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Abstract. An anticipating stochastic integral is proposed for “normal martingales”. It
agrees with the Skorohod integral in the Brownian case. A variational derivative of Malli-
avin type is also defined. An integration by parts formula is given which has some subtle and
important differences from the formula in the Brownian case. Existence and uniqueness of .

solutions of linear SDEs with ant¥eipating exogenous driving terms is also established.
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§1. Introduction.

In this paper we propose an anticipating integral for general martingales possessing two
key properties: that (M, M ), =t, and that M possesses the chaos representation proj)erty
(CRP). Martingales having the first property have been called “normal” by Dellacherie,
Maisonneuve and Meyer (1992, p.199) and are discussed in section 2. Our integral is based
on chaos expansion and as such it is analogous to the Skorohod integral as developed by
Nualart and Pardoux (1988). When the integrand is predictable it reduces to the usual
martingale integra1 as presented, for example, in Protter (1990); in the case when M is a

Brownian motion it is exactly the Skorohod integral.
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There are many similarities between our martingale anticipating integral and the
Skorohod integral, but there are also some important (and non trivial) differences. Many
of these differences come from one key fact: in the Brownian case [B, B]; = (B, B), = t,
while in our case only (M, M), = t, and [M, M]; is random (see Protter (1990) for all
unexplained notation). For example there are two ways to describe a variational derivative
(also known as the “Malliavin derivative” in the Brownian case), and they are equivalent
in the Brownian case but not in ours. This leads to some subtle differences, and null sets

exist for measures arising from kernels on the product space 2 x R;.

Our paper is organized as follows. In sections 3 and 4 we recall what chaos is, and
in section 4 we give the basic definitions of a variational derivative and an anticipating
integral, and we establish some elementary properties which are analogues of the Brownian
(Skorohod) case. Here there already arises a difference: in the Brownian case one can
use the equivalence of the two definitions of the variational derivative to give elegant
proofs (using the “integration by parts” formula) right from the beginning (see the elegant
presentation of Nualart (1995), for example), whereas such tools are not available for our

integral.

In section 5 we continue our study of properties of the Skorohod integral and we include
a formula inspired by preliminary work of Russo and Vallois (1994, Theorem 5.3). Here
the subtlety of the differences with the Brownian case begin to become readily apparent,

and correct definitions with respect to reference measures need to be made.

In section 6 we give some preliminary results on stochastic differential equations. Our
results are a far cry from the beautiful results already established for the Skorohod integral
(see, e.g., Buckdahn (1994)), but on the other hand they are very general in that they hold
for any normal martingale M. Our method relies exclusively on the Chaos Representation
Property of a normal martingale, therefore neither path regularity nor L? estimations of

the anticipating integrals are required.

The reader will note that we do not include results establishing path regularity of the
integral, and hence we are as yet unable to establish a change of variables formula. We

hope to address these issues in a future work.
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§2. Normal Martingales.

The following definition is from Dellacherie, Maisonneuve and Meyer (1992, p.199 ff).
Definition 2.1. A martingale M is called normal if (M, M ), =t.

In this paper we will be interested in normal martingales that have an extra property:
the Chaos Representation Property (CRP) (see Section 3). Note that [M, M],—(M,M ), =
[M, M), —t is a martingale, and because CRP implies the predictable representation prop-

erty (PRP), we have that
¢
(2.1) [M, M]s =t + / 0sdM,
' 0

for some predictable ¢. In other words, equation (2.1) is mnecessary if a martingale M
is normal with CRP. Emery (1989) first presented and studied equation (2.1) and has
called it the structure equation. If one begins with the structure equation (2.1), then one
can show that it has unique solutions under quite general conditions on ¢ (see Meyer
(1989) or Kurtz-Protter (1991, p.1044-1045)). The simplest structure equations are those

of Brownian motion and the compensated Poisson process, which are respectively:
[M,M]; =1t, and [M,M]tf——t—’}—th, (¢ >0).
An important special class was studied by Emery, which we write in differential form:
(2.2) d[M,M]; = dt + (o + BM;_)dMy; My =z.

Especially if @« = 0 and —2 < # < 0, Emery proved the important result that a solution
M of (2.2) is normal and has CRP. This gives a whole family of normal martingales
with CRP for which our results apply. Note that 8 = 0 is Brownian motion, 8 = -1
is Azéma’s martingale (see, e.g., Protter (1990, p.180-185) for a treatment of Azéma’s
martingale). When 8 = —2, M is known as the “parabolic martingale” with [M;| = /%,
a.s. , first studied by Protter-Sharpe (1979) and M. Barlow (1981). Vallois (1995) has
recently demonstrated an interesting connection between the Brownian range process and

parabolic martingales, thus showing that if M; = \/iBo(\/Ey where B is standard Brownian
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motion and @ is the inverse of its range process; then M is a normal martingale with CRP
too. It is worth pointing out that any solution M of (2.2) has no continuous martingale
part: that is, [M, M]¢ = 0, for all ¢ (see Emery (1989)). Finally, Russo and Vallois (1994)

have extended Emery’s results a bit by considering the equation:

They show that if —2 < §(¢) < 0, for all ¢, then M is again normal with CRP.
The preceding discussion indicates, hopefully, that there is a significant family of

normal martingales having CRP already known to exist, and prospects of more.

§3. Multiple Integrals and Preliminaries.

Since the recent book of Dellacherie, Maisonneuve,and Meyer (1992) gives a lovely
treatment of multiple integrals for normal martingales, we do not give one here, but content

ourselves with a definition. We let X, be an “increasing simplex” of R} :
(3.1) n={(t, ,ta) ERL : 0 < t; <+ < tp},

and we extend a function f defined on ¥, by making f symmetric on R]. We can then

define

(3.2) L(f) = n! /2 Fta, - tn)dM, - - - dM;, .

This has the advantage of working with traditional adapted integrands for our martingale
integrals. Note that the domain ¥, and its symmetrizations do not cover R} : we are

ignoring the diagonals. As Meyer (1976) has pointed out, this ignores terms such as

oo
_ / f(t1,t2)dM¢, dM,y, =/ f(t, t)d[M, M},
{ti=t2} 0
which need not be trivial in our case. We avoid this problem by making the following
convention:

Convention 3.1. Functions f defined on the simplex ¥, are automatically extended to

R’} to be symmetric and to be zero on the diagonals.
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More precisely, let us define a class of functions for n € N and T = [0, 1] by
LY(T™) = {f € L*(T™)| f is symmetric in all variables}.

Note that elements in LZ(T™) are in fact equivalence classes, and we shall always choose
a representative that vanishes on the “diagonal” set: A, = {(t1, --,%,)|3t; = ¢;, ¢ # j}.
Such a selection of the representative will not affect our discussion when we are treating
the iterated integral and its norm in L2(T™), since in the former case the set A, is never
involved, and in the latter A, is a null set under the Lebesgue measure. However, it
will become crucial when some measure involving d[M, M], is considered, as in general
d[M, M]; will charge the Lebesgue-null set.

The multiple integral with respect to M defined in (3.2) will be considered defined
for every f € L2(T™) (or L%(Z,)); and it is known (see, e.g., Meyer (1993)) that for each
feLy(T)

(3.3) In(lF2(0) = D27 122(5,) = 2l FIZ2(zmy-

Definition 3.2. Let G = o{M;;t > 0}, the o-field generated by a (normal) martingale
M. Let H,, be the n-th homogeneous chaos: H, = I,(f), where f ranges over all f €

L2(S,). If L2(G,dP) = @% yH, (the direct sum), then we say M possesses the Chaos
Representation Property (CRP).

Remark 3.3. The hypothesis (M, M ), = t has been used to define multiple integrals in a
nice way, which in turn are needed to define CRP. One could require only d (M, M), < dt
to define the multiple integral, but if (M, M ), were random oné would lose the property
that different chaoses are orthogonal. Meyer (1976, p. 325) also points out that one could
assume that ( M, M ), = c(t) where c(-) is non-random, but we do not pursue such general-
ity here, partially because to date there are no known interesting examples of martingales

M such that (M, M), = ¢(t) # t and which have CRP.

