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Summary

Let o and 3 be real numbers and f € Cy[0, 00). We study the existence and uniqueness

of solutions g of the equation g(t) = f(t) + a sup g(s)+ 8 inf g(s). Let p = af/(1 -
0<s<t 0<slt

a)(1 — B). Carmona, Petit, and Yor have shown that if & > 1 or g > 1, there are f with
no solutions, and if « < 1, 8 < 1, and |p| < 1, every f has a unique solution. We show
that if @ < 1 and B < 1, a solution exists for each f, but that it is necessarily unique if
and only if |p| < 1. We show that if |p| < 1, the processes which result from solving the
equation above for Brownian paths are the weak limit of random walks perturbed at their

extrema.
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1. Introduction

If f is a real valued function on [0,00), we put f*(t) = sup f(s), and f#(t) =
0<s<t
. ini; f(s), and also we use * and # to denote maxima and minima of sequences. We
<s<t
study the existence and uniqueness of solutions g of the equation

(1.1) g(t) = f() + ag*(t) + Bg*(t), t>0.

Here o and S are real numbers, and f is a continuous function vanishing at 0, an assumption
always in force whenever (1.1) is discussed, without further mention. This equation was
first studied by Le Gall (1986), and more recently, in a paper that will hereafter be referred
to as CPY, by Carmona, Petit, and Yor (1993). Let p = af/(1 — a)(1 — B). It is shown
in CPY that if either & > 1 or 8 > 1 there are f for which (1.1) has no solution, while if
a <1, 8 <1, and |p| < 1 there is a unique solution for every f. In Section 2 we prove

results which, when combined with those of CPY, yield the following theorem.

Theorem 1.1. Ifa <1, <1, and |p| <1, (1.1) has a unique solution for each f. If
a <1, B<1and |p| > 1, there is at least one solution of (1.1) for each f, and there are

functions f = fo g with more than one solution.

CPY shows that if &« < 1, 8 < 1, and |p| < 1, then the solution of (1.1) for Brownian
paths, that is, the process Y*# =Y =Y;, t > 0, defined by

(1.2) Y; = By + oY + BY #(t),

where B = By, t > 0, is Brownian motion started at 0, is adapted to the filtration of B.
It is easy to extend this result to the cases a < 1, 8 < 1, |p| = 1, using our proof of the

existence and uniqueness of solutions of (1.1) for these «, 3.

In Section 3 we show that if & < 1, # < 1, and |p| < 1, the solution Y of (1.2) can
be identified as the weak limit of a discrete process. If Z = Z,,7Z,,... is a discrete time
stochastic process, we identify it with the continuous time process on [0, 00) which results

from linearly interpolating: Z; = Z,, + (t — 1) [Zn+1 — Zn)ifn <t <n+ 1.



Theorem 1.2. Define the integer valued stochastic process Xqop5 = X = Xo,X1,Xo,...
beO =0, P(Xn+1 =Xn+1|Xi, zSn): l—P(Xn+1 =Xn—1|Xi,i Sn)= % an=0
or X# <Xp <X} =54 ifn>0and X, = X3, =1- 515 ifn>0and X, = X¥.

o

Then if |p| < 1, @ < 1 and B < 1 the processes 71-;Xnt, t > 0, converge weakly to Y *P,

The a = 0 (and 8 = 0) cases of Theorem 1.2 have been proved by Werner (1994). It
seems very likely that the analog of Theorem 1.2 for a < 1, # < 1, and p = 1 holds, but
our proof, which uses a strong stability result for solutions of (1.1) when a < 1, 8 < 1,
and |p| < 1, derived from a theorem of CPY, does not extend to this case. It is also likely
that, for all @« < 1 and § < 1, the processes X, g converge weakly, but not clear that
the limit process can be constructed a.s. path by path by solving (1.2). Several people
have suggested that the excursion theory of Perman (1995), for the solutions of (1.2) when
o = 0, may provide an avenue for an extension of Theorem 1.2 to all the cases a < 1,

B <1

If @ = f < 0, the processes X4 o can be realized as the simplest of the reinforced
random walks: If we assign a weight of 1 to each “bond” (7,7 + 1) which has not been
crossed by X4 o, and weight 1 — o to bonds which have been crossed, then X, , may
be described as jumping up or down with probabilities proportional to the weights of
the connecting bonds. See Davis (1990) for more details. Recent papers at least partly
concerned with reinforced random walk include Diaconnis (1988), Pemantle (1988 and
1992), Davis (1989), Sellke (1994a and 1994b), Toth (1994 and 1995), and Othmer and
Stevens (1995). Bolthausen (1994) proves weak convergence for a different kind of non-
Markovian walk. Harrison and Shepp (1981) prove weak convergence of the (Markovian)

walk which behaves like fair random walk except at zero, where it goes up with probability
p.

