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Abstract

In relation with Monte-Carlo methods to solve some integro-differential equations, we
study the approximation problem of Eg(Xr) by Eg(X2%), where (X;,0 < t < T) is the
solution of a stochastic differential equation governed by a Lévy process (Z;), (XP) is
defined by the Euler discretization scheme with step % With appropriate assumptions on
9(*), we show that the error Eg(Xr)— Eg(X%) can be expanded in powers of 1 if the Lévy
measure of Z has finite moments of order high enough. Otherwise the rate of convergence
is slower and its speed depends on the behavior of the tails of the Lévy measure.

Introduction

We consider the following stochastic differential equation:

X, = Xo+ /0 ‘f(x,)dz, (1)

where Xy is an R%valued random variable, f(-) is a d X r-matrix valued function of R¢, and
(Z;) is an r-dimensional Lévy process, null at time 0. For background on Lévy processes and
stochastic differential equations governed by general semimartingales, we refer to Protter [14].
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In this paper, we consider the problem of computing Eg(X7) for a given function g(-) and a
fixed non random time 7.

We have two main motivations. The first one is the numerical solution by Monte-Carlo
methods of integro-differential equations of the type

Te(ta) = Au(t,) + [ ult,z +2) ~u(t,0)- < 2 Valt,0) > Lo} M@ dy)  (2)

where A is an elliptic operator with Lipschitz coefficients and the measure M(z,-) is defined
as follows: let v be a measure on R? — {0} such that

/Rd(” z |12 Al)u(dz) < oo

and let f(-) be a d x r-matrix valued Lipschitz function defined in R?; then, for any Borel set
B C R? whose closure does not contain 0, set

M(z,B) :=v{z; < f(z),z >€ B} .

Our second motivation is the computation of the expectation of functionals of solutions
of SDE’s arising from probabilistic models, for example the calculation of the energy of the
response of a stochastic dynamical system: in the latter case, obviously the Markovian structure
of (X;) is important to develop simple algorithms of simulation; a result due to Jacod and
Protter [9] states that, under an appropriate condition on f(-), the solution of a stochastic
differential equation of type (1) is a strong Markov process if and only if the driving noise (Z;)
is a Lévy process; this explains our focus on this case.

When Z is a Brownian motion Talay and Tubaro [20] have shown that when f(-) is smooth
and if (X7) is the process corresponding to the Euler scheme with step T/n (see below for a
definition), then for a smooth function g(-) with polynomial growth, the error Eg(Xr)—Eg(X%)
can be expanded with respect to n:

Eg(Xr) — Eg(X2) = % +0 (%) .

Using the techniques of stochastic calculus of variation, Bally and Talay [1] have shown that the
result also holds for any measurable and bounded function g(-) when the infinitesimal generator
of (X,) satisfies a “uniform hypoellipticity” condition.

Here we follow the strategy of [20]: we suppose that g(-) has derivatives up to order 4 but
we make no assumption on the generator of (X;). The proof used for the Brownian case does
not carry through and needs to be adapted. The changes in approach are commented on in
detail in Subsection 4.3. The nature of the results moreover is different. When the jumps of Z
are bounded the order of convergence O (%) is preserved. When the jumps are unbounded the
order of convergence depends on the tail of the Lévy measure of Z. However if the jumps are
well behaved, as reflected by the Lévy measure having its first several moments finite, we still
have a rate 1/n of convergence.



The discretization of Brownian driven SDE’s has been now analysed in many papers for
various convergence criteria: see Talay [19] or Kloeden and Platen [11] for reviews. The case
of SDE’s driven by discontinuous semimartingales has barely been investigated. Kurtz and
Protter [13] have studied the convergence in law of the normalized error for the path by path
Euler scheme, and L? estimates of the Euler scheme error are given by Kohatsu—Higa and
Protter [12].

An important point is the numerical efficiency of the Euler scheme compared to other
approximation methods of (X;). In particular the Euler scheme supposes that one can simulate
the increments of the Lévy process Z. Actually, in practical situations the law of Z; — Z, may
be explicitly known: for example, Stuck and Kleiner [17] have proposed a model for telephone
noise that could be interpreted as a symmetric stable Lévy process of index a (they found
a ~ 1.95). Section 3 presents algorithmic procedures for the simulation of the increments of
a class of Lévy processes which are likely to include useful models arising from engineering
applications.

In a forthcoming paper we will discuss three important problems related to the present
article. First, for more complex situations than those investigated here, it is sometimes possible
to approximate the law of Z; — Z, itself, which is desirable in view of simulation problems;
we describe the effect of this additional approximation on the convergence rate of the Euler
scheme. Second, we will study the convergence rate of another approximation method of (X;),
based upon the approximation of Z by a compound Poisson process: this approach allows the
consideration of all the cases where one is given the Lévy measure of Z, which probably is more
common than those for which one is given the law of the increments of Z (which generally
cannot be easily derived from the Lévy measure). We also compare the numerical efficiency
of this procedure to the Euler scheme when both can be used. It is worthwhile nevertheless
to announce here that frequently the Euler scheme is the more efficient algorithm (in terms of
the number of computations to run to ensure a given accuracy). Finally, we will extend the
latter numerical procedure and its error analysis to the case of SDE’s driven by diffusions and
Poisson random measures, which thus includes Lévy processes.