In what follows we shall always assume that a normal martingale M with CRP is

given on the probability space (2, F, P), and that F is generated by M. Thus, for any
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random variable F € L?(F,dP) (= L%(2)) we have by CRP that there exists a sequence
of functions f, € L(T™), n=1,2,---, such that F = Y °° ' I.(f,). Hence

o0 o0
(3-4) 00 > ||F||Z2(q) = Z 1L (fo)lZ2 0y = Zn!”fn”%z(crn)-
n=0

n=0
We shall also use the following notation throughout the paper. If f € L2(T") and
g € L3(T™), we denote f ® g € L?(T™*t™) by

f®g(t1a'°')tn;31,"'>sm)=f(tla'"7tn)g('51a"'a3m);

and if I C T = [0,1], and k € N, we denote by 1?’“ a function in L2(T*) such that

k
185ty - -+, te) = [ [ 11(ts)-

i=1
§4. A Derivative Operator and an Anticipating Integral.

Consider the following subset D C L%(Q):

Di={F =Y In(fa)| 2 nnlllfall? < oo},

n=0 n=0
where || - |l := || - ||z2(r»). To be consistent with the usual notation in the literature
(e.g., Nualart and Pardoux (1988)), we shall write D = Dy 5. It is easily seen that D 5 is
dense in L?(Q2), since every element in the finite Hilbert sum of chaoses belongs to Dj ».
The derivative operator is analogous to what is often called the Malliavin derivative in the

Brownian case, and it is defined as a linear operator D : Dy o C L2(2) — L3(T x Q), by
o0

(4.1) DiF = nla_1(fu(~t), te[o,1],
n=1

whenever F has the chaotic expansion F =Y . ( I.(f,). It is easy to see that

1D F ey = | 132 nlocs (Gl Ot
(42) = [ 2= D Dl

=St [ 1 Olranydt = 3 a3 < oo,
n=1 0 n=1
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for all F € Dy 2. Note that since our definition is analogous to the one normally used for
the Brownian chaotic expansion, we can derive several properties using exactly the same
methods as those used in the Brownian case. Suprisingly, however, the definition is not
compatible with a Sobolev space structure, as of course the case for Brownian motion. We
shall explain this via an example at the end of this section. Here we give two properties

of the operator D for ready reference.

Lemma 4.1. (1) Suppose that F € L*(Q). Then DF =0, for all t € [0,1] if and only if

F is a constant (non-random).
(2) Suppose that F € L?(?) and is F;-measurable. Then D;F = 0 for all s > t.

Proof. This is identical to the Brownian case, so we omit it. O

We now turn to the definition of an anticipating integral, which is analogous to that
of the Skorohod integral in the Brownian case. Note that since D is a densely defined

operator, we can define its adjoint operator, denoted by 6, in the usual way. Namely, Let
1
D* .= D(6) := {G e LA(T x Q): 3C >0, ’E/ G(t,)D;Fdt| < C||F||,VF € Dl,z},
0
and the adjoint operator § : L?(T x ) — L%(Q) is defined by the equation:
1
(4.3) E(§(G)F) = E / G(t,)D,Fdt, VF €Dy, GeD".
0

Since every element in L?(T x ) also has a chaos expansion, we can write G(t,-) =
32 o In(gn(-,1)), where gn’s are deterministic functions, jointly measurable in all vari-

ables, and symmetric in the first n variables. Following the same arguments as those in

Nualart (1995), one can show that the set D* is dense in L*(T x £2) and that

(4.4) D* = {G(t,") = Y_Tnlgal-)) : D (n+ DUFnlla(rn+1) < 00},
=0

n=0
where §° denotes the symmetrization of g in all variables. In other words, the set D* is
of the same form as the usual notion Dom(§) in the literature of the Skorohod integral
(cf., e.g., Nualart (1995, Proposition II1.3)), and therefore we will not distinguish the two

in the sequel. Consequently, as the adjoint operator of D, § is a densely defined, closed
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operator, which in turn shows that the operator D is closable (in fact, it is not too hard

to show that D is closed by definition). We have the following definition.

Definition 4.2. The adjoint operator of D, denoted by & : L*(T x Q) w— L?(R), is called
the anticipating integral of the element in D* =Dom(6). Furthermore, for any v € Dom($),

we denote

1
§(u) = / ugd M,
0

Also, we can define the set IL™? as usual by

[e e} o0
(45) L2 = {u, = 3 L(fal )| 3 mnllfallfarnry < o0}
n=0 n=0
Noting that 3 nn!||fn]|2;;1 < oo is equivalent to ¥ (n+ 1)!||fxl|2,; < oo, and the obvious
inequality
(4.6) [ Fn L2en+sy < lfnllzzntr),

we have 1% ¢ Dom(6), as in the Brownian case. The following results for our anticipating
integral can also be proved using exactly the same arguments as those used, for example,

in Nualart (1995). We give only the statements.

Proposition 4.3. (1) Suppose that v € Dom(6), and that u has chaotic expansion
ug =Y oo o In(gn(:,t)), where g(-,t) € L2(T™), for a.a. t € T. Then

6w) = 3 L1 (32).

n=0

(2) Suppose that u,v € IL"2. Then
1 1,1
E(6(w)é(v)) = E/ Uugvgds + E/ / DgusDivgdsdt.
0 o Jo
In particular, ifu =v € LY?, then

1 1,1
E(6(u)?) = E/ ulds + E/ / DguyDyugdsdt.
0 o Jo
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(3) Suppose that u is a process in the space L'* such that for almost all t € [0, 1],
Dyu. € Dom(§), and there is a version of the process { [;(Dius)6Mg;t > 0} which is in
L?(T x Q). Then 6(u) € Dy 2, and it holds that

1
Dt(é(’ll,)) = A (Dtus)éMs + Uy
O

A natural question now is whether the definition of our anticipating integral is a
generalization of the usual It6-type stochastic integral. Note that the proof in the Brownian
case of this result (see, e.g., Nualart (1995)) uses the fact that any adapted, L? process can
be approximated by elementary adapted processes; and that the Skorohod and It6 integrals
coincide on elementary adapted processes. The latter result relies on an integration by
parts formula which in our case is more complicated and not easily applicable, as we shall
see in the next section. Therefore the usual Brownian technique does not seem to apply.
Our technique uses only the CRP property (and not integration by parts), so it also gives

an alternative (new) proof in the Brownian case.

Proposition 4.4. Suppose that u € L?>(T x ) and is predictable. Then u € Dom(§) and

1
5(u) = / wpdM;.
0 -
where the right side above is in the semimartingale (or “It6”) sense.

