of the subsampling method is that it has been shown to be
valid under very weak assumptions. Apart from regularity and dependency conditions, the
only requirement, in the stationary setup, is that the sampling distribution of the properly
normalized statistic of interest has a nondegenerate limiting distribution. The moving blocks
method has essentially been shown to be valid for functions of linear statistics and smooth
functionals only (see Kiinsch (1989) and Biithlmann (1994)).

Finally, while the moving blocks method is valid for parameters of the m-dimensional
distribution of the observations, with m fixed, the subsampling method is valid also for
parameters of the whole (infinite-dimensional) joint distribution. An example is the problem
of estimating the spectral density function. Alternatively, an extension of the moving blocks

method that can handle such cases was proposed in Politis and Romano (1992).

In this paper we present conditions which ensure that the subsampling method is still
asymptotically valid for nonstationary observations. The paper is organized as follows. In
section 2 the method is described, and the main theorems are presented. In section 3 we
give a central limit theorem for nonstationary dependent random variables. In section 4
some applications and examples are discussed. In addition, a result for the validity of the

moving blocks method for nonstationary data is stated. We briefly talk about the problem



of choosing of the blocksize in section 5, although no satisfactory answer is given. The paper
concludes with two simulation studies in section 6. Proofs of technical results and tables

for the simulation studies can be found in the appendix.

2 The General Theorem

In this section we describe the subsampling method, and give sufficient conditions under

which it will still work in the nonstationary case.

Suppose {X31,X3,...} is a sequence of random variables taking values in an arbitrary
sample space S, and defined on a common probability space. Denote the joint probability
law governing the infinite sequence by P. The goal is to construct a confidence region for
some parameter §(P), on the basis of observing {Xj,...,X,}. The time series {X;} will be
assumed to satisfy a certain weak dependence condition. To make this condition precise on
a mathematical basis we introduce the concept of strong mixing coefficients. The original
definition due to Rosenblatt typically applies to stationary sequences, so a modification for

arbitrary (possibly nonstationary) sequences is needed:

Given a random sequence {Y;}, let F.* be the o-algebra generated by {Y;,n < i < m},

and define the corresponding mixing sequence by
ay (k) = supnsupa,g|P(AB) — P(A)P(B)],

where A and B vary over the o-fields 7" and Foik» respectively. The sequence {Y;} is

called a-mixing or strong mixing if ay (k) — 0 as k¥ — oc.

We will first discuss the case of real valued 6. The theory can be generalized considerably
to allow for the construction of confidence regions for multivariate parameters or confidence

bands for functions.

2.1 The Univariate Case

Let 8, = én(Xl, ..., X») be an estimator of §( P) € R, the parameter of interest. The crux of
the method is to compute the corresponding statistic on subsamples to get an approximation
to the sampling distribution of b,. Thus, let éb,a = éb(Xa, .+ vy Xatb-1), the estimator of #
based on the subsample X,,..., X;45-1. In this notation we then have én,1 = én. Define

Jb,o(P) to be the sampling distribution of 7 (éb,a — 0(P)), where 7, is an appropriate



normalizing constant. Also define the corresponding cumulative distribution function:
J,a(2, P) = Probp{my(fs,. — 6(P)) < z}. (1)

Essentially, the only assumption that we will need to construct asymptotically valid confi-
dence intervals for 6(P) is the following.

Assumption A: There exists a limiting law J(P) such that

(1) Jn1(P) converges weakly to J(P) as n — o0, and

(ii) for every continuity point z of J(P), n_}, =) Z;i""l Jo (2, P) — J(z, P), for any

sequences n,b with #,b — oo and b/n — 0.

Condition (i) states that the estimator, properly normalized, has a limiting distribution.
It is hard to conceive of any asymptotic theory free of such a requirement. Typically, much

stronger assumptions are in force to ensure asymptotic normality.

Condition (ii) states that the distribution functions of the normalized estimator based
on the subsamples will be on average close to the distribution function of the normalized
estimator based on the entire sample, for large n. A somewhat stronger condition is the

following.

Assumption B: There exists a Hmiting law J(P) such that

(i) Jn1(P) converges weakly to J(P) as n — co, and

(i) for any index sequence {as}, Jbq,(z) — J(z) for every continuity point z of J(-, P),

as b — oo.