We make a rather detailed presentation of results which are well known by specialists of
Lévy processes but are perhaps nevertheless not well known in general.

Notation.

We denote by AZ, the jump of (Z;) at time s: AZ, =Z, — Z,_.
The Lévy decomposition of Z is:

Zy=ocW;+ Bt + A :B(Nt(w, dm) - tl/(dl‘)) + Z AZ, II'[[IAZsllzl] . (3)

zfj<1 0<s<t

For a function % defined on [0,T] x R?, 83 will denote the derivative with respect to the

time variable, and 8;¢» will denote the derivative with respect to the i** space coordinate. In
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the same way, Gyt will denote the second derivative of 9 with respect to the time variable,
and for a multiindex I 071 denotes the derivative with respect to space coordinates.

2 Rate of convergence of the Euler scheme

Let X be the solution of (1) for a given and fixed Lévy process Z.

In general, the law of the random variable X7 is unknown. We propose to discretize (1) in
time. Let £ be the discretization step of the time interval [0, 7] and let (X[) be the piecewise
constant process defined by X2 = X, and

X(P+1)T/n - pT/'n + f( pT/n)(Z(P+1)T/" - pT/n) (4)

From a pratical point of view, this scheme requires that the law of the stationary and indepen-
dent increments Z(,11)r/n — Zpr/n can be simulated on a computer. For considerations on this
point, see Section 3.

We now state our rate of convergence results. The case where Z has bounded jumps, or
even simply where the Lévy measure has all its moments up to £ for some k large enough,
allows us to relax the assumptions on f(-) and g(-), and we obtain a faster rate.

For K >0, m > 0 and p € IN — {0}, set
pam) = 1+ IBIP + o>+ [ JlPw(d2)
gl + ol + ([ Nelivt@n)” + [ alotaz) (5)
where v is the Lévy measure as in (3), and
MK p(m) = exp (Kpp(m)) - (6)

For m > 0 we define

h(m) := v({z; ||z]| = m}) . (7)
Theorem 2.1 Suppose:

(H1) the function f(-) is of class C*; f(-) and all derivatives up to order 4 are bounded;
(H2) the function g(-) is of class C*; g(-) and all derivatives up to order 4 are bounded;
(H3) X, € LY(Q).



Then there ezists a strictly increasing function K(-) depending only on d, r and the L*™-norm
of the partial derivatives of f(+) and g(-) up to order 4 such that, for any discretization step of
type %, for any integer m,

|Bo(Xz) — Bo(X2)] < Al a1 — exp(—h(m)7)) + B0 gq)

Thus, the convergence rate is governed by the rate of increase to infinity of the functions
h(-) and ng(7)s(-). The proof is given in Section 4.

Theorem 2.1 is probably far from being optimal. We include it in order to provide at least
some rate estimates for all Lévy processes. Our main result is Theorem 2.2.

Theorem 2.2 Suppose:

(H1’) the function f(-) is of class C*; all derivatives up to order 4 of f(-) are bounded;

(H2?) the function g(-) is of class C* and moreover [0;g(z)| = O(||z||™') for |I| = 4 and some
M'>2;

(H3%) fizpo1 llzll"v(dz) < 0o for 2 <y < M™ := max(2M',8) and X, € LM™(Q).
Then there exists an increasing function K(-) such that, for alln € IN — {0},

| Bo(Xr) - Bg(Xg)| < D) ()

Suppose now:

(H1”) the function f(-) is of class C®; all derivatives up to order 8 of f(-) are bounded;

(H2”) the function g(-) is of class C® and moreover |0;g(z)| = O(||z||™") for |I| = 8 and some
M > 2;

(H3”) Sjz>1 l|lz|["v(dz) < 00 for 2 <y < M™ := 2max(2M",16) and X, € LM (Q).
Then there exists a function C(-) and an increasing function K(-) such that, for any discretiza-
tion step of type %, one has

C(T)

Eg(Xr) — Eg(X7) = —— +8g (10)

and sup, n%|RE| < nic(r),mm (00).



The proofs are given in Section 5.

The functions C(-) and K(-) depend on g¢(-), f(-) and moments of Xy. They can be described
(we do this in the proofs of the theorems in Section 5), in terms of the solution of a Cauchy
problem related to the infinitesimal generator of (X;) and the derivatives of this solution.

We remark that if the first 4 (resp. 8) derivatives of g(-) are bounded, then M’ = M" = 0.
Also, if the Lévy process Z has bounded jumps and X is (for example) constant then (H3’)
and (H3”) are automatically satisfied.