Proof. Let us first assume that u; = I,(f.(,t)), where f, is some L2-function,

symmetric in the first n variables. Since u is predictable, we have

t
ut:,,,!/ {/ Falt, o, )My, - dM,_ YaMy, = To(fa(, 15T).
vo 61 <<ty

Now by definition,

S

6(u) = Iny1(fn(, *)1[0 *)() )

1
=(n+1)!/ {/ fn(te, - tnat)l[Ot)(tla"',tn) thl...thn}th_
O t1< <t'n.<t

»

where “ - ” stands for the first n variables, and “ % ” stands for the last variable;

fn(-,%)18™ () is the symmetrization of f, (-, * 1®” in all variables. Note that since
CEOAY 0,0\
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frn is symmetric in the first n variables, a little computation shows that on the set

Ypt1 ={t1 <t2 <:-- <ty < t}, we have

fn(th ot ,t‘n.a 1t)1|%?£)(t1) o )tn)s = -(—';l—?i]-—)' Z.fn(an(l)? Tty U’n(n),t)
( T 1)fn(t1, : t)

where o, runs over all the permutations of {1,---,n}. Thus

1 1
6(“‘) = n! / { / fn(th ' tn-) t)thl e thn }th = / Utht.
0 11 <<t <t ‘ . 0

Now let us suppose that us = Y oo o In(fr (-, t)) € L*(T x ), that is,

1
(4.7) E / wlPdt =3 / 1fa( D)2t = Zn'||fn||n+1<oo
'n.—-O

Since u; is predictable, it can be easily checked that every I,(f,(-,¢)) must have the form

I.(fn( 1) = L(fn (s )1‘[?;’;)) Therefore, using the same argument as before, we have

Loa(F2%) = 6(Ia(ful))) = / Lo (Fu(-+£))dM,,
and

i t
(n+ DUFa 1201 = Ellnpa (7)) = E/ \In(fa (-, 1)) %dt = n!/ 1fn (-5 8)ldt
0 0
= n'”fn”721+1

Thus (4.7) gives that

Z(n + 1)‘”fn ||n+1 ZTL “fn”n+1 < 00,

n=0 n=0

hence u € Dom(§), and by Proposition 4.3-(1),

6(u) = an+1(fn - / {Zf(fn (- 0) b, = / wdM,,

proving the proposition. 0
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An Ocone-Haussmann-Clark Type Formula.

Let M be a normal martingale with CRP. For any F' € L?(2) we can write

0 0 t
(48) F= 3" () = B+ Y Talf) = B(F)+ [ widb,
n=0 n=1 0
where u is a predictable process given by
o0 .
(4.9) =3 n! / Fultsye ey taos, 0)dMy, ---dM;, .
n=1 1<ty <Ll m1 <t

In the Brownian case, the predictable process u can be further described using the “Malli-
avin derivative” operator, known as the Ocone-Haussmann-Clark formula (see, e.g., Ocone
(1984)). Our definition of the “Malliavin derivative” operator {D;}:>0 also allows us to

derive an analogue of that formula, as we see in the following theorem.

Theorem 4.5. Let M be a normal martingale with CRP, and let F € L?(Q). If F € D1 5
then

1
(4.10) F=E(F)+ / P(D,F)dM,,
- 0

where P H; denotes the predictable projection of a process H.

Proof. Comparing (4.10) with (4.8), we see that we need only show u; = P(D.F).
Note that u is already predictable, so if u. = °(D.F), the optional projection of D.F, then
we would have P(DyF) = P(°(D;F)) = P(u;) = uy, Vt € [0,1], and we are done. Therefore
it suffices to show that u is the optional projection of D.F', or equivalently, (see Dellacherie = --

(1972))
(4.11) u, = E{D.F|F,},  for any stopping time 7 € [0,1],

where D, F is defined to be D;F|;—,. To this end, we first note that by definition we have
[e’s) 00 1
(4.12) D.F = Z nl, —l(fn(', t)) = Z n'/ hn(tn—l, t)thn_l,
n=1 n=1 0

where h,(s,t) = ft1<___<tn_2<s falty, - tn-1,8,t)dMy, ---dM;, _,. Clearly, for each fixed
t € [0,1], hy(,t) is predictable, so if we define M, (r,t) := for hn(s,t)dMs, 7 € [0,1], then
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M,(-,t) is a martingale with parameter ¢ € [0,1]. Thus for any fixed ¢ € [0,1] and any
stopping time 7 € [0, 1], one has F{M,(1,t) — My(, t)]f,.} = 0. By a standard Monotone

Class argument, one can show that for any stopping time 7 € {0, 1], it holds that
(4.13) E{M,(1,7) = Mu(r,7)|F;} =0, as.

Further, recall that f,(-,t,t) = 0, we have by (4.9) that > >, n!M,(t,t) = u, V¢, as. .
Consequently, we see from (4.12) and (4.13) that, for any stopping time 7 € [0, 1],

E{D.F|F.} = Z n B{M,(1,7)| %} = Zvn!E{Mn(T, |7} = ur, as.
n=1

n=1
- here the last equality is due to the predictability of u. This proves (4.11), whence the
theorem. O

We remark that in the Brownian case this result is customarily stated more simply by
writing u; = E{D:F |.7-'t}, for fixed ¢. It is implicit that in such an expression, one really

means that u; is the optional projection of D, F'.

Indefinite Integrals.
We now study the possibility of defining indefinite anticipating integrals. Note that
even in the Brownian case, it is not true that for any v € Dom(6), the process {us1jo4(s) :

s € [0,1]} € Dom(6) (see Nualart and Pardoux (1988)). We have the following definition.

Definition 4.6. Suppose that the process u € Dom(§) is such that for any ¢ € [0,1], it
holds that u.1jg 4(-) € Dom(§). Then the indefinite anticipating stochastic integral of u on
[0,] is defined by -

t 1
/ us6 M, 1= 6(u1[o,t]) = / usl[o,t](s)dMs.
0 0 .

The following lemma gives a description of the class of processes in Dom(6) for which

the indefinite integral exists.

Lemma 4.6. Suppose that u € Dom(6), and us = Y, In(fn(-,s)). Then for any t € [0,1],
the process u.1j 4 (-) € Dom(6) if and only if

(4.14) >+ DUFal 9 1p,g() 41 < oo

n=0
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Consequently, a sufficient condition for the process u.1j 4(-) to belong to Dom(6) is that
ue LY,

Proof. The proof for (4.14) is direct, by using the definition. As for the second

assertion, it suffices to recall the definition of L2 and the fact that

7G040 as1 < 1l 9 loa s < NFnllia-

O

To end this section we give an example which shows that one cannot define the deriva-
tive operator in the usual way in our case to obtain a Sobolev space structure for the space
D; 2. In fact the example somehow shows that the two definitions (Sobolev space vs. chaos

expansion) are compatible if and only if the process [M, M] is deterministic.

Ezample. Consider a symmetric function f(s,t) = 1(4,5(5)1(a,5(t). The second chaos

I>(f) can be computed as

b pt— b
L(f) = 2! / F(s,t)dMdM, = 2 / / dM,dM, = 2 / (My_ — M,)dM,
(415) 0<s<t<1 a Ja a

= (Mp — Mo)? — {[M, M], — [M, M]o}.
Here, the last equality is due to Itd’s formula. Now consider the function F(z1,z2) =

(zg — z1)?, and define a smooth functional § = F(M,, My). Let us define the derivative

D;€ in a way analogous to one of the equivalent definitions in the Brownian case:

oF oF
Dif = Dy(Mp — M,)* = a_xl(Ma,Mb)l[O,a](t) + '_2(MaaMb)1[0,b](t)

(4.16) Oz

= 2(Mp — Ma)l(a,,b] (t).

However, by our definition

DiIo(f) = 2L (f (-, 1)) = 2/0 1(a,5(8)dMs - 1(a,5)(t) = 2(Mp — Ma)1(a,5)(?)-

We can substitute this into (4.16) and compare it with (4.15) to see that the two definitions
coincide if and only if D;{[M, M|, — [M, M],} =0, for all t € T. By Lemma 4.1-(1), this

means that [M, M|, — [M, M), must be constant. If we look at the structure equation
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(2.1), this amounts to saying that ¢ = 0, therefore the two definitions are in contradiction

and cannot hold simultaneously unless M = B, the Brownian motion.
§5. Integration by Parts Formulae.

In this section we study an integration by parts formula given in Theorem 5.4. This
formula differs from the one in the Brownian case in an important way, since it explicitly
volves [M, M];, whose role is hidden in the Brownian case (in that case [M, M]; = t).
Another difference is more subtle, in that one has to be careful what versions of the
multiple integrals one takes. A key step in this direction was taken by Russo and Vallois
(1994), which is presented here in Theorem 5.2; one difference in our treatment of Theorem
5.2 is that we take care to make precise which versions of the multiple integrals we are
using. It is worth pointing out here that because in our case ID; 5 does not have a Sobolev
space structure, and thus as we mentioned in the previous section all the proofs of these
properties will depend solely on the chaos expansion. Therefore sometimes they are more
complicated than those of the Brownian case.