Our study of the processes X, g and Y *# was motivated by Darryl Nester’s paper
Nester (1993), where stopping times for the processes X4 5, when o = 8, were studied.
Many of Nester’s results translate immediately to results about the limiting processes

Y *% of course only in the a < % case for now, since Theorem 1.2 does not cover other

a. Nester’s formulas, in common with the formulas in CPY, are very pretty, and often

involve beta densities. One example: Nester’s results show the probability Y *® equals a.. -



before it equals —b, a, b > 0, is fob/(a+b) t7(1 —t)">dt/ fol t=*(1 —t)7dt.

2. Proof of Theorem 1.2.

From now on, a and f will both be assumed to be less than 1, often without mention. If
g and f satisfy (1.1), that is, g solves (1.1) for f, then our assumptions that f is continuous
and vanishes at zero are easily seen to imply that g has these properties. Positive absolute
constants which depend on « and § are usually denoted by ¢ and C; subscripts will
be used to denote dependence on various quantities. We put a¥ = max(a,0), a V b =
max(a, b), and a A b = min(a,b). If b is a function on [a,bd] we let h*[a,b] = ‘max h(z),

and h#[a,b] = r<nir<1b h(z). Co[0,00) is the continuous functions on [0, c0) which vanish at
a<z<

0.

Lemma 2.1. Let g solve (1.1) for f and let 0 < a < b < oco. Then
(2.1) g*[a,b] — g%[a,b] < f*[a,] — f#[a,b].

Proof: Suppose first that g achieves a maximum in [a, b] before it attains a minimum,
that is, there exist a < s < r < b such that g(s) = g¢*[a,b] and g(r) = ¢¥[a,b] and
g#[a,b] < g(y) < g*[a,b] if s < y < r. This implies g#(s) = g#(r) and g*(s) = ¢g*(r), so
subtracting the ¢ = s version of (1.1) from the t = r version gives g(r) —g(s) = f(r)— f(s).
Since [g(r) —g(s)| = g*[a, bl — g*la, ] and |£(r)— £(s)] < £*[a, bl f*[a, B, this gives (2.1)

in this case. The proof when ¢ achieves a minimum before a maximum is similar. O

Corollary 2.2. Let f € Cy[0,00). Suppose that fn, n > 1, converge uniformly to f on
compact subintervals of [0,00), and that g, solves (1.1) for f,. Then there is a subsequence
n',n > 1, of integers such that g, ,n > 1, converges uniformly on compact subintervals of

[0,00). The limit of gnr solves (1.1) for f.

Proof. Lemma 2.1, and the fact that f,,n > 1, is equicontinuous and uniformly bounded

on compact subintervals of [0,00), imply that g,, n > 1, is also. Thus the Arzela-Ascoli

theorem, and a diagonalization argument, give the desired sequence g,, n > 1. It is

immediate that the limit of this subsequence solves (1.1) for f. O
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Lemma 2.3. Suppose either of the following two conditions hold.
a) There are § > 0, ¢ # 0, such that f(z) =cz, 0 <z < 6.

b) There are § > 0, ¢ # 0, such that f(z) =0, 0 <z < §/2, and f(z) = c(z — (6/2)),
§/2<z €.

Then (1.1) has a solution for f.

Proof: If g € Cy[0, 00) solves (1.1) for f then both the following hold.

(2.2) If [a,b] C [0,00) and if g(z) > g¥(a), z € [a,b], and if s = inf{t: ¢g*(a) = g(?)}, then
o) = g(a) = F(t)— F(@), a < ¢ b, if s > b, whileif s < b, g(t) — g(a) = £(£) — F(a),
a<t<s, and g(t)—g(s) = f(t) - f(s) +a(l —a)™" max (f(z) — f(s)), s <t <.

(2.3) If [a,b] C [0,00) and if g(z) < g*(a), = € [a,}], and if r = inf{t: g% (a) = g(¢)}, then

g(t)—g(a) = f(t)— f(a), a <t < b, if r > b, while if r < b, g(t) —g(a) = f(t) - f(a),
a<t<s,and g(t) - g(r) = f(t) = f(r) + B(1 = A)7" min (f(z) = f(r)), r <t <b

To see (2.2), note that the only nontrivial part concerns the formula for ¢(t) — g(s)
when s < b. Now (1.1) gives

F(£) = f(s) = (9(t) — 9(s)) — (g™ (2) — 97(s)),
which equals (1 — a)(g*(t) — g*(s)) when g(t) = g*(t) and is smaller than (1 — a)(g*() —
g*(s)) when g(t) < g*(t). Thus g(t) = g*(t) exactly for those ¢ for which f(t) = max, f(z).
This verifies g(t) — g(s) = f(t) — f(s) + a1l - o)™ srgfi{t(f(x) — f(s)), if s <t < band
g(t) = g*(t). To verify it for other ¢ € [s,b], let to = sup{m <t: g(z)= o?f%cz g(y)}, and
use its truth for ¢, and the fact that, by (1.1), f(¢) — f(to) = g(t) — g(t0o). The proof that
(1.1) implies (2.3) is similar.