Here, condition (ii) requires that the distribution function of the normalized statistic
evaluated over a susample converges to the same limiting law as the distribution function
of the normalized estimator based on the entire sample, uniformly in the starting point of
the subsample. Assuming (i), the condition will be clearly satisfied for stationary processes,
but also for processes that exhibit asymptotic stationarity. For example, one can consider

a Markov chain with an equilibrium distribution.

It is easy to see that Assumption A follows from Assumption B. If condition (ii) in
Assumption A did not hold, there would have to exist a subsequence {by} such that Jy, a,, (2)
is bounded away from J(z) for some continuity point z of J(-, P). This contradicts condition

(ii) in Assumption B.



In order to describe our method, let V; ; be the block of size b of the consecutive data
{Xj,..., Xj4p-1}. Only a very weak assumption on b will be required. Typically, b/n — 0

and b — oo as n — co. The approximation to Jy,1(z, P) we study is defined by

1 n—b+1 . .
n—-b+1 Z 1{777(017,a - 07;,1) < :I:} (2)

a=1

Ly(z)=

The motivation behind the method is the following. For any a, Y} 4 is a ‘true’ subsample of
size b. Hence, the ezact distribution of 74(8s o —(P)) is Jp 4. If condition (ii) of Assumption
A is satisfied, then the empirical distribution of the 7 — b+ 1 values of 74,(6} 5 — 8(P)) should
serve as good approximation to J,(P), at least for large n. Replacing 8(P) by én,l is

permissible because n,((;n,l — 0) is of order 7,/7, in probability and we will assume that

/T — 0.

Theorem 2.1  Assume Assumption A or Assumption B, and that 7p/7, — 0, b/n — 0
and b — oo as n — oo. Also, assume that ax(m) — 0 as m — co. Let = be a continuity
point of J(+, P). Then
(i) Ln(z) — J(z,P) in probability.
(ii) If J(-, P) is continuous, then sup$|Ln(i) -~ J(z, P)| — 0 in probability.
(i) For o € (0,1), let

n, (1 — @) inf{z : L,(z) > 1-a},
cnu(l—a) = sup{z:L,(z)<1-a}.

Correspondingly, define

ct(l-o,P) = inf{z:J(z,P)>1-a},
cy(l-a,P) = sup{z:J(z,P)<1-a}.

Let {c,(1 — a)} be any sequence of random variables such that
enL(l—a)<cen(l—a) L enu(l-a).

In other words, c,(1 — a) serves as a (1 — a) quantile of the subsampling distribution
L,(z).
If J(-, P) is continuous at c(1 — a, P), then

Probp{rp[fn1 —0(P)| < ch(1-a)} > 1—a asn — o.
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Thus, the asymptotic coverage probability under P of the interval

L =01 — 77'cn(1— @), o) is the nominal level 1 — a.

Remark 2.1 In regular cases, 7, = n1/2, and the assumptions on b simplify to b/n — 0.

Remark 2.2 In the stationary case, condition (ii) of assumptions A or B will be trivially
fulfilled, and the theorem reduces to Corollary 3.2 of Politis and Romano (1994b).

The interval I; corresponds to a one-sided hybrid percentile interval in the bootstrap
literature (e.g. Hall (1992)). A two-sided equal-tailed confidence interval can be obtained

by forming the intersection of two one-sided intervals. The two-sided analogue of I; is
I = [én,l - Tglcn(l - a/2), én,l - T,flc'n(a/2)].
I is called equal-tailed because it has approximately equal probability in each tail:
Probp{0 < 6,1 — 17 e, (1 — @/2)} = Probp{f > 01 — 17 en(@/2)} = a/2.

As an alternative approach, two-sided symmetric confidence intervals could be constructed.
A two-sided symmetric confidence interval is given by [én,l - é, 9,1,1 + ¢é], where é is chosen
so that Probp{lén,l - 9' > ¢} = . Hall (1988) showed that symmetric confidence intervals
enjoy enhanced coverage and, even in asymmetric circumstances, can be shorter than equal-
tailed confidence intervals. To construct two-sided symmetric subsampling intervals in

practice we follow the traditional approach and estimate the two-sided distribution function

Jn,l,H(z, P) = Probp{rn

bn ~ 8(P)| < z}. 3)

The subsampling approximation to Jy ; ||(, P) is defined by

1 n—b+1 R ‘ R
Ln,|.|($) = n——b+1 Zl 1{Tb |9b,a - 0n,1|} S :L‘} (4)

From Theorem 2.1 we can immediately follow the asymptotic validity of two-sided symmetric

subsampling intervals.