Let us first introduce some notation. Define for each n € IN, a vector space
(5.1) Sy, 1= span{@”lp(-)s' I' = (a;,b;];a1 <by <ag <by<---<ap, < bn}.
It is clear that S, is dense in both L?(X,) and L2(T™). Define for f,g € L*(T"),

(52) < fag >n=/ f(tl)'",tn)g(tla"'atn)dtl"'dt'lr
T'n,

We define a measure p on the space T' x Q in terms of the underlying martingale M (known

as the Doléans-Dade measure): for ¢ € [0,1] and B € F,
(5.3) u([0,t) x B) := E{1p[M, M];}.

Then it is clear that L%(du) = L%(dt x dP) if and only if [M, M]; = t. In other words, in
the Brownian case L?(dy) is superfluous. Let us denote for any F,G € L?(du) that

1
< F, G >L2(d,u.)= E/ Fthd[M, M]t,
0
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and for n,m € N and f € S,, g € Sy, that

(54) (fag)'n.,m =< I —1(f('7 ')),Im—l(g('a )) > L2(dp) -

When n = m, we denote (f,g)nn = (f,9)n. We first give a lemma whose proof can be

found in Russo and Vallois (1994).

Lemma 5.1. Supppose that f € S, and g € S1. Then it holds that

In(f)Il(g) = In+1(f ® g) + n/OOO In—l(f('>t)g(t)d[M7 M]t

Next, we prove the following isometry property:
Lemma 5.2. If f € S,, and g € Sy, n,m € N, then it holds that
0, n # m;
(fa g)n,m =

(n—1!< f,g >n, n=m.

Proof. We split the proof into two different cases.
Case 1. (n = m): It suffices to consider the case when f = g, as the general case can

be derived by polarization. In other words, we shall prove that

(5.5) (f, H)n=(=1FE =12

Further, it is clear that we need only consider those functions

S

k
f(tl,---,tk,t)= (Hlli(ti))lIk+1(t) , It = (ai,bi],’i—’:l,'--,k-{-l,
i=1

where a; < by < a3 < by <--- < ag < b < agy1 < bg+1. We proceed by induction. For
n =1, Io(f(t)) = f(t), so there is nothing to prove. Suppose that (5.5) is true for n = k,
and consider the case n = k + 1. Note that n — 1 = k and

L(f(-,8) = k! / Fltry - tomr, 8, 8)dMy, ---dMy, _ dM,
O0<t1 <---<tp-1<8<1

t— o
(59) o [ a1+ [ Tea (75, 018550 )

=Va(t) + Va(?)-
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Here we used the fact that f(-,t,£) = 0, V& € T and f(:,s,t) = 0, for s > 1. Since for

(t1,-+-,tk—1,8) € Ck, and s < t, we have
k-1
f(tla vy te—1,8, t) = H l(ai,bi](ti)l(ak,bk](S)I(ak+1,bk+1](t),

i=1

it holds that
(5.7)  Lica(F( 8,185 = Tma (G, )15 () Lk (1) = gel) e (),

where f(tl, e ,tk—la 3) = H::c=—11 l(ai,bi] (ti)l(ak,bk] (3), gk(s) = Ik—l(f(" 3)1%?331())’ and
I*Y = (@g41, bes1). It is easily seen that g (-) is predictable, and so is 1zx+1(-) f, g7 (s)ds.
Noting that E[M, M]; = t, we have

ViO)ll2. =/°°EVt2dt=k2/°°E/
(ACTRE AU B

= k*E /0 oo{ / 1k (t)gg(s)ds}d[M, M.

e ()gx(s)dM, } dt
(5.8)

t
0
In order to determine a similar evaluation for ||V§|]%2(du), let us define a stopping time

7 :=inf{s > 0: [M,M]s; >t} A1l. Then we have

o 2
WOl = KB [ { [, 1o @outoyanss} ans, v,
0 t,00

(5.9) _ B /0 ” e (7)] / " gr(s)dM, } dt.

¢+

o0 [ o] 2
= k2 / E{ / 11k+1(7't)gk(s)dMs} dt.
0 T+

Define for fixed ¢ a process G(t,s,w) = 1+1(1t(w))gr(s,w), then G(t,-,-) is predictable
for s > 1. Thus

E{ /T ” 11k+1(7't)gk(s)dMs}2 =FE / 17641 (1) g2(s)ds.

t+ Ti+

Therefore the right side of (5.9) becomes

+

k> / E / 17k41(7)g2(s)dsdt = k*E / { / 1,k+1(t)g,3(s)ds}d[M, M],.
0 Tt+ 0 t
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Combining this with (5.8) and (5.9), and applying Fubini’s Theorem to dsd[M, M]; (path
by path), we have (recall (5.7) for the definition of gi) that

o0 o0
Villisa + Wella = BB [ { [ s @)ai(s)ds Jatas, )
(5.10) y
0

— K2E /0 124 (£ (5,185 2())d[M, M]uds.

Moreover, by (5.8) and (5.9) we also see that

o0

A
2 1.2 2
Vil = K2E /O 1o (1) /0 g3(s)ds

[od} t
< k(=1 [ [ 17 s 015 Ol adsat

< kE|F IR < 005

and, again by Fubini’s theorem, that

1V2ll2(4) = K°E /0°° { /t:_o 1pes1 (t)gi(s)ds}d[M, M
(5.11) — k2E /0 ” { /[0 L ()92(s)d[M, M}, }ds
=12 [T B{ [ (s 0085 O o (0, M. s,

by the definition of gi. Therefore, if we define for each fixed s a function hs(:,t) =

f(-,s,t)l%{“s;l(-)l[o,s)(t), then hy(-,t) is symmetric in the first £ — 1 variables. Using the

induction hypothesis, we have
* k
6:12) (b= [ T2 0085 Ot DM, Mle = (6 = 1)1
Combining (5.12) with (5.11), we obtain that
(5.13) Vol = K*(k - 1)!/0 1B 17ds < &2(k — DUIfIIE41 < oo.

In other words, we have shown that Vi,Va € L*(dy), whence V1V, € L'(dp). We now
show that

(5.14) E / Vi Vat)d[M, M]; = 0.
0
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In fact, using Lebesgue’s change of time lemma (cf. e.g., Dellacherie (1972, p.91)),
o0 [ o] o0
00> E / Vi) Va(9)ldIM, M), = E / (Vi (r2)Va(re)dt = / E|Vi(r)Va(ms)|dt,
0 0 0

we see that for a.e. t € [0,1], E|Vi(7:)Va(1t)| < co. Hence

E{Vi(r)Va(n)} = E{Vi(7) E{Va(7:)|Fr. }}

o0

= B(iE{ [ 1na(mants)an,

T+

Since I**1(1;)gr(s) is predictable on s > 7 for a.a. t, we have EV;(7;)Va(rz) = 0 for a.a.

t, whence
o0 oo
B [ Vi, Ml = [ B Va(rdt =0,
0 0
proving (5.14). Now by (5.6), (5.10) and (5.14) we get
176 (F (s M Eaqany = VAC) + VaOllZeqawy = VillZean + 1VallZ2(ap

(5.15) 00 0 )
- k2/0 E{ /0 By (5,185 ()dlM, M]t}ds = k2J.
Using the induction hypothesis again, we see that
B{ [ 12075, 0155 )M, ML} = (k= DI 1B O,
Thus -
*® k 2
7= [ e D51 s

oo o0 S 8
- (k——l)!/ {/ [/ / |f(t1,---,tk_l,s,t)|2dt1---dtk_l]dt}ds
0 0 0 0
- (k—l)!(k—l)!/ {/ £ty e, 5, )Pt -~ dby_rds )
0 0<t)1 < <Lt -1 <5<00

1 [e o]
=((k—1)!)2-ﬁ/0 {/Tk £ty stk 8, 0Pt - iy _ads b

SRS

Therefore

k—1)!1)?
0 Moy = K20 = 2 EZ g2 = g1,
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and (5.5) is proved.