It is also true that (2.2) and (2.3) imply that g solves (1.1) for f, provided g € Co[0, 00).
We just sketch this argument: To show (1.1) it suffices to prove (2.4) and (2.5) below.
(2.4) If [a,b] C [0,00) and g(z) > g#(a), = € [a,b], then g(b) — g(a) = f(b) — f(a) +
a(g*(b) — g*(a)).
(2.5) If [a,b] C [0,00) and g(z) < g*(a), = € [a,B], then g(b) ~ g(a) = f(z) — f(a) +
Bg#(b) — g% (a)).



That (2.4) and (2.5) imply (1.1) is not difficult: Fix ¢, let 0 < € < ¢, and break [, ¢] into
disjoint intervals [a, b] on which either g(x) > ¢g#(a) on g(z) < g*(a). Take the results of
(2.4) and (2.5) on these intervals and add them. Then let ¢ — 0. To show (2.2) implies
(2.4), let s be as in (2.2) and observe the implication is trivial if s > b, while if s < b, let
0 =max{t € [s,5]: ¢°(t) = g(&)}. Then g(s)—g(a) = £(s)F(a), 9(8)—9(8) = F(B)—F(©),
and, recalling the discussion after (2.3), ¢(6)—g(s) = g*(b)—g*(a) = (1—a)~ 1 f(8)— f(s)).
Adding these three gives (2.4). The proof that (2.3) implies (2.5) is similar.

We prove part a) of Lemma 2.3 first. Suppose ¢ > 0. We construct ¢ by putting
g9(z) = cz/(1 — a), 0 < z < §, and then using (2.2) and (2.3) as a recipe for constructing
g(t) for t > §: Since g(8) = g*(6) > g#(6), (2.2) dictates g(t), § <t < y, wherey = inf{z >
8:g(z) = g*(x)}. Then (2.3) dictates g(t), y <t <z =inf{z > y: ¢(z) = g*(z)}, and so
on. The ¢ < 0 case is very similar. Part b) of Lemma 2.3 is established in a similar way,

first explicitly exhibiting a solution on [0, §], which is 0 on [0, /2] and linear on [§/2, §].00
Corollary 2.4. There is at least one solution of (1.1) for every f.

Proof: Suppose, first, that there is a sequence t,, | 0 such that f(t,) # 0. Let fo(t) =
tf(tn)/tn, 0 < t < tg, and fo(t) = f(t), t > t,. Then Lemma 2.3 guarantees that (1.1)
has a solution for f,, and Corollary 2.2 gives a solution for f. If f is not the 0 function
but f = 0 on [0, 6] for some § > 0, let ¢ = sup{s: f(¢t) =0,0<1¢ < s}, put g =0o0n
[0,¢], and for t > & mimic the argument above. And, of course, if f is the 0 function, we

may take g = f. O

The proof of Theorem 1.1 will be completed by proving three propositions, each of
which treats some of the a, 3 not covered by the CPY results. Recall these results settled
the issue for @ > 1, or # > 1, and for |p| < 1. Our propositions consider, respectively, the

sets {p=1,a<1,8< 1}, {p=-1l,a<1,f<1},and {|p| > 1,a < 1,8 < 1}.

Our methods will handle the parts of Theorem 1.1 proved in CPY, but for these cases

the method of CPY gives much additional information. This will be apparent in Section 3.

Lemma 2.5. Let g1 and g, be solutions of (1.1) for f, and suppose t > 0 and f*(t) >
F#(t). It cannot happen that both gy(t) = g} (t) and go(t) = g¥ (2).
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Proof: First note that g-# (t) < ¢}(t), because, since f is not identically zero on [—,1],
neither is g1. Thus if ¢1(t) = g¢}(¢) there is 0 < s < t such that g,(s) < g¢f(¢) and
g1(r) # g#(r), s < r < t. Then (2.2) implies f(t) = max f(r) > f(s). Similarly, if
g2(t) = g¥ (1), there is 0 < y < t such that f(y) > yrélril<1t f(—r)_: f(®).

Lemma 2.6. Let 0 < p < 0o. Let ar 0 < k < n and bg, 0 < k < n, be sequences of

numbers such that bgy1 —by = —p(ar+1—ar), n > 0. Then par+ by = pas+bo, 0 < k < n.

The proof of Lemma 2.6 is immediate.

Proposition 2.7: If0 < o < 1 and § = 1 — «, then there do not exist two different
solutions of (1.1) for any f.

Proof: Think of f as fixed. We assume that f*(t) — f#(¢) > 0, ¢ > 0. Only minor
alterations in our proof are required if this does not hold. Let g, and g2 be solutions of

(1.1) for f. We will prove

(2.6) g1(8) — g2(b) < g1(a) — g2(a), 0<a<b.
Upon letting a go to zero, (2.6) gives g1(b) < g2(b), and of course switching the roles of ¢,

and g, we get g1(b) > g2(b), verifying the proposition.

For t > 0, define A(t) = g1(t) — 92(t),
*A(t) = g1(t) — 93 (2),

PH(t) =[(g5(t) — 92(1)) — (91 () — 91(£))] = A(t) — *A(2),
and

P=(t) = [(91(8) — 6F (1)) — (92() — g3 (D).