The main interest of establishing the expansion in the second half of Theorem 2.2 (compared
with just an upper bound for the error) is to be able to apply the Romberg extrapolation
technique:

Corollary 2.3 Suppose (H1”), (H2”) and (H3”). Let X™? be the Euler scheme with step size
n/2. Then
K(T)

| Eg(Xr) — {2B9(X7”) - Eg(XP)}| < —3

The result is an immediate consequence of (10). The numerical cost of the Romberg procedure
is much smaller than the cost corresponding to schemes of order n=2. See [20] for a discussion
and illustrative numerical examples for the case Z is a Brownian motion.

If f(-) and g(-) are smooth enough and v has moments of all orders larger than 2, the
arguments used in the proof can also be used to show that, for any integer & > 0, there exists
constants (4, ..., Cryq such that

Ci1 G Ck

Eg(Xr) — Eg(X2) = +ﬁ+...+F+R%

n
and sup,, n**!|R%| < Chqa.

Finally, we underline that no ellipticity condition is required on the infinitesimal generator
of X.

Remark 2.4 Theorems 2.1 and 2.2 are stated for a vector 7 = (Z*,...,Z") of driving semi-
martingales where Z is a Lévy process; however they also remain true if the driving semimartin-
gales are strong Markov processes of a certain type. Indeed, Cinlar and Jacod [6] have shown
that up to a random time change every semimartingale Hunt process can be represented as the
solution of a stochastic differential equation driven by a Wiener process, Lebesque measure,
and a compensated Poisson random measure (see Theorem 3.35, p. 207). Our situation is
more restrictive since we use Lévy processes, themselves semimartingales, rather than random
measures. The difference is essentially this: the coefficient for the random measure term is of
the form k(zx, z); if k(z,z) = f(z)h(z) (i-e., if it factors), then the random measure term be-
comes equivalent to considering Lévy process differentials. We conclude then that a large class
of semimartingale Hunt processes (essentially quasi left continuous strong Markov processes



with technical regularity conditions) can be represented as solutions of SDE’s driven by Lévy
processes. Hence if Z is such a Hunt process we can write

1
Zi=Zo+ [ 9(2,-)dY,

where Y is a (vector) Lévy process and equation (1) can be rewritten

Xo=Xo+ [ (X, )g(Z,)d,

and by passing to a larger system we obtain
t .
.Xt = XO +/0 f(-Xs—)dY;
with a new coefficient f (-).

Example 2.5 Let Z be a real valued Lévy process with no Brownian part such that its Lévy
measure v has a finite second moment. Then FEZ; and E(Zt)2 are finite. Set Z, := Z, — EZ,,
f(z) =z and g(z) = 22. An easy calculation shows that

1
E(X:)? = / 2?u(dz) E / E(X,)%ds, 0<t<T,
0

so that

E(X7)* = exp (/ :n21/(d:z:)T> :

Similarly, one has

E(X2)? = (1 + %/m%(dm))

Thus, the rate of convergence is % We conclude that Theorem 2.2 is optimal with respect to the
rate of convergence, even with no Brownian component. One cannot a priori hope this ezample
is typical with Lévy processes with finite second moments, since it is the linear (or exponential)
case, and thus the derivatives of E.g(X:) are zero for order three or higher: indeed, in the proof
of Theorem 2.2 one can use this fact to eliminate several terms that effectively slow the rate.

Example 2.6 Let Z be a Lévy process which is a compound Poisson process with Lévy measure

dx

(Thus v does not have a finite 8 moment and one cannot apply Theorem 2.2). Theorem 2.1
can still be used however and we have pg(m) is of order log(m) as m tends to infinity. Also
h(m) is of order ;nl—,, Therefore Theorem 2.1 gives us a rate of convergence

mX(T) 1

n m8



We are free to choose m as a function of n, so let m = n?. The optimal choice of v is m

and we obtain a rate of convergence of n~8CTED) which may be only slightly worse than %
Note however that if v were of the form

1
v(dz) = ILR+(ac)1 +$8d:t: )

which of course is farther away from having 8§ moments, analogous calculations yield a rate of

convergence l-og(lT)A, for some v > 0.

3 A Discussion on Simulation

If one considers a stochastic differential equation of the type
t 14
X, = Xo + / o(X,)dW, + /0 b(X,)ds

where (W,) is a standard Wiener process, then to implement methods of the type considered
here (using the Euler scheme) one needs to be able to simulate the increments of the Wiener
process Wx11y7/n — Wir/n. Since the Wiener process has independent increments, this amounts
to having to simulate a (finite) i.i.d. sequence of normal random variables, for which efficient
methods are well known.