Case 2. (n # m): The proof is very similar, we give only a sketch. We shall again use
induction, but this time on k¥ = n A m. Assume that k = 1. Let n =1 and m > 2. Then
notice that Io(f(-,t)) = f(t), we have

(7291 =B [ I 1) Fn-s(a(, 0)IM, M), = B [ tmeatot )5 0ding, b1
Since g € S, and f € S1, we have by Lemma 5.1 that
m/:o Im-1(g(-,0))f@)d[M, M]; = I (9)1(f) — Im+1(g ® h).

Therefore (f,9)1,m = ={EIm(9)[1(f) — EIm+1(g ® f)} = 0. Next assume that the con-

clusion is true for n Am = k, consider the case whenn =%k and m > k + 1.
t— (o]
Vi(t) = (n—1) / s (O Fa(s)dMy; Va(t) = (n— 1) / Lo (8)Fo (8)dM;
0 i+
t— 0
Ui(t) = (m — 1)/ 1imt1 (8)gm(8)dMs;  Ua(t) = (m — 1)/ 1m+1 (t)Gm (s)dMs,
0 t+
where

fn(S) I o H 1y t)ljn 1%”;)2) gn(s Ip_o H 1“(-5 )1Im(8)1%7z) 2y
j=1

Then it is easily seen as before that
B [ a1 0) mesla D)1, M
=B [ (40 + Va(0)(Ux() + Do ()M, M,
-F /0 " AU (t) + VA (O)Ua(t) + Va(O) U2 (8) + Va(t)Ua()|d[M, M.
Using the same argument as that for (5.14), we have
E /0 VUM, M), = E /0 Vet UL ()M, M), = 0.
By the predictability of V; and Uy, we have

E /0 S AU ()M, M), = E /0 T @O (b)dt = /0 BV UL()}dt

=n-1)m=1) [ 1 @1 WB{ [ Fe)aleras}ar=o.
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Finally, note that
(5.16) E /O S V) Ua(t)d[M, M], = /0 " B{VA(r)Up(m) M,

and

o0

o0
Va(re) = / It (1) F(8)Ls>r, dMs;  Un(m) = / 1ym+1(72)g(8)1 {557} M.
0 0
Since both integrands are predictable, we have
oo
/ B{Va(r)Ua(ry)}dt
0 o0 o0 —~
(5.17) - / B{ / 1wt (7)) Lomss (r)B(6) L s,y s it
0 0
o0 oo
=B [ [ 10 OF @) Limes (035105 dsd[M, M),
Combining the facts f(-,%,t) = g(-,¢,t) = 0 and that
B[ [ e OF )1 (05 ecodsdM, M), = BTA@U(0) =0
o Jo
with the induction hypothesis we conclude
w ~~
(5.18) E / Ly () F(8)1 ot (DG (8)A[M, M]; = 0, ae. s.
0
Finally we see from (5.16), (5.17) and (5.18) that
oo oo o0 —~
E/ Va(t)U(t)d[M, M]t=E/ / 1pn41(7e) f(8)1pmer (72)g(s)dsd[ M, M,
0 Jo Jo A
- / 2 / 1ot (6)F()Lomss (05()d[M, M], }ds = 0.
0 0

The proof is complete. O

Lemma 5.2 indicates an interesting fact, that is, if f, € S,y1, then I,(fn(-, 1)) €
L2(du)NL%(d)), where d\ = dt x dP, and the sequence {I,,(f.(-,%))} is orthogonal in both
L?(dy) and L?(d)), such that

112 (G MEo(any = Hn(F G D Z2gany = 2l Fllats-
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Therefore, since Sp41 is dense in L2(T™*1), for any f € L2(T™+1), we can take a sequence
{f*} converging to f in L2(T™*!), such that f*¥ € Sp41, k =1,2,---. Hence we can define
two limit processes:

F(t) = Jm L(f*(t),  in L*(dp);

GU) = Jim L(7*(,0),  in LA(@Y),
such that [|F||324,) = Gll32(ax) = n!lIFll341- We now define a new measure on [0,1] x ©
by '

X[0,t) x B) + u([0,t) x B)

(5.19)  w([0,t) x B) = -

te€(0,1], B € F;
and
(5.20) I (f(1)) = lim In( FEN(,¢),  in L3(dv).

Then IX(f(-,1)) is well-defined, and it satisfies
F(¢) a.e. dy;

L(f(»1) = {
G(t) a.e. d).

We now turn our attention to the integration by parts formula. Recall in the Brownian

case we have, for any F,G € D15 and h € H := L*(T),
1 .
(5.21) E{G < DF,h>1 +F < DG,h >1} = E{FG / h(t)th},
0

where W is the standard Wiener process. We will show an analogue of (5.21) in our case.
First we give a theorem that is inspired by a result in Russo and Vallois (1994). (Note -

that the result of Russo and Vallois is slightly incorrect, since I,—q replaces I}_;.)

Theorem 5.3. Suppose that n > 1, f € L2(T") and h € L*(T), then it holds that
o0
62) LR = La(foR)+n [ L0, M.

Proof. We follow the idea of Russo and Vallois. First assume that f € S, and
h € L?(T). By Lemma 5.1 we have

(5.23) L(f)I1(h) = It (f®h) +n /0°° In—1(f (-, 1))h(t)d[M, M]s.
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Now let f € L?(T") and h € L*(T), we can find a sequence {f*¥} C S, such that

limg o0 f* = f in L2(T™). By Lemma 5.2 and the discussion following it, we see that

lim I(f*) = I.(f); in L*(9);

k—oo

Jim Ly (f*®h) =L (f®R);  in L*();

—00

lim L y(F5, ) = Loy (FG)); i L2(d).
Further, noting that Efol |h(t)|2d[M, M]; = fol [h(t)|2dt = ||h||?, we have by the Cauchy-
Schwartz inequality that

B| [ Taa ()R, MY [T )R, M),
0 0

1
<E / Lar (F5C, 1)) = Toy (- ) 1A(8) d]M, M),
M aea (75 ) = T (FCr D z2a 1Rl — 0.

Therefore, taking limits on both sides of (5.23) (replacing f by f*’s) in L1(2), we obtain
(5.22), proving the theorem. O

Let us now define an operator D* : L*(Q) — L?(dv) by
DiI,(f) =nl;_y(f(~1),  VfeLi}(T™).

and for F = Y22 I.(fn), such that 3 oo nnl||f.]|2 < 0o, we define

(5.24) DiF = in[*_l(fn(-,t)), t e [0,1].
n=0

We have the following analogue of (5.21).