We say that an interval I = [c,d] C [0,00) is positive if g;(t) > g#(c), c<t<d,
i = 1,2, and we say that I is negative if g;(t) < g7(c), ¢ <t < d, i = 1,2. Equation (2.2)
implies
27 gi(d) —gi(c) = (1 —a)7[f*(le,d]) = f(e) — (g3 (e) = gi(e))]T, e, d] positive.
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To see this, note that g7 (d) — g7(c) = g}(d) — g7 (t), where t = inf{s < d: gi(s) = gf(c)}.
Then, recalling the argument in the paragraph after (2.3), (2.2) gives gi(s) = g7 (s) if
and only if f(s) = f*[c,s], if t < s < d, and (2.7) follows. Equation (2.7) implies that
*A(d) — *A(c) lies between 0 and (1 — a)~! P*(c), inclusive. Now (2.2) gives

(2.8) gi(d) — gi(c) = f(d) — f(c)) + a(gi(d) — gi(c)), i =1,2, [c,d] positive.
Subtracting the i = 2 version of (2.8) from the i = 1 version gives

(2.9) A(d) — A(c) = a(*A(d) — *A(c)), [c‘, d] positive,

which in turn gives

(2.10) Pt(d) — P*(c) = (a — 1)(*A(d) — *A(c)), [c,d] positive.

Also, (2.9), (2.10), and the fact that neither g¥ or g¥ changes on a positive interval yield

(8%

(2.11) P=(d) - P (c) =A(d) - Alc) = (PT(d) — P*(c)), [c,d] positive.

a—1

The sentence before (2.8), together with (2.10), show it cannot happen that both
P*(c) >0, P*(d) < 0 or that both P*(c) <0, P*(d) > 0. Furthermore,

(2.12) |Pt(d)] < |PT(c)l, [c,d] positive.

A mirror set of equalities and inequalities holds for negative intervals. In particular,

we have, recalling 7;—% = ol

(2.13) P*(d) — Pt(c) = A(d) — A(c) = = ; ! (P~(d) — P™(¢c)), [c,d] negative.
Also we have
(2.14) |P=(d)| < |P~(¢)|, [c,d] negative,

and it cannot happen that both P~(¢) > 0, P~(d) < 0 or that both P~ (¢) <0, P~(d) > 0,

if [¢, d] is negative.



FO<r<s, wesayr =ap < a < a2 < ... < ap = s is a positive-negative
decomposition of [r, s] if each interval [a;,ait1], 1 < ¢ < n, is either positive or negative,
and we let ||[r, s]|| be the fewest such intervals possible. The following construction, here
called the canonical decomposition, not only shows each interval has a positive-negative
decomposition, but constructs one which clearly has no more than 2||[r, s]|| intervals. Call
t positive if either g7 (t) = g1(t) or g5(t) = g2(t), and call ¢ negative if either g'#(t) = go(t)
or g#(t) = g1(t). Take ap = r, a; = min(inf{¢t > ao : t is positive or negative}, s), if a1 < s
take a; = min(inf{t > a; : tis negative}, s) if a; is positive, and a; = min(inf{t > a; : tis
positive}, s) if a; is negative, and if a2 < s let a3 be the next negative or positive number,
depending on whether a, is positive or negative, and so on. This process eventually yields
an a; equal to s, since otherwise Lemma 2.5 would be contradicted, because the limit of
positive (negative) numbers is positive (negative). We also observe that if [u,v] C [r,s],
then the intersection of [u,v] with the intervals in canonical decomposition of [r, s] gives a

positive-negative decomposition of [r, s] with at most 2||[u,v]|| intervals in it.

Let 0 < € < a. We prove
(2.15) A(b) - A(a) < Ca(IPF(e)l + [P (e)D]l[a, B]I]-

Before proving (2.13), we note that both P*(¢) — 0 as ¢ — 0 and P~(¢) — 0, so that
(2.15) implies (2.6).

To prove (2.15), first consider the case where both P*(e) > 0 and P~(¢) > 0. Let
€ =59 < 8 < ...8, = b, where [s;,8:41], 0 < 1 < n, are all the intervals which arise
by intersecting the intervals in the canonical decomposition of (g, ] with both [¢,a] and
[a,b]. Then one of the s; is a, designate it by sm. The two sequences PT(s;), 0 < i < n,
and P~(s;), 0 < i < n, are nonnegative by the sentences just before (2.12), and after
(2.14), and by (2.11) and (2.13), and by (2.11) and (2.13) they satisfy the conditions of
Lemma 2.7, with p = 72, ax = P*(s¢), and by = P (st). Thus both P¥(s;) and P~ (s;)
are no larger than Co(PT(s0) + P (s0)) = Ca(|PT(€)| + |P~(¢)|), and we have, using
(2.11) and (2.13),



n—1

(2.16) JA(B) = A(a)l £ Y 1A(sk+1) — Alsk)]

k=m

< 3 CalIPH(s0)] + 1P~ (s1)])

< Caln —m)(IPT ()| + 1P (e)])
< Callla, BII(IPT ()] + 1P~ (e)D-

If P*(e) < 0and P~(¢) <0, then P™(s;) < 0and P (s;) < 0,1 <7 <n,andso
(2.11) and (2.13) imply that A(sk+1)—A(sk) < 0, implying A(b)—A(a) < 0. Alternatively,

we could mimic the argument just given, to bound |A(b) — A(a)l.