In contrast, simulation problems for equations of type (1) can be formidable. It is perhaps
first appropriate to discuss a little what a Lévy processis. By the independence and stationarity
of the increments, we can write

n

7y =Y (Zgs1y/n — Zija)
k=1

and thus Z; is the sum of n i.i.d. random variables for any n. Hence Z; is infinitely divis-
ible (indeed, Z; is infinitely divisible for all ¢ > 0). Thus “knowing” Lévy processes can be
equated with “knowing” infinitely divisible distributions. Many familiar classsical distributions -
are infinitely divisible such as the Normal, Gamma, Chi-squared, Cauchy, Laplace, Negative Bi-
nomial, Pareto, Logarithmic, Logistic, Compound Geometric, Student, Fisher, and Log-normal
(that the last three are infinitely divisible is non trivial; see e.g. Steutel [16]). Goldie’s theo-
rem [8] allows one to generate such at will: the product UV of random variables is infinitely
divisible if U is arbitrary but nonnegative, V is exponential, and U and V are independent.

From our standpoint, however, it is perhaps more appropriate to deal with Fourier trans-
forms. Indeed, using the Lévy-Khintchine formula (see, e.g., Protter [14]), one can imagine
a description of the process (Z;) being given in applications by a description of the diffusive
constant o, a description of the drift constant 3 and a description of the behavior of the jumps
(remember (3)). Since the Brownian component (W;) and the jumps of the Lévy process Z are
independent, we will treat here only the simulation of the jumps. Mathematically speaking,
being given a description of the jumps is tantamount to being given the Lévy measure.
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3.1 A finite Lévy measure v.
The following is well known and elementary but we include a proof for the sake of completeness.

Theorem 3.1 Assume (Z;) is a Lévy process with no Brownian term and no drift term and a
finite Lévy measure v. Let A := v(R"). Then, (Z;) is a compound Poisson process with jump
arrival rate A and its jumps have distribution %u.

Proof. Due to the independence and stationarity of the increments, the Lévy-Khintchine for-

mula uniquely determines the distribution of the entire process (Z;). We have

E [e'i<'u.,Zt>] — e—t¢(u) ,
where, for some a € R,

( ) - A ”>1( — ei<u,z>)y(d$) + (1 — gi<ue> +i<u,z >)V(d$) ti<au> .

ll=l|<1

Let (Ny) be Poisson with arrival rate A, and let T; (j € IN) be its arrival times. Let U; be an
iid. sequence with £(U;) = u(dzr) = +v(dz), and let

= Z Uj D>y -

7=1
Then
E [eiqu*] = ZE lezp(i < u, Z; >)|N, = k] P(N; = k)

- ZE [exp('i<u,Uj >) P(N; = k)

j=1

= exp( t/ z<“’“>)1/(d:z:)> ,

and the result follows. B

Thus if v is a finite measure, we need only to simulate the increments of compound Poisson
processes, and this too is well understood: the problem is reduced to the simulation of ran-
dom variables having law %1/: for example, one can use a rejection method, see Bouleau and
Lépingle [5] or Devroye [7].

3.2 A Lévy measure with a countable number of point masses.

Here we assume the Lévy measure is of the form

v(dz) = 7(dz) + ki—o:l ageg, (dz) | (11)



where €g, (dz) denotes the point mass at G € R of size 1; 7(dz) is a finite measure on R not
including any point masses at the {8;}r<1, and also we assume

S B < oo (12)

k=1

Note that without loss of generality we can assume G € [—6,4], all k, for some § > 0,
since otherwise we can put the jumps into 7(dz). With this assumption the hypothesis (12) is
automatically satisfied (and hence redundant) since all Lévy measures v satisfy

/R (2 A 1)v(dz) < oo

Theorem 3.2 Suppose (11)and (12) with T = 0. Let (NF) be independent Poisson processes
with parameters ay. Then

Mtv = Z ,Bk(Ntk - akt)
k=1

15 a Lévy process with Lévy measure v.

Proof. Let
Mtn = Zﬁk(Ntk - Otkt) .
k=1

Then (M}) is a square integrable martingale, and
E[(M)?) = Zﬁgakt -
k=1

Then M := lim, M™ exists as a limit in L?(2), and by Doob’s martingale quadratic inequality
lim, M® = M in L%(Q), uniformly in ¢ on compacts; moreover M is also a martingale and a
Lévy process. Finally note that

E [eith] — h%n E [ eiuMi"]
= lmE [eiu S hos ﬂk(Nf—akt)]
= lim f[ E [eiuﬁk(N{‘—akt)]
" k=1

= lim ﬁ e~ (@)
" k=1

where

or(u) := /(ei“" — 1 —iuz)ageg, (dz) . N
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Corollary 3.3 Suppose (11) and (12) and set

A= /’r(dm) .
Then the process (Z;) has the form
4y =Hy+ Jy

where (H,) is a compound Poisson process with jumps having law $7(dz) and arrival intensity
A, and where (J;) is independent of (H;) and is of the form

o0
Jt = Zﬁk(Ntk - Olkt)
k=1
for (N¥) independent Poisson processes of intensities ay,.