Corollary 2.1  Make the same assumptions as in Theorem 2.1 and denote by I (s P),er
and ¢, || the obvious. Let z be a continuity point of J|.|(-, P). Then

(3) Ly,(2z) = J} (2, P) in probability.



(i) If Jy(-, P) is continuous, then supy|Ly | |(z) — J||(z, P)| = 0 in probability.
(i) If Jy. (-, P) is continuous at cp,||(1 — @, P), then
Probp{r, Ié”’l - 0(P)| < c,;,l.l(l —a)}—o1l-a asn— oo
Thus, the asymptotic coverage probability under P of the interval

Isyp = [fna — Tole, (1 — @), b1 + Toleq (1= @)] is the nominal level 1 — a.

Symmetric confidence intervals, however, are not necessarily a superior choice. Results
about good performance are only asymptotic in character and need not hold for all sample
sizes. Furthermore, it is not always desirable to constrain a confidence interval to be sym-
metric. The asymmetry of an equal-tailed confidence interval may contain some valuable
information about the location of the true parameter. We will compare the finite sample

performance of symmetric and equal-tailed intervals in our simulation studies in chapter 6.

2.2 The multivariate case

It is often desirable to construct confidence regions for multivariate parameters 8(P) € R¥
with k& > 1. For example, this problems arises when we want to draw simultaneous inference
on the parameters in a multivariate regression problem. Fortunately, our method can be

extended to higher dimensions without much difficulty.

Again, let éb,a = éb(Xa,,---,Xa+b-1) be an estimator of #(P) based on the subsample
Xay.+ey Xayb_1. Define Jy o(P) to be the sampling distribution of 7,(s, — 6(P)). Rather
than working with multivariate distribution functions we will look at indicators of Borel
sets. For any Borel set A € B* define:

Js,a(A, P) = Probp{ry(fs, — 6(P)) € A}. (5)
It is then obvious how we need to modify our Assumptions A and B.
Assumption A.1: There exists a limiting law J(P) such that

(i) Jn,1(P) converges weakly to J(P) as n — o0, and

(ii) for every Borel set A whose boundary has mass zero under J(P),

n—}7+1 Z;i""l Jyo(A, P) — J(A,P), for any sequences n,b with n,b — oo and
b/n — 0.



Assumption B.1: There exists a limiting law J(P) such that

(i) Jn,1(P) converges weakly to J(P) as » — 0o, and

(ii) for any index sequence {as}, Jpq,(4, P) = J(A), for every Borel set A whose bound-

ary has mass zero under J(P), as b — oo.

Similarly to the univariate case, Assumption B.1 implies Assumption A.1.

Our method is analogous to the univariate case: Let Y} ; be the block of size b of the
consecutive data {Xj,...,X;45-1}. Only a very weak assumption on b will be required.
Typically, b/n — 0 and b — o0 as n — oo. Now, let éb,a be equal to the statistic
evaluated at the data set Y} ,. The approximation to J,, 1(A4, P) we study is defined by

1 n—b+1

Ln(A) = m—l 2 1{Tb(éb,a - én,l) € A}- (6)

Theorem 2.2 Assume Assumption A.1 or Assumption B.1, and that /T, — 0,

b/n — 0 andb— oo asn — . Also, assume that ax(m) — 0 as m — oo. Then

(i) L.(A) — J(A, P) in probability, for each Borel set A whose boundary has mass zero
under J(P).

(%) pi(Ln,J(P)) — 0 in probability for every metric py that metrizes weak convergence
on R¥,

(iii) Let{Y,} andY be random vectors with L(Yy,) = L, and L(Y) = J(P). Then, for any
almost everywhere J(P) continuous real function f and any metric py which metrizes
weak convergence on R, p1(L(f(Yn)), L(f(Y))) — O in probability. In particular, for
a norm ||-|| on R* py(L(|Y2I), LUIY]])) — O in probability. This allows us to find
confidence regions for (P).

(iv) LetY be a random vector with L(Y) = J(P). For a norm ||-|| on R* define univariate
distributions Ly, | and Jj.(P) in the following way:

1 'n—b+1 R R
= — - <
(e, P) = Prob{|[Y]| < z}.