Finally, if one of P¥(g), P~ (¢) is positive and one is negative, (2.11)-(2.14), together
with the comments before (2.12) and after (2.14), imply that, if m = inf{k : P¥(s)
and P~(s;) have the same sign}, then |P*(siy1)| < |P*(s:)] and |P~(siz1)| < [P~ (s4)l,
0 <i<m—1. Nowif m = oo, |A(ss+1)—A(sk)| < Ca(|PF(sk)|+P~(sk)]) < Co(|PT(e)|+
|P~(€)]), and an analysis very similar to (2.16) gives (2.15). And if m < oo, (2.11)—(2.14)

imply that
[P*(sm)| + [P (sm)] < Ca(|PT (sm-1)| + P (sm-1)l)

< Ca(IPT(e)l + [P (e))).
Furthermore, |P* (sm+k)| + [P~ (8m+k)| < Ca(|PT(sm)| + [P~ (sm)]), k > 0, by the argu-

ment that led to the statement just before (2.16). Thus, once again, an analysis similar to

(2.16) gives (2.15). g

Lemma 2.8. Let 0 < p < oo, and suppose ag,@1,...,8,, and by, by,...,b,, are real

numbers which satisfy the following condition. For each k, 0 < k < n, either all of

ak+1—ar = p(be+1—br), |ak+1] < |ak|, and agy1ax > 0, or all of ap+1 —ar = —p(br41—bi),
Ibk+1| S |bk|, and bk+1bk 2 O, hold. Then

lak| + plbk| < lao] + plbo|, 1 <k < n.

The proof, by induction, of this lemma is immediate.
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Proposition 2.9. If p = —1, there do not exzist two different solutions of (1.1) for any f.

Proof: Suppose, with no loss of generality, that o > 0, so 8 < 0. Let g; and g2 be two
solutions for f. Define A(t), P¥(t), P~ (t), and positive and negative intervals symbolically
exactly as they were defined in the proof of Lemma 2.8, and define @~ (t) = —P7(¢). All
the equations, inequalities, and discussion appearing between (2.8) and (2.12) inclusive,

still holds. In addition, (2.11) gives
(217)  —[Q(d) - @ (c)] = Ad) — Al)) = ——(P*(d) = P*(0)),le, d] positive.

We also have, by reasoning very similar to that which lead to (2.11),

(2.18) Pt(d) — PT(c) = A(d) — A(e) = I—’Lﬂ(Q_(d) — Q7 (¢)), [e,d] negative.

Mirroring the comments before (2.12), if [c,d] is negative it cannot happen that both
Q~(c) > 0 and Q—(d) < 0 or that both @7 (¢) < 0and @~ (d) > 0, and |Q@~(d)| < |@ ().

The rest of the proof of Proposition 2.9 closely models the proof of Proposition 2.7.
We fix [a, b] and again make the additional assumption that f*(t) — f#(t) >0, t > 0. Let
0<e<a<b andlet e =59 < 51 < ... < $m = b be constructed exactly as they were
in the proof of Proposition 2.8. Let a; = Pt(s;) and b; = Q(s;), and p = 55—1 = ﬁ;—%
If [sk,sk+1] is negative, the comments after (2.14) imply that either by > br41 = 0 or
b < bry1 <0, and (2.17), (2.12) and the comments after (2.14) show that if [Sk, Sk+1] 1s
positive, either ax > ag41 > 0 or ax < agy1 < 0. Together with (2.17) and (2.18) this
shows Lemma 2.8 applies. The remainder of the argument is virtually identical to the  __

proof of Proposition 2.7, and is omitted. O

The following proposition provides the rest of the proof of Theorem 1.1.

Proposition 2.10. If |p| > |, there is a function fo 3 = f for which (1.1) has at least

two solutions.

Proof. We prove the case p < —1. The case p > 1 has a very similar proof. We assume,

without loss of generality, that a > 0. If f is a piecewise linear function on [0,] it is easy
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to see there is a unique piecewise linear solution g of (1.1) “on [0,¢].” These solutions may

be found explicitly, as in the proof of Lemma 2.3.