Proof. This is simply a combination of Theorems 3.1 and 3.2. R

The simulation problems here begin to get a little complicated. Clearly one will have to
truncate the infinite series expression for J;. We hope to address these issues in future work.

3.3 Symmetric Stable Processes.

Recall that a real valued Lévy process (Z;) is called stable if for every ¢ > 0 there exists a > 0
and b € R such that the process (cZ;) has the same law as the process (Z,; + bt). If one takes
b = 0 then (Z;) is strictly stable. It follows from the Lévy-Khintchine formula that if (Z;) is
stable then a = ¢*, for some a, 0 < a < 2. The constant o thus determines the process and it
is called the order of the process. In this case the Lévy measure takes the form

v(dz) = (mq Lyeo + mo ]].a,>0)|:z:|_(1+a)dm

for 0 < @ <2, my >0, mg > 0. If m; = my then (Z,) is called a symmetric stable process.

If 0 < a < 1, then the densities of some stable random variables are known “explicitly”.
Indeed, let p(-,a) denote the density on [0,400) of a stable random variable with Laplaee
transform exp(—s®), for s > 0. The corresponding Lévy processes are known as stable subor-
dinators, and they have non-decreasing sample paths. Note that if U;,...,U, are i.i.d. random
variables with density p(-, a) having Laplace transform exp(—s®), then n=%/ 71 Uj also has
density p(-, @), whence p(-, a) is the density of a stable law of index a (cf, e.g., p.110 in Revuz
& Yor [15]). In this case for z > 0, p(z, a) is given by (see Kanter [10]):

e =L () ) [ e (- ()7 a)as s

o) = (M) i (sm((l - a)z)) | 14)

sin(z) sin(az)

where
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Theorem 3.4 Let (Z;) be a vector valued symmetric strictly stable process of indezx a,
0 < a<?2, and let ¥ be a symmetric positive matriz such that

E [ei<'u.,Zt>] — g i<Tuu>*

Then
Law(Z; — Zs) = Law ((t — s)l/(za)Vl/zG)

where Law(G) = N(0,X), V is independent of G and

where U is uniform on [0,7]; L is ezponential of parameter 1; U and L are independent; the
function a(-) is given in (14).

Proof. It is well known that (Z;) has the representation

(Z) = (Wy,) ,

where Y is a stable subordinator of index §, and (W;) is an independent standard Wiener

process (see, e.g., page 111 in [15]). As Herman Rubin observed (see Corollary 4.1 of [10],
p.703), the function p(-, @) of (13) is the density of (a(U)/L)~*/* where a(-) is given in (14);
U is uniform on [0, 7]; L is exponential of parameter 1; U and L are independent. Therefore

Law(vy) = Law ((a(U)/L)F)
and by scaling we have
Law(Yy) = Law ((t — s)™/*V,_y) = Law ((t — s) (¥, - V) .
Since

Low(Z; — Z,) = Law(Wy, — Wy,)

we are done. N

Note that Theorem 3.4 implies that in order to simulate the increments of a strictly stable
symmetric process of index «, it is enough to simulate three independent random variables: a
Gaussian, an exponential and a uniform.

12



3.4 The case v(R) = oc.

We have already treated two cases where v(R) = oo: first, the case where the infinite mass
comes only from the contribution of point masses (subsection 3.2); and second, the case of
symmetric stable processes. In certain cases one knows what process corresponds to an infinite
Lévy measure, and also one knows how to simulate the increments of such a process. Such
examples are rare! The most well known is the Gamma process: a Lévy process (Z;) is called

a Gamma process if
Law(Z;) =T'(1,¢), VE> 0.

That is, the law of Z; has density

Its characteristic function is 1
E e‘i"LZt —
[ ] (1 — tu)t

which is clearly infinitely divisible since

1 1 "
= >1.
=iy ((1 —z'u)t/n) vzl

One can then calculate the Lévy measure to be

1
v(dz) = —e® Lgsodz .
z
Thus reasoning backwards, if one knows
1 _
v(dz) = —e® Lysodz
x

one can simulate the increments of (Z;) by simulating gamma random variables. For such
random variables many techniques are known. See, for example, p. 379 in Bouleau [4]. -

If one is not so lucky as to be given v corrésponding to a known (and nice) process, various
other techniques are possible. We plan to present these in subsequent work.

4 Proof of Theorem 2.1

4.1 Preliminary remarks.

In order to avoid having to treat the case where Z reduces to being continuous (which was the
case studied in [20]), from now on we suppose:

13



(HO) the discontinuous part of Z is not the null process.

A naive copy of the arguments in [20] would involve estimates on the moments of the
increments of Z which were they to hold, would imply by Kolmogorov’s lemma that Z had
continuous paths. Since we are assuming Z has jumps, such estimates do not exist.