Theorem 5.4. Suppose that G € L%({2) has the chaos expansion G = Y . I,(gn), where
gn € L2(T™) and 320 ) v/nnl||gslln < 0o. Then for any F € D 5 and h € L*(T), it holds
that

‘ 1 1
(5.25) E{G < DF,h>r} = E{F(G / h(t)dM; — / DIGh(t)d[M, M]t) }
0 0
Proof. Let n'> 1 be fixed. Since g, € L2(T™), by Theorem 5.2 we have
1
In(gn)11(h) = Inta(gn ® ) + "/0 In_1(gn (-, 8))R(t)d[ M, M]s.
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For any k,m € N, we have by the Cauchy-Schwartz inequality that

1, m k
B [ | S0 nia(on() = 3 nlioaloal D) IAOIAIM, M

m 1
< > B[ Infioaloal )R, M,

n=k+1
m
< Y v/ =1Dlligallallblls = 0, as k,m— oo,
n=k+1

by assumption (note that ny/(n —1)! = v/nn!). Therefore, Sk onIi_1(gal,))A() —
D*Gh(-), as k — oo, in L!(dy). Consequently,
1 )
6 [ moaM = La) 1)
Y n=0
00 1 oo
=Y Tunlga®h)+ [ 30 nL-1(0nl ORAIM, M)
n=0 n=1

= i In+1(gn ® h) + /01 D:Gh’(t)d[Ma M]ta in LI(Q)

n=0

or equivalently,

(5.26) S Ln(g@h) =G /0 " h()AM, — /0 ' D:Gh()dIM, M. i}

n=0

Note that since the left side of (5.26) is in L%(Q2), so also is the right-side. Thus for any
F € Dy 5 C L?(R), we have

1

(5.27) F{ i Ii(g® h)} - F{G/O h(t)dM; — /01 D;Gh(t)d[M, M]t},

n=0

and the equality holds in L(Q). If we write F = Y po Ix(fx) for its chaos expansion,
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then $°5°  kk!|| fill2 < oo since F € DDy 3, therefore

{FzIn+1(gn®h } {ZIk (fx) - ZIn+1(gn®h)}
n=0
= ZE{Ik (Fi)Ik{ge-1 ® b))}
k

= Zk! < fryGk—1 @ h >k
%

0

.. 1
(5.28) = St [ <R, e > B
k
1
- /0 S B(k L1 (Fo, ), Tima(gs-) (1)
k .

= [ B pna(fit ) S o e
k -

1
= E/ D.FGh(t)dt = E{G < D;F,h >r}.
0
Taking expectations on both sides of (5.27 ), and replacing its left side by (5.28), we obtain
(5.25). The Theorem is proved. O

Corollary 5.5. Suppose that F,G € L2Q); F=%,In(fn), G= >k Ik(gx), such that

(5.29) >~ Vanl| falln < 003 S VER!|gellk < 0.
n k
Assume that h € L*(T) and E|FG fol h(t)dM;| < oo, then

1
(5.30) B{FG [ noim.} = | (FDiG+GDi P}t
0 [0,1]xQ
In particular, if M is a Brownian motion, then (5.30) becomes (5.21).

Proof. First note that if F = Y, In(fn) and (5.29) holds, then F' € Dj,2. Indeed,
for n large enough, one has nnl||foll2 < V|| falln < 1. Thus 3, nnl{|fall3 < oo and
F € D; 2. In other words, under condition (5.29), F,G € Di2.

We can now apply Theorem 5.4 twice with the positions of F and G being switched,
and add the resulting equalities together to get

E{G < DF,h > +F < DG,h >r}

(5.31) _sfara | heoans - [ [FD;G + GD; FIa()d[M, Ml ).
0 0
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Since F'G fol h(t)dM; € L*(2) by assumption, we obtain from (5.31) that
1
/ [FD}G + GD; Flh(t)d[M, M]; € L*().
0

Further, notice that D*F = D.F; D*G = D.G, a.e. dt X dP, we deduce from (5.31) that

1 1 1

B{Fc / h(t)dM;} = 2B / [FD;G + GD; FI(t)(dIM, M}, + ) }
0 2 0
- / [FD:G + GD; Flh(t)dv,
[0,1]x§2

proving the first assertion. In the case when M is a Brownian motion, we have [M, M}, =

(M,M), =t. Hence dv = dt x dP, D{F' = D.F and D;G = D;G. Consequently,

1
/ [FDXG + GD; Flh(t)dv = E{ / [FD,G + GDtF]h(t)dt}
[0,1]1x 2 0
= E{F < DG,h >1r +G < DF,h >7}.

The proof is complete. O

We remark that in Theorem 5.4 and Corollary 5.5 no anticipating integral is involved.
To conclude this section we shall present another formula that does involve the “antici-
pating integrals”. In the Brownian case, this formula is nothing but the definition of an
“adjoint relation” (see (4.3)). Our formula involves the measure d{M, M), therefore the
anticipating integral for a special class of processes involving I*’s has to be considered.

Let us consider a class of processes of the form ug = Y _o Iy (fm (- 1)), where fm, €

L2(T™*1) and the convergence of the series is in the sense of L%(dv). We say that a process

of this kind is of class £*, if -

o0

S (m+ Dl fmlZa sy < 00

m=0
Denote by Dom(6*) the set of all processes of class L*. We consider the anticipating
integral for processes in Dom(6*). First note that for each n we can find a sequence
{f&} C Smt1 such that limy_co £, = fm in L2(T™+1). Define for every pair of integers

N and k a process

Z (I t))—ZIm(fm( t)), Vie[o,1].

m=0
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Then by definition (5.20), we see that limy_ e limg—eo ulVk = u., in L?(dv). On the
other hand, for fixed N and k we have u™* € Dom(6) and 6(u™*) = SN _ 1..1(fk) by
definition (note that f%’s are symmetric), thus if u is of class £, then
N oo
im lim §(u™¥) = Jim lim S Inta(fh) =D Imia(fm),  in L2(Q).

1
N-oxk
00 F=oo m=0 m=0

We define the anticipating integral of u € L* to be

(5.32) 5 (w) =Y Imy1(fm)-

m=0
Clearly, the value of §*(u) is independent of the choice of the approximating sequence, and
it coincides with é(u) if in the expansion of u, all f,, € Sm+1. Using the notions 6* and

D*, we now give a new integration by parts formula.

Theorem 5.6. Suppose that u €Dom(6*), and G € Dy 2. Then it holds that
1

(5.33) E{6*(u)G} = E{ /0 1 u(D:G)d[M, M]t} = E{ /0 ut(D;‘G)dt}.

Consequently,

(5.34) B{6*(w)G) = /[O o DG x ),

Proof. First we note that (5.34) follows from (5.33) by the definition (5.19), there-
fore we need to show only (5.33). To begin with, let us choose for each n and m two

sequences {f%}%° . C Spi1, and {g} C Sy, such that limg_co f, = fm in L*(T™*1) and

limg—ioo 92 = gn in L*(T™). Now for given integers N, k and £ we define

N N
ulf = 3 In(FEGD); GNP =) In(gn).

m=0 n=0
It is easily seen by definitions (5.32) (for 6*), (5.24) (for D*) and (5.20) (for I;’s) that

(

N
. . Nk _ 1 * ) = . 9 .
lim lim u" = A}Enoo Z I (fm(-)) =u., in L*(dv);

N—oo k—co

lim lim §(u™*) = 6*(u), in L*(Q);
N—oo k—oo

m=0

N
im i NeE_ 5 Z * ..)) = D* in L%(v);
]}LrgoelEEoD.G A}l_r)réo =0nI _1(gn(-,"))=D*G, in L*(v);

lim lim GM* =G, in L*(Q).

\ N—oo £—00
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Since du, d)\ << dv, it follows that

lim { lim lim E{&(uN’k)GN’e}} — E{6*(u)G};

N—oo

lim { lim lim E{ /0 1uiv’k(DtGN’e)d[M,M]t}} =E{ ]0 lut(DZG)d[M,M]t};

N—o0 \k—00 £—00
i { i g £ [ o.M} = P [ iy}

Therefore it suffices to prove (5.33) for u = u™* and G = GM*. Note that in this case
§*(u) = 6(u), and D*G = D.G, so by the definition of 6(u) (4.3) we have

E{6*(w)G} = E{5(uM*)GN4} = E{ /01 uﬁv’k(DtGN’e)dt} = E{ /lutD;det}.
0

On the other hand, since all f%’s and g’’s are symmetric, we have by Lemma 5.2 that

E{ /01 u(D; G)d[M, M]t} =E{ i /01 Im(f,’%(-,t))nIn_l(gﬁ(-,t))d[M, M]t}

m,n=0
N N
= Z n(le:HgfL)m'l"l,n = Zn(n — < fE_y, 9n >n
m,n=0 n=1
N
= Y E{Ipu(fi)Ia(95)} = B{§"(w)G}.
m,n=0
Therefore (5.33) holds, proving the theorem. 0O

§6 A Class of Stochastic Differential Equations.