We now construct two functions fi, f2 on [0,00) by recursively defining them on
successively larger intervals. We define P*(t), Q™ (t), and A(t) symbolicﬁlly exactly as
they were defined in the proof of Proposition 2.8, where g; and g, are the piecewise linear
solutions of (1.1) on these intervals for f; and f; respectively. Put f;(t) = 0,0 <¢ <1,
and fo(t) =4t, 0 <t <1/2, fo(t) = (v/2) — 6(t — (1/2)), 1/2 <t < 1, where v, § > 0 are
chosen so that ¢2(1) = 0, g#(l) =0, and ¢5(1) = 1. Of course ¢1(t) = 0,0 <t <1, so
P*(1) =1 and @~ (1) = 0. We now define h(t) := fi(t) — f1(1) = fa(t) — f2(1), thereby
defining f; and f, on the rest of [0, co].

Of course h(1) = 0, and we put h'(t) = 1, 1 < t < t;, where t; = inf{s : P¥(s) = 0}.
Note that since h is increasing on [1,], this interval must be positive, and so (2.17) gives
P*(t1) =0, @ (t1) = —1%.. It is worth noting that since PT(1) > 0, g5(1) — g2(1) >
93 (1) — g1(1) (of course, we knew this anyhow), and thus the increments of both g; and
g2 after 1 equal those of h until g; = ¢7, after which g; increases at a faster rate than g,

until g2 = g5, which occurs at ¢;.
Next define h'(t) = —1 on ¢; < t < ty, where t; = inf{t > ¢t; : Q7 (t) = 0}. Then

Pt(ty) = ({_—o‘a) (1—__%) = p, using (2.18). Then define h(t) = —1, t; < t < t3, where

t3 = inf{t > t; : P1t(t3) = 0} and so on. We have P (t3,) = p", Q@ (t2n) = 0, and
Pt (tant1) =0, @~ (t2n41) = (—ﬁ) P*(t3), n > 0.

We will show

(2.19) clpl™ < tan < Clp|®, n >0.

To prove the left side of (2.19), we first note that
(2.20) |Pt(s) = PT(#)| <Cl|s—t|, 1<s<t,

since, roughly, none of g;, g2, gf, or g5 changes on [1,00) changes at a rate faster than an
absolute constant C, since |h'| = 1 for all but a discrete set of points. For example, if & is

even and tx < s <t < tgy1, h(t) — h(s) =t — s, and so (2.2) gives 0 < g1(t) —g1(s) < C
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(t — s), and now (2.4) gives g;(t) — gi(s) < C(t — s). Thus t2n — tan—1 > c|P¥(t20) —
P (tan1)| = clo".

The right side of (2.19) follows from
(2.21) trs1 — ty < Clp|F/2.
To prove (2.21), we first prove
(2.22) (91(te) — 97 (t1)) + (g5 (t6) — 95(tk)) < Clpl*?, k2> 0.

Suppose first that j is even and j/2 is an even integer. Let y = y; = inf{t > t; : ¢i(t) =
gi(t)}. Then g1(s) = g7(s), y < s < tjy1, and tjp1 = inf{t > y: ga(s) = g3(s)}. Thus
|pli/? = P*(t;) — P*(tj+1) = Pt(y) — PT(tj4+1), which in turn equals ;11 — y, since
g2(tj+1) — g2(y) = h(tj41) — A(y) = tj1 — y.

Now (2.2) and (2.4) and (2.20) yield

(2.23) 91 (tj41) — 91(t5) = 91 (tj+1) — 91(y) < Ctj41 —y)
= C(P*(y) — P*(tj11))
= Clp/.

Since g¥ (tj41) = ¢¥ (t;), 9§ (tj+1) = g7 (t;), and g3(t541) = g3(t;), this gives,
(2.24)
(9% (i) — 95 (83)) + (95 (t11) — 93 (£)) + (a7 (5) 9 (t5:01))+(oF (¢5)—gF (t41)) < Clol’/*.

The proof of (2.24) for j odd, and for j even when j/2 is not an integer, is similar,
and adding these inequalities for j = 0 to k — 1 gives an inequality which immediately
implies (2.22). To derive (2.21) from (2.22), let k and k/2 be even, as the argument for
other k is very similar, and let y = yi be as defined just after (2.22). Then tzy1 —tx =

(tk+1—y)+(y—tk). NOW
= gt (k) — g1(tk) < gF(tk) — g7 (tr) < Clp|*/?
y—tr = g1 (t) — g1(tx) < g7 (tx) — 97 (tk) < Clpl™'7,

using (2.22). And (2.23) gives tr41 — y < C|p|*/%.
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Finally we note
(225) IA(t2n+1) - A(t2n)| 2 C'p|n7 n2>1,
which follows from (2.11), so that

(2.26) sup  |g1(s) — g2(s)| = Clp[", n > 1.
0<s<tan 41

Now define f! and f2 by fi(t) = n~!fi(nt) and f2(t) = n~! fa(nt). Their solutions
for (1.1) equal n~1gy(nt) and n~!gy(nt) respectively, which we designate g" and g3. Pick
a subsequence n!, n > 1, of the integers, such that f{", f{‘l, g{", ggl converge uniformly
on compact subintervals of [0, 00]. This is possible since {fn, n > 1} and {f2, n > 1} are
both absolutely continuous and bounded, by their explicit construction, and thus so are

{g}, n > 1}, and {g2,n > 1}, by Lemma 2.1.