We introduce an intermediate process Z™ defined by

Zln = Zt - Z AZS ILHAZS||>m .

0<s<t

Note that Z™ is a Lévy process (see Theorem 36 of Chapter 1 in Protter [14] e.g.), therefore
(see Chapter 6 in [14] e.g.) the process (X;*) which is a solution to
dxXp = f(X)dzy
is also a Markov process. Applying the Euler scheme to (X;™), we define a discrete time process
(XxX7").
Decompose the global discretization error into three terms:
|Eg(X7) - Eg(X7)| < |Eg(Xr)— Eg(X7)]
+HEg(X7) — BEg(Xr™)| + |Eg(Xp™) — Eg(X7)|
= Al + A2 + A3 . (15)

Before bounding from above the A;’s, we need some intermediate results.

We start by a technical lemma. It appears in a more general setting in Bichteler and
Jacod [3] with a proof for @ = 2, i an integer, and a slightly different result is proven in
Bichteler [2] (p. 536). We give a detailed proof here for the sake of completeness.

Lemma 4.1 Let Q be a real number with Q > 2. Let L(Q) be the class of Lévy processes L
such that Ly = 0 and the Lévy measures vy, have moments of order q with 2 < q < Q. Let
H(Q) be the class of predictable processes H such that

T
E [/0 ||H3||stl <oo. (16)
For L € L(Q) we rewrite (3) as follows:
Li=0c W+ bt + <1 m(Nt(w, dIB) - tVL(d.'I))) -+ Z AL, ]]‘[HALsHZl] . (17)
z 0<s<t

There ezists an increasing function Kq(-) depending on the dimension of L such that, for
any L € £(Q), for any H € H(Q),

’

< Ko() 160 19+ 1170 10+ ([ NelPruae)) "+ [ letuntan)] [ mengas as)

1
FE [ sup / HJdL,
0 0

<t<T

14



Proof. We give the case for L one dimensional.

It is clear that without loss of generality we can suppose ¢ = 0 (for Brownian stochastic
integrals the inequality (18) is classical). Since vz, has a second moment we know that E|L;|? <
co. Let G be such that EL, := @rt. Then (L; — Bit) is a martingale. For L, = Bt the
inequality (18) obviously holds. Thus we consider the case B, = 0, that is, L is a martingale.

In the computations below, the constants C, and the functions K,(-) vary from line to line.

Choose the rational number % such that 2% < p < 281, Applying Burkholder’s inequality

for p > 2 we have
p/2
E (19)

t r t
/ H.dL, §(4p)pE' / \H,[2d[L, L],
0 0

Set

ap = E[L,L]l =F {Z(AL3)2} = /|£B|2VL(d.'L') <oo.

3<1

Since [L, L] is also a Lévy process, we have that [L, L]; —at is also a martingale. Therefore (19)
becomes:

p/2

P t »/2 t
E <GF I/ |H,Pd([L, L], — azs)|  + Kp(t)od°E |/0 |5, [*ds (20)
0

t
/ H,dL,
0

We apply Burkholder’s inequality again to the first term on the right side of (20) to obtain:

t
E ‘/ H,dL,
0

P p/4 p/2 t
< CE {Z|HSAL3|4} + K,(t) (/|$|2VL(dm)) E/O |H,[Pds .

s<t

We continue recursively to get

» p/2k+1
< CPE{ZIHSALJWI}

3<t

t
E ‘ / H,dL,
0

+K,(1) (z: [ / |m|2iVL(dm)]p2_i) /0 *|H,JPds . (21)

Next we use the fact that, for any sequence a such that |la||;. is finite, ||a]|z < ||| for
1<¢<2 As1 < & <2 we get:

p/2++? 2 IaF
(gmanr) - {gmarry}
<t <t
< Y |H,AL,P
<t

whence

p/2Ft
E {Z |H3AL,|2H1} <EY |HAL,P .

<t <t

15



Note that 3°,.,|AL,[P is an increasing, adapted, cadlag process, and its compensator is
t [ |z|Pvi(dz), which is finite by hypothesis. Since |H|? is a predictable process,

(/Ot \H,Pd (; AL s [ |w|pVL(da:)>)

is a martingale with zero expectation. Therefore (21) yields:

" < [cp [ lelrus(da) + Kyft) > (f |:1:|2i7/[,(dm))p2_il E | |, Pds .

t
E l / H,dL,
0 i=1

It remains to show that, for any 1 < <k,

( [1e 2iyL(dm))p2_i < ( / |a:|2VL(d:c)>p/2 + [ laPvu(do)

Let Az := [|z]?vz(dzx), so that

1
pr(dz) = )\—|m|2VL(de)
L
is a probability measure. Denote 2¢ by q. One has to show:

p/q
2/ (/ |z|q_2ﬂL(d9’)) <40 / |z[P~2pz(d) . (22)

If
p/q
(/|w|q'2,u,;(dw)) < /\1131/2—p/q

the inequality (22) is obvious. On the other hand, if

AL < (/ ||%72 g (diz)

then it is sufficient to prove that

r/q
350 ([ feltus(de))"" < [ lair=2pun(de)

But the bound on Az and Jensen’s inequality give the result. W

>2/ {¢—2)

The preceding lemma leads to bounds for the derivatives of the flows z — X™(z,t,w).