In this section we study a class of stochastic differential equations based on the antic-
ipating stochastic integrals discussed in the previous sections. Notice that since we have
not yet derived any path regularity for the anticipating integral, the traditional ways of
dealing with SDEs will not apply here. The method that we are going to use relies solely
on the structure of CRP of the L2-processes and the definition of anticipating integrals,
hence it will also be valid for the Brownian case. However in the Brownian case much

better results are available; see for example Buckdahn (1994).
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We consider the following linear SDE for 0 <¢ < 1:
t

¢
(6.1) X; = H; +/ a(s)Xs0M; +/ B(s)Xsds,

0 0
where H; is a square-integrable process, a and B are deterministic functions. Since we
have no knowledge of the path regularity of the anticipating integral, the equation (6.1) is
understood to hold in L?(dt x dP).

We shall make use of the following assumption on the process H:

(A1) The process H is decomposable as follows: H = G + J, where J is an adapted,
square-integrable process, and G belongs to a subspace of L?([0,1] x Q) consisting of a

finite number of chaoses. In other words, G = ZQI:I I.(gn(:,1))-
(A2) The functions o and S are bounded, measurable, and non-random.
We shall denote ||| := ||@/|oo, and similarly for 5.

Observe that by linearity of the equation, every solution of (6.1) can be written as the

sum X = X%+ X!, where X° and X! are the solutions of the following SDEs respectively:

t t
(6.2) X2 = J; +/ a(s)X2dM, +/ B(s)X%ds;
0 0
and
t t
(6.3) X1 =Gy + / o) X 26 M, + / B(s)X 1ds.
0 0

Note that by the semimartingale theory (cf. e.g., Protter (1990)), (6.2) always possesses
a unique adapted solution that is square-integrable, so we need pay attention only to
equation (6.3). To simplify the representation, let us first assume that B = 0. Namely, we

first consider the simpler form of (6.3):
¢

(64) Xt = Gt + / Oﬁ(S)Xs(SMs.
0

Assume that X is a solution of (6.4), and write X; = Yoo o In(ful(s 1)), Gt =
Z'r]:’=0 In(gn('vt))7 where fm gn € Lz(Tn+1) and fora.a. t € [0’ 1]’ fn('vt)agn('at) € Lg(Tn)’

n=1,2,---. Then it is necessary that

0 N 00
(6.5) S L(fa(1) = Y Inlgn(n D) + > Tnsa(fals )=o) ),

n=0 n=0 n=0

28

[EPRVEIP AN



by the definition of the anticipating stochastic integral. Comparing both sides of (6.5)

term by term, we see that

gn('a *7t) + f'n—-l('a *)a(*)l[o,t](*)g7 1<n< N;

(6 6) fn(',*,t): .
. fr—1(, *)a(*)l[o,t](*) ) n > N;
fo(t) = 90(2),
where, the symbol “ - ” represents n — 2 variables, while “ x ” represents one variable.

Therefore, we have reduced the problem to finding a sequence {f,} such that (6.6) is
satisfied and every term in (6.4) defined by using {f,} makes sense. Note that (6.6) is a
recursive procedure, so the sequence {f,} is uniquely determined. Since any solution to
(6.4) must satisfy (6.6), we conclude that the equation (6.4) possesses at most one solution.

It now remains to show the existence of the solution to (6.4). By the preceding
argument, we assume that the sequence {f,} is defined via (6.6). Since N > 0 is a fixed
finite integer, the values of the terms fo, f1,: -, fv Will not affect the convergence of the
sums appearing in (6.5). We shall only analyze the values of { f.}n>n+1. Let us first define

some notation. For each p > 1, let PN*? denote all permutations of {1,---,N + p}, and
(6.7) A, i={c e PV o(i) =i, i¢ {o(N+k),N+k:k=1,---,p}}.

Namely, A, consists of those permutations o that keep the indices ¢ unchanged unless

i > N + 1 or it is the image of N + k under o, for some p > k > 1. Define for each p > 1,
(6.8) By:i={o€A|o(N+1)<a(N+2)<---<a(N+p)}

Denote, for any finite set S, by |S| the cardinality of S.

Lemma 6.1. If Ay, By, p=1,2,--- are defined by (6.7) and (6.8), then it holds that

P
N +
(6.9) Mol = [TV +8),  |Bpl= ( ’ p).
k=1
Consequently, one has |Ay|/|Bp| = p!.
Proof. We proceed by induction. For p = 1, note that the typical element in A; is of

the form:

1 2 - j=1 j j+1 - N+1 -
<1 2 e j—1 N1 j41 - 4 ) I=hooiN+l
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Therefore it is easily seen that |A;| = N+1. Also, in this case, we have |B| = |A1] = N+1,
so (6.9) is proved.
Next, assume that Aj, - - -, Ax are constructed so that (6.9) holds, consider the case

when p = k + 1. Define for each j =1,---, N + k+ 1, and o € Ak, a permutation ol by

7 i=N+k+1,
(6.10) oi(i)=S N+k+1, o(i) = j;
a(i), otherwise.

then we have Ag+1 = Nk+1 .A where AJ := {07| 0 € Ax}. Note that for every j, one
j=1 k y

has |AL| = |Ax| and Al 0 A =@ for j # £, thus

N+k+1 N+k N+k+1
sl = D AL = (N +k+ 1) A = (N +k+1) H(N+J)— H (N +7),
proving the lemma. O

Our next goal is to take a closer look at the sequence {fn} obtained by solving (6.6),
so that an estimation can be made to prove the L2-convergence of the series appearing in

(6.5).

Lemma 6.2. Let {f,} be the sequence defined by (6.6). Then for any p > 1, it holds that

1
fN+p(t1)"')tN+pat) = m Z fN(to'(l)v"')ta(N-i-l))x
P

gEA,
(6.11) ot
{ 1T ettov+i)1p, ta<~+t+1>1(ta(N+i))}a(ta(N+p>)1[o,t1 (to(N+p))-
=1

Proof. We again proceed by induction. For p = 1, using Lemma 6.1 we have

fne(ty, st t) = fN(tla o inre(tne) Lo (Ene)
N+1

N T1 Z fN(tla tic1,tN41, Big1s tN,ti)a(ti)l[o,t](ti)

= m ZA fN(to'(l), . ,to’(N+1))a(ta(N+1))1[0’t](ta.(N+1))_
oEA]
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Thus (6.11) is true. Now suppose that (6.11) is true for N 4 p. We have by definition of
the symmetrization and (6.6) that

Ingp+1(ty, - tNgpt1, B)
N+p+1
(6.12) ZJ—Vﬁl— Z Fnap(te 5 b1 ENapt1s i1, 5 Iy ) () 110, (25)-
Let us define
t;, i# 4, N+p+1;
(6.13) o= tnyprt, =17
t;, it=N+p+1

This, together with the induction hypothesis, enables us to write the summands in the
right side of (6.12) as
fN+p({i’ ' tN+p Z fN 0(1)3 : '7{‘3,-(N+1))X

O'E.A
(6.14)

X H a(a(N+k))1[0’{i(N+k+1)] (o))
k=1

We show that for any o € A, it holds that
(6.15) t_f,(k) =toik), k=1 ,N+p,
where o7 is defined by (6.10). In fact, by (6.10) and (6.13) we see that for any j, we have
t; = tyi(N+p+1); and for those k such that o(k) = j we have ¥ (k) = t =tNtpt1 = taJ(k)
Finally, for those k such that o(k) # j we have ¥ (k) = balk)- Hence (6.15) is proven..