Now fl, and f2, clearly converge to the same function, again by their constructions.
Call this function f. Corollary 2.2 guarantees that the limits of g1, and ¢2,, call them ¢;
and g,, are both solutions of (1.1) for f. And, finally, (2.26) and (2.15) guarantee that g;

and go cannot be the same function. |

3. Proof of Theorem 1.2

The basis of our proof of Theorem 1.2 is the following formula of CPY. If g solves
(1.1) for f, then

1
1l -«

(3.1) g (t) = Ss‘il;’(f(s) —1= itg;(—f(tt) —ag™(u))).

Let ||a||r = sup |h(s)|, T > 0. Throughout this section we assumea < 1, § < 1, |p| < L.
0<s<LT

Lemma 3.1. Leta <1, 8 <1 and |p| < 1. Then if g1 and g are solutions of (1.1) for

f1 and fy respectively, we have

(3.2) Nlgr — g2llr £ Cllfr = fellr, T >0.
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Proof. Subtracting the version of (3.1) for f, from that for f,

103(T) ~ g3(T)| < = Isup|fa(s) — fa()+
 s<T

(33) 21 sup sup(— () — i () = up(= o) = a3 ()
< 2 {15~ ol + 12 (oup lup 11(0) — 2wl + alsup o) - g5 )
sST u<ls u<ls

1 ﬂ * *
< Tl = fllr + 725U — fallr +lellef = g3l

yielding, upon noticing that |g7(T")—g5(T)| may be replaced in (3.2) by any of |g7(t)—g5(t)|,
0 < t < T, since the right hand side of (3.3) is increasing in T,

1-8+18|—alfl

(3.4 lai = g3liz(1 — 1pl) € =y =5 1A~ follr
SO
(35) 93(8) — 3] < Cllfi — follr, 0< ¢ <T.

Similarly we have

lgF (t) —g¥ ()| < Cllfs — fellr, 0<tLT
We claim that the truth of (3.4) and (3.5) for all f; and f; implies the apparently stronger

inequality (3.2).

We show this by showing that if ||fi — fz||]7 > 0 and

(3.6) 4 < K =Ky, 5,7 = llg1 — 9217/ fr = follr,

then there are functions f; and f,, with solutions §; and §, respectively, and S > 0, such
that ||fi — falls = [Ifi — fallr, and either |§3(S) — 3 (S)| > £[Ifi = falls, or 157 (S) -
i (S > Sllf = flls

Suppose, first, that o > 0 and 8 > 0, and suppose without loss of generality that
91(T) — 92(T)| = llg1 — g2ll7, and that g1(T) > g2(T). Let w = sup{z < T : (g1(T) -
92(T)) = (91(2) — 92(2)) > (fi(T) — fo(T)) — (fi(z) = fa(2))}-

Note 0 is in the set we are taking the supremum of, since K > 2. Now either ¢;(w) =

g3(w) or ga(w) = gf (w), since otherwise, (g1(w) — g2(w)) — (g1(w — €) — ga(w —¢€)) <
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(fi(w) — fi(w —€)) = (f2(w) — fo(w — €)) for small enough ¢ > 0, using (2.2) and (2.3).
Suppose g1(w) = g}(w). Define f; and fz by fi(t) = fi(t), t < w, f(t) — fi(w) = (t — w),
t > w, and fo(t) = folt), t < w, fo(t) — fo(w) = (t —w), t > w. Let y = inf{t > w:
G2(w) = §3(w)}. Now §1(s) = §7(s), w < s < v, and since & > 0, §1(s) — g2(s) is increasing

on (w,v), and so

G1(7) — G3(7) = G1(7) — §2(7) 2 G1(w) — G2(w)
= g1(w) — g2(w).
But
g1(w) — g2(w) 2 (91(T) ~ 92(T)) — [(1(T) — fr(w)) — (fu(T) — f2(w))|
> (91(T) — 92(T)) = 2|1 — FallT
> 5(01(T) — 92(T)) (by (3.6))

= LA - Al

Finally, note [|fi — faolly = |Ifi = follo = |lfi = fellw < |lfi — foll7, and so we get

g1()—33(v) 2 % IIfi— fz”»,, which verifies what we said we were going to, in the sentence

containingt (3.6).
The proof if one or both of a, 8 is not positive is very similar. O

We use = to indicate convergence in distribution of processes, and retain the con-
vention extending discrete time processes to, and identifing them with, continuous time
processes, mentioned before the statement of Theorem 1.2. For a process Z, we let Z™ be
the process n™1/2Z,;, t > 0. We let R be fair random walk, started at 0, B and Y be as
in (1.2), and X be as in the statement of Theorem 2.1. It is classical that R® = B. The
Continuous Mapping Theorem (see page 70 of Pollard 1984), and Lemma 3.1, now give
that if S solves (1.1) for R, then S™ = Y. If S had the distribution of X, this would
verify Theorem 1.2, but it does not. To circumvent this problem we find a process U such

that U™ = B, and such that the solution of (1.1) for U has exactly the distribution of X.