Lemma 4.2 We assume (H1).

For any multiple index I denote by 01.X;"(-,w) the derivative of order I of the flow
z — X*(z,w). Then, for any integer p, there exists a strictly increasing function Kp(-) such
that for any multi-index I with length |I| < 4,

E[@IXm(:I:,t,w)IZP < K, (T),2p11] (m) . (23)

16



Proof. Let v™ be the Lévy measure of the process Z™.

Let DX™ denote the Jacobian matrix of the stochastic flow X*(,w). It solves (see Theo-
rems 39 and 40 in Chapter 5 of Protter [14], e.g.):

L
DXP=I1d+Y /0 Vfo(X™)DX™ d(Z7)= .
a=1

Lemma 4.1 shows that there exists an increasing function K,(-) depending only on d, r, p
and the L*°-norm of the first derivatives of f(-) such that

E|(DX? < 1+ Ky (T) [I18I* + |lol™
+([1apam@)" + [lelpram(z)] [ BIDXeds

Gronwall’s lemma, leads to

E [sup |(sz”>7;|2?] < 1, m2p(m)

0<s<t

(with a possible change of the function K(-)).

We then write the stochastic differential system satisfied by the flow X*(-,w) and its deriva-
tives up to order 2. The preceding estimate and a new application of Gronwall’s lemma provide
the estimate for |I| = 2.

The conclusion is obtained by successive differentiations of the flow. N

Corollary 4.3 Assume (H1) and (H2).

Set
v™(t,z) = Eyg9(XT,) - (24)
Then, there exists an increasing function K(-) such that for any multi-indez I with |I] < 4,
|aI’Um(t, $)| S ’l’]K(T)’g(m) . (2_5)

Proof. For I =14 € {1,...,d} one has

0™ (t,3) = E;[DX7" ,09(X7",)] (26)
from which
[0:v™ (t,2)| < CEy||DXT.,|| < Cy/ Bl DXF.,|1>
where || - || stands for any of the equivalent norms on the space of d X d matrices. Thus,

Lemma 4.2 induces (25) for |I| = 1.

The conclusion is then obtained by successive differentiations from (26). W
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4.2 An upper bound for A; + A; = |Eg(Xr) — Eg(X#)| + |Eg(XZ) —
Eg(X7™")|-

The objective of this subsection is to prove:
Proposition 4.4 Suppose (H1) and (H2). Then

A; + Az < 4||g]| oo (me) (1 — exp(—R(m)T)) , (27)
where the function h(-) is as in (7).

Proof. For m > 0 define
T™ :=inf{t >0 : ||AZ] > m}. (28)

One has, since X" = X, for t < T,

A1 = |EB|(g(Xr) - g(X3")) Lypmer]|
< 2||g||peo(reyP(T™ < T')
A = |E[(g(XF") - Bg(X3)) Lrmer]|

< 2|9l zeo(mayP(T™ < T)

The conclusion follows from the next Proposition. H

Proposition 4.5 Let L be a Lévy process with Lévy measure vy. Set

T™ =inf{t >0 : ||AL]| >m}.

For all m > 0, it holds that

P(T™ > T) = exp (~Tvp{z; ||z]| = m}) . (29)

Proof. We recall that T is a fixed non-random time denoting the endpoint of our time interval.
We truncate the jumps of L from below. For m > 0 and 0 < § < 1 we define

L™= 37 AL, Lyas,j>sm) -

0<s<t

Set X _
Tt .= inf{t > 0; || AL{™|| > m} .

Then, A
P[T™ > T] = P[T"™ > 1T].

18



Theorem 3.1 implies that L™ is a compound Poisson process with jump arrival rate

Mom— yr{a; ||z|| > ém} .
We set o

Lgm = ZIUfm Lism<y
and "oo
me = Z; :Il[TiﬁmSt] .
Thus N°™ is a standard Poisson process with arrival rate A\*™. Set
= PO < m] = s om < el < m}
Thus,
PIT™>T] = Y P[0k, |U™| < m|Ni™ = k| P[NG™ = k]
k

Aém
= EP[ L UE™|| < m] exp( /\’smT)g

6m fm k
= exp(— AamT)Z—————)]\c T)

= exp(=M"T(1 — o'™))
= exp (—Tvi{z;|zl| = m}) ,

which is independent of the choice of 6. B

Note that in this subsection the boundedness of the function g(-) was essential. This is not
surprising: except when the jumps of Z are bounded or have finiteness properties reflected by
v having finite moments, in general the law of X7 has no moments. A contrario we will not
use the boundedness of g(-) to bound A, from above.