Now note that [Ap41] = (N +p+1)|Ap|, we have from (6.11), (6.12) (6.14) and (6.15)

that
Intp+1(t1, - s EN4pr1s )

1 N+p+1 1 ) ) P ] )
= — B, £ 1ro 5 7

N+p+1 ; A U;p I a(1)’ a(N+1))kI;[1a( a(N+k)) [0,t,(N+k+1)]( a(N+p))

x a(t;)10,4(t5)

N+p+1 P
A Z Z IN(toi(r)s s tos(N41)) H a(t”j(N‘*'k))l[o’tai(N+k+1)](taj(N'*'p))
I p+1| _’] 1 _7 J k=1
€A}

X a(taj (N+p+1))1[0,t](tUj(N+p+1))

1 P
B | Apt1] Z In (o) tovn) H (o (N-+£))110,to s 14n)) (B (N+p))
P edp k=1

X a(ta(N+p+1))1[0,t](ta(N+p+1))’
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since Apy1 = Uj-v:*ipH.A{,. Therefore (6.11) holds for N + p + 1 and the proof is now

complete. =

In order to prove the L?-convergence of the series X; = S In(fn(:yt)), we first
evaluate the L2 norms of the f,’s on the set X,. Again, we consider only the terms fy,
n > N. Suppose that (t1,+--,tN4+p) € EN4p- Since t; <2 <o+ < tN+p, We have by

definition of the set B, and some simple computations that

1 p
Fnap(ts o ingp) = T > fN(ta(l)""’tff(N+1)){ Ha(ta(N+i))}1[o,t](ta(N+p>)-

Pl 5B, i=1
Define, for each p > 1 and o € By,

P
fRep=In(toqys - ta(N+1)){ I1 a(ta(N+i))}1[0,t](ta(N+p))'

=1

Then under condition (A2) we have

7R ol E2(eap) = / | plPdts - - dtnip
EN+p

(6.16) < el il / dig(N+1) "+ Blo(N+p)
to(N+1) < <o (N4p) <t

_ Nl SR - 7
= o :

Therefore by (6.15) we have
1 fwap( Dlp = OV +p>'qu+p<- DlEs )
<N+ 7 2 Z 1% pllzo@nen )
(6.17) B,

< (N +p)!(l—‘/‘i’)—l)zllﬁ\rl,pniﬁ'(znﬂ))
N +p)!
< %’inan%nmn% v

Now let us define, for each n € N, My, := Y ;o ||Ik(fk(-,-))||%2(TxQ); C = ||fN||%2(TN);

and note that
(Nﬁp) =(1+ )(1+1-3——) -(1+ N)N! < (1+ N)°NY,
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we deduce that

1 .
B[ xpa= [ E||IN+p(fN+p( syt + [ lefk<fk<-,t>>|1%z<mdt
- [ Z(N+p)'||fN+p< Ol + M

2 1
< CZ ((N'ﬁ)’;)) v ||21f'/0 tPdt + My

I+N)* o
<SC(NY? Y  —— el + My
pz;; (p+1)!

< O(N1)2e@H+NPllel® 4 My < oo.

Therefore, X € L?(dt x dP). It remains to check that for each ¢ € [0,1] the process
X.a(-)1p,4(-) € Dom(6). By Lemma 4.6, it suffices to show that

(6.18) > g1 (Fals ¥)a(¥) |72y < oo

Since for each p > 1 we have by (6.17) that

1 IN+p+1(Fnap (s ¥ ()22

<(N+p+1) / 1N p (s 9)llZr4p0(s)ds
i |
(N + p)!
(P!)P’ 0
(N+p+ 1N +p)! P
=€ (p)%(p +1)! a2

Now a similar estimation as before shows that

1
< C(N +p+1)lflaf2+D{ spds}

> Mnsr(al W)t DlBagay = S Mgt (s (o a0z + Mivaa

< O(N + 1)[Jaf2(N1)2ellelPN+D* 4 pry ) < o0,

Thus (6.18) bolds, and we have proved the following theorem:
Theorem 6.3. Suppose that (Al) and (A2) hold. Then the SDE (6.4) has a unique
solution Xy = 300 o I, (fn(-, 1)), where {fn}32, satisfies the recursive equations (6.6).
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We now consider the general case when 8 # 0. Since the argument is virtually the
same, we give only an outline. Assume (A1) and (A2). It is easy to check that in this case

the recursive equation (6.6) should be replaced by

(s 4, ) + Fao1( ¥)a(*)1jo,q(x) +/ fn(sy%,8)B(s)ds n < N;
fn(',*,t) = : °
(6.19) Fai G + [ falet,)A(e)ds n> N

hw=%@+/ﬁmm@w

The integral equation: z(t) = n(t) + fo z(s)B(s)ds has the unique solution
oft) = n®) [ & PO psyn(e)as
0

Therefore, if we denote y(s,t) =€ /. ﬂ(u)duﬁ(s), and

hCont) = { gn( %) + T Co0)aMog(®)  n<

A
=

fr—-1( >x<)cv(>|<)1[0’t](>|<)s n > N,
Then from (6.19) we have

folt) = golt) - /0 (5, £)g0(s)ds
f'n('7 *at) = hn('a *at) - \/(; 7(5,t)hn(‘, *, s)ds.

Again we need only content ourselves to the terms when n > N. Denoting m(s,t) :=
a(s) (1 — 5 1(u,t du), we show by induction that the sequence {f,} defined by (6.19)
satisfies, for any p > 1,

1
fN+p(t1""’tN+P’t) = m Z fN(tU(l)""ata(N+1))x

Pl ocAa,
(6.20) .
X { 11 m(ta(N+i)ata(N+i+1))1[0,t,(N+i+1)](ta(N+i))}m(ta(N+p)’t)l[O,t](ta(N+p))'
=1

Indeed, for p = 1, using Lemma 6.1 and the similar computation in Lemma 6.2, we have

fN+1(t1, ooy ENg, T)
N+1

N+ 1 Z N ( b )a(ti)l[o,tl(ti){l - /Ot'Y(Sat)l[O,s](ti)ds}

|A| z; IN(toq), s tovar)M(tov1), D) 10,0t (N11))
geE
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where fn (tAtr:-1 = fn(ty, -+ tic1, ENg1, Eig1, - NS T :), Therefore (6.20) holds for p =

1. Now suppose that (6.20) is true for N + p. We have

Fnap+1(tes ey tNp1,t)
N+p+1

1

“Nipt1 Z fN+p(t1,"'atj—latN+P+1,t_’i+1)'."atN+p,tj)m(tj,t)l[o’t](tj)
i=1

1 N+p+1 .
—_ R
“Nipti 2 |A| > INGwy e Toqan)

j=1 P oEA,

x Hm(ta(N+k)’ a(N+k+1)) 05 (s +1)](ta(N+k;)) m(tO'N+p+1’t)1[0 t](tN+p+1)}
k=1

Z fN(ta(1)7 ' ata'(N+1))><

lAp+1| 0EAp41
p+1

X H Mo (N-4+k) Lo (N-+5+1)) L0 o vapr2) o (N+p+D) )
k=1

where to(N4p+2) =1, proving (6.20).
Note that the boundedness of o and 3 implies that m is also bounded, so by replacing
llalloo by |lmllco in the estimations in the case 8 = 0, we obtain the main result of this

section.

Theorem 6.4. Suppose that (Al) and (A2) hold. Then the SDE (6.3) has a unique
solution X; = 320 o In(fa(",t)), where {fn}3%, satisfies the recursive equations (6.19).

We can combine Theorem 6.4 with the semimartingale theory to obtain

Theorem 6.5. Suppose that (A1) and (A2) hold. Then equatioﬁ (6.1) has a solution and
it is unique in L?(dt x dP).

Proof. We only show the uniqueness. Let X 0 be the unique semimartingale solution

of (6.2); and let Y be another solution of (6.1). Let
L(Z):= /0 t a(s)Z:6M; + /0 t B(s)Z.ds, VZ € L*(dt x dP).
Thus we have Y = H + L(Y), and
Y—X'=H4+LY)- (J+L(X))=H-J+LY -X° =G+ LY - XO).
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and by Theorem 6.4 we have Y — X° = X, the unique solution of (6.3). So Y = X%+ X1

in L?(dt x dP) and we have uniqueness. O
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