U is constructed from R. We describe its construction and properties for a, 8 both
nonpositive. The other cases are very similar. We let A;, 7 > 1, be 1id indicator variables
with P(A; = 1) = e and B;, ¢+ > 1, be indicator variables independent of the A; with
P(B; =1) = 525. Let My = Ry, and My = Ry, and if i > 1 put M;1; — M; = Riy1 — R
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if either M < M; < M}, or M; = M¥ and Riy1 — Ri = +1, or M; = M? and
Riy1 — Ri = —1. Define M4y — M; = Riys — Ri —2A,;) if Mi = M} and Riy; — R; = 1,
where J(¢) is the number of k, 1 < k < 2, such that M} = Mg and Riyy — Ry = 1. Define
Mip1—M; = Riy1—Ri+2Bg;) if M;# = M; and R; 11 —R; = —1, where O(:) is the number
of those k, 1 < k < 1, such that M} = Mf and R;y; — R; = —1. Then M has exactly
the distribution of X. We define the process U as follows: U,y — U, = Mpy1 — M,
except on {Mni1 — My =1, M, = M}, where we define U4y — U, = (1 — a), and on
{Mpy1~ M, = -1, M, = M#}, where we define U,;; — U, = —1 + 8. Then M is the
solution of (1.1) for U. Furthermore, we have

Un+1 —Un = Rpy1 — Ra if M, # M orM#, orn =0,

Un41 = Un — (Rn41 — Rp) = [(1 — @) = 1]I(Rat1 — Ry, = 1,Ajm) =0) |

—2I(Rpy1— Rp =1, Ay =1)
= A7

n?

if M, = M*, n>0.
Also,
Unt1 = Un = (Rn+1 = Ba) = [(1 = B)] + 1LU(Rn41 — Rn = —1, Bo(n) = 0)
+2I(Roy1 — Ro = =1, Bo(ny = 1)
= Ay, if M, = M¥*, n>0.

n?’

Thus U,—R, = Zn: At (k)+ i A~(k). 1t is easily checked that A*(k), k > 0, and A~ (k),
k=0 k=0

k > 0, are both martingale difference sequences, that AT (k)| < Ca, |A~ (k)| < Cjg, that

At (k) = 0 except on {My = M;}, and that A=(k) = 0 except on {My, = M}}.

Lemma 3.2. If X is as in the statement of Theorem 1.2, then

n~1 ZI(X,c = X} or X,’f) — 0 in probability.
k=1
Proof: Fix M > 1> 0. Let 1; = inf{k : Xi - Xf = M}. Clearly 1y < 00 a.s. Let

Top =inf{i > mp_1 : X; € (X,-#,X,-*)},k > 1, and

Tok+1 = inf{i > o 0 Xy = XF or X#}, k> 1.
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Let Ay = o(X;, ¢ < k).

Now if 2 > 1, the conditional distribution of 79; — 75;_; given A.,;_, is the geometric
distribution with para,meter z_iE on {Xr,_, = X},. |}, and it is the geometric distribution
with parameter ;— son{Xr, , =X # __}. And the conditional distribution of {m2i41—72i}
given As; is stochastlcally no smaller than the distribution of the time it takes fair random
walk, started at 1, to exit from (0, M). Especially, if Eps is the expected time it takes

random walk started at 1 to exit (0, M), we have

n—1
hmn_,oo Z Tzk — T2k— 1|)/ Z 7'2k+1 - T2k) < C/EM,
k=1 k=1

where C' is the maximum of the expectation of the two geometric variables mentioned

above. Since the sum in the denominator is smaller than T2n, this implies

Tan

lim, oo IXk =X or X*# /n < limp oo I( X, =X} orX Ton
k k
k=1 k=1

= liMp 00 E(Tzk — Tok—1)/T2a < C/Epy.
k=1

Since sup Ep = 0o, this proves the lemma. [l
m

Note that this lemma is equivalent to
(3.7 @n/n — 0 in probability,

n
where Q, : = Y I(M, = M} on M#) a.s., since X and M have the same distribution.
k=I

To complete the proof of Theorem 1.2, we prove the following lemma.

Lemma 3.3. U™ — B in distribution as n — oo.

Proof. The proof will be accomplished by showing that - sup IU "(s) — R*(s)] — 0 in
0<s
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probability for each fixed ¢. This follows from

E max. |U(k) — R(k)|v/n

=Eiga§<n1§:A+(i)+iA‘(i)l/ﬁ
< Bl zp 3 OV + B o IS
< (B 3 AOPIn

1<k<n
=1

+ [E( max ZA ()22 /n

1<k<n

< 4E(Z A*(3)? /n + 4E(Z A™(E))? /n

= CoEQ(n)/n+ CgEQ(n)/n — 0, as n — oo,

the last inequality by Doob is martmgale maximal inequality (p. 317 of Doob 1951) applied

to the martingales E A*(3) and Z A~ (z), and the convergence to zero by (3.4).
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