For a € (0,1), let
en(l—a) = inf{z: L, (z) >1-0a},
enu(l—a) = sqp{a: t Ly () £1-a}.
Correspondingly, define

ct(l-a,P) = inf{z:Jyy(z,P)>1-a},
cv(l-a,P) = sup{z:Jy(z,P)<1-a}.

Let {cn(1 — &)} be a sequence such that
en(l—a)Lep(l—a) Leu(l—a)

In other words, c,(1 — a) is a “smallest” point beyond which the subsampling distri-

bution L, . |(z) assigns probability less than or equal to a.

If J) (-, P) is continuous at cr(1 — ), then
PTObP{"Tn(én,l - 0(P))" <en(l-a)}—»1-a asn— oco.

Thus, the asymptotic coverage probability under P of the region
{6: ||Tn(9 - én,l)" < ¢n(1 — a)} is the nominal level 1 — a.

3 A central limit theorem for triangular arrays

Before applying our basic theorems for the construction of confidence regions, we will need
a method to verify assumptions A or B. In this section, we present a central limit theorem
for a triangular array of weakly dependent nonstationary random variables. In various

applications it turns out to be the needed method, as demonstrated in section 4.

Central limit theorem for strong mixing random variables have been proved by Rosen-
blatt (1958), Ibragimov (1962), Oodaira and Yoshihara (1972), White and Domowitz (1984)
and many others. A survey of the literature can be found in Doukhan (1994). Note that in
many cases strict stationarity was assumed in addition to moment and mixing conditions.

Our theorem is an extension of previous results, as it applies to triangular arrays.

For the proof of the theorem we need a moment bound for strong mixing nonstationary

random variables. Since it is a valuable tool, we state it here as a lemma rather than in the



appendix. The result is implicitly contained in a theorem of Doukhan (1994). However, the
form in which the theorem is presented is not convenient for our purposes. Also, we will
give more specific bounds for some special cases. A related bound assuming stationarity

was given in Yokoyama (1980).

Lemma 3.1 (Moment bound) Let {X;} be a sequence of mean zero random variables.

Denote the corresponding mizing sequence by ax(-). Define, for 7> 2 and § > 0

Cr8) = S (k+1)2aF (k), (™)
k=0
d

L(r,é,d) = E”Xi”:+81 (8)
=1

D(r,8,d) = Maz{L(r,$,d),[L(2,6,d)]7}. 9)

Then the following bound holds

T

d
ZXi < BD(T')&, d)7

i=1

E

where B is a constant only depending on T, § and the mizing coefficients ax(-). We will be

specific about the constant B for the two special cases T is an even integer and T = 2 + 4.

1. If ¢ is an even integer
[

S x| < B(e,6)D(e, b, d), (10)

=1

E

where bounds for the constants B(c,6) can be computed recursively. For example, for

c up lo 4:
B(1,6) < 1,
B(2,8) < 18Maz{1,C(2,6)},
B(3,6) < 102Maz{1,C(3,6)},
B(4,6) < 3024Maz{1,C?%(4,6)}.
2. Fort =2+,

B< [3024Ma:z:{1,(]2(4,6)}] 94(4(2-8)/5+1) (11)

10



In case we have an uniform bound on the 2 + 26 moments of the sequence {X:} we can
obtain a less sharp but more concisely stated bound. It is in a form most useful for our

purposes.

Corollary 3.1 (Concise moment bound) If we assume in addition to the conditions
of Lemma 3.1 that

1 Xillgpos £ A for all 4, (12)
then
PR Y
]
E) " Xi| <rd+z,
=1

where T' is a constant that only depends on A, § and the mizing coefficients ax(-). More
explicitly,
T = [3024Maz{1,C%(4,6)}] 204CE-D/E+DAE+(+D),

where C(4, 6) is defined as in (7).

We now present the central limit theorem for triangular arrays.

Theorem 3.1 Let {X,;,1 < ¢ < d,} be a triangular array of mean zero random vari-

ables. Denote the mizing sequence corresponding to the n-th row by ay(-). Define

a+k-1
Sn,k,a = E Xn,i7
i=a
X atk-1
Tn,k,a = k72 E Xn,i,
i=a
2 —
Onka = Va’r(T'n,kﬂ)'

Assume the following conditions hold: For some § > 0:

o ”X",i”2+25 S A fOT a’” n, i7 (13)

00l,— 0" >0 uniformly ina (%), (14)
> o

0 Cn(4) =) (k+1) 0¥ (k)< K for dll n. (15)
k=0

where A and K are finite constants independent of n, k or a.

11



2

(*) This means: For any sequence {k,} that tends to infinity with n, sup,lo?, ,—d*| -0

asn — oo.
.
Then Ty 4,1 => N(0,02), i.e. dn® Y02, X i = N(0,0%).

Remark 3.1

(a) This result exhibits the familiar trade-off between moment and dependence restric-
tions, as expressed by conditions (13) and (15). The larger §, which corresponds to the
largest finite moment, is, the lower the minimum mixing rate can be. If all moments
exist (§ = 00), the mixing condition becomes essentially o, (k) = o(k~3). For § close

to zero, on the other hand, the processes must be nearly independent.

(b) Condition (14) expresses a kind of “asymptotic covariance stationarity”. The variance
of a standardized block sum has to be close to some (positive) limiting value as long
as the block size is large enough, independent of row or block index. It turns out
that this condition is not very restrictive for our purposes, since we will be using the

theorem to verify the uniformity condition (ii) of Assumption A or Assumption A.l.

4 Applications

In this section we demonstrate the validity of the subsampling method in some specific
situations: the univariate mean, smooth functions of the mean and multivariate linear

regression. We also state a result concerning the moving blocks method for the mean case.

Example 4.1 (The univariate mean) Suppose {X;} is a sequence of random vari-
ables with common mean 6. Denote the joint probability law governing the sequence by P.

The goal is to construct a confidence interval for 8, on the basis of observing {Xy,...,X,}.

Let éb,a = éb(Xa,...,X,H_b_l) = b1 E?:ab'l X; = Xp, be our estimator of § based
on the block of size b of the consecutive data {X,,..., Xo4s-1}. Define J; o(P) to be the
sampling distribution of b%(j(_b,a —6). Also define the corresponding cumulative distribution
function:

Joa(z, P) = Probp{b7(X,, — 6) < z}. (16)

12



The approximation to J, 1(z, P) we study is defined by

n—b+1
1 1 ,— —
- z 2(X - X < .
Ln(z) n— b + 1 a=1 l{bz( b’a n11) -_— w} (17)

The following theorem gives sufficient moment and mixing conditions for which the sub-

sampling technique will allow us to draw first order correct inference about 4.

Theorem 4.1  Let {X;} be a sequence of random variables defined on a common proba-

bility space. Denote the corresponding (generalized) mizing coefficients by ax(-). Define

a+k-1

» k—% }E: )(b

i=a

d,f,a = Var(Ti,)-

=
I~
1l

Assume the following conditions. For some § > (:

o (| Xillgyas <A for all i, (18)
o 0;‘:,,, — 02> 0 uniformly in a, (19)
0 5
e C(4)=) (k+1)a’ (k) < K. (20)
k=1
Furthermore assume that b/n — 0 and b — o0 as n — oo, and let J(P) = N(0,0?).

Then conclusions (i) — (iii) of Theorem 2.1 will be true.

Remark 4.1 Even for stationary data we need T, ; to converge weakly to some non-
degenerate limiting distribution [Politis and Romano (1994b)]. A reasonable condition for

that to happen is 03’1 — o2, Taking this into account, our condition( 19) does not seem

2 2

prohibitive. In fact, it should be difficult to imagine a reasonable situation where 02 ; — o2,

n,
but condition (19) is violated.

Example 4.2 (Moving blocks for the mean case) Consider again the situation of
Example 4.1. We will show that the moving blocks method, which was introduced by
Kiinsch (1989) and Liu and Singh (1992) for the case of stationary time series, will still

work in this nonstationary setting.

To describe the method (for the case of the mean), let Y;, be the block of size b of
the consecutive data {X,,...,X,4p-1} and let | = [, = I_%J Conditional on the sample

13



{X1,..., Xy}, denote the empirical distribution of Y} 1,...,Y; 4 (Where g=¢, =n—-5b+1)
by P;,i.e. Py puts mass % at each of the Y3 .. Define a pseudo time series {X7,..., X3}
in the following way: Let Y%,..., ¥y i.i.d. ~ P and join them together
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