4.3 An upper bound for A; = |Eg(XP) — Eg(X7™))-
The objective of this subsection is to prove the following

Proposition 4.6 Assume (H1), (H2) and (H3) hold.

Letm € IN, m > 1, and p € IN. Then for some increasing function K(-) depending only on
Xo, the dimensions d, r and on the L™°-norm of the partial derivatives of f(-) and g(-) up to
order 4, one has

m.,n m
V(m,m) € N - {0} x N = {0} , A= |Ba(Xp) - Bg(x7™)| < TR
where the function ngk(r)g(-) is as in (6).
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Proof. 1t is useful (see [18], [20]) to modify the original approximation problem in the estimation
of the difference Ev™(T, Xi#) — Ev™(T, X7™) in terms of

E’Um(T - T/”? X;’n——T/'n) - E’Um(T - T/n7 X;:T’}/n) :

It can be checked using the Meyer-It6 formula that the function v™(t,-) defined in (24)
solves

(Opv™ + A™)v™(t,z) =0, 0<t< T,

{ (31)
v™(T,+) = g() ,

where A™ is the infinitesimal generator of the process (X[*): A™ is of the type (2) with v™

instead of v.

In view of (31), Bpov™(t,z) = —A™(A™v™(t, z)), so that, by (25),

| Go0v™ (¢, Z)|| oo (0,71 R2Y < N (7). 8(T) -

Therefore, one has
- _ T
FEv™(T,X7™) = Ev™(T-T/n,X7™)+ EEBO'U (T ~T/n, X3"") + Ry

T
= Bv™(T —T/n, X7"") = —EA™™(T ~ T/n, X7"") + Ry, (32)

with (m)
Nk (T)8\TM
IRT T/'n.| < n2 .
We now are going to expand the right side of (32) around X7, /n i order to prove:
Ev™(T,X7") = Bv™T — T/n, X375/) + 177/
with
nk(7)8(M)
n? ’
If Z™ were a Brownian motion, this could be done by simply making a Taylor expansion using
the fact that, for p > 1, E|Wp — Wy_g/,|? is smaller than n~2. In the general case, this does
not apply: any moment of Zf — Z7 /n 18 of order 1/n (otherwise Z would of necessity have
continuous paths by Kolmogorov’s lemma). We proceed in a different way, using the Markov
property of Z™.
Let Z™ denote the Lévy process (Z3ir—r/n = Z7-7pm » 0 < s <T'/n) and let G™ denote its
infinitesimal generator. For any function (-) of class CZ2(R?), Dynkin’s formula holds:

I T— T/n|<

BY(Zf,) = $(0)+ [ BC™(Zr)ds

- ; 1 s _
= ¥(0) + ;@/0 Eop(Z7)ds + 3 %:(Ja*);/o Ed,4(Z™)ds
+ E/o; /Rr { W(Z™ +y) —b(Z™) - 23 W™y Ly<y } V™ (dy)ds . (33)
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_ Now, each subexpression of the right side of the above equality is considered as a function of
Z™ and, supposing that 9(-) is of class Cj(RR?%), we make a first-order Taylor expansion around
0; remembering the definition (5), we observe that

EZ~;” <s +/ zvdz)ﬁ m)s 34
Bzl <s (1614 [, llv(e) < atm) 39
and that N
E|Z|? < pa(m)(s +5°) . (35)
We thus obtain T
B(Z5j,) = #(0) + = G p(0) + B (36)
with (m)
~ oy TME(T)2(TM
EIR™| < = 5 100 smiaeny (37)
1<|7]<4

for some increasing function K (-) uniform with respect to ¢(:), 8, o, v and n.

Choose > Y
i (P T A5 1 (35530

This function %™ (-) of course is of class C#(R?) as a consequence of the hypotheses, and (36)
can be used. We get:

5 » o-m.n T m, m ey DM,
Ev™ (T - T/n,X}”’") = Ev™ (T - T/n,XTLT/n) + ;EA v (T - T/naXTiT/n) + RpZr/y
(38)
with (we use (25))

nk(r)8(m)

M., nKT,Z(m) m .
B < AT S T -, e < D

1<|7]<4

We now come back to (32), use (38), make a first-order Taylor expansion around 0 of

z— A™™ (T = T/n, Xp, + f (X)) 2)
and use (34), (35). We obtain:
Ev™(T,X7") = Bv™(T — T/n, X3 70n) + S700m
with

nxr)8(m)

m,n I S nz

| T-T/n
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Proceeding in the same way to expand Ev™(T — T/n, X7, /) atound
Ev™(T — 2T/n,X'}n_’7;T/n), and so on, one finally gets

Eg(X7"™)

with

Thus, one has

n—1

Ev™(T, X7™") = Ev™(0,Xg"™) + ) Sizyn
k=0
n—1
Evm(()’X(TJn) + Z k’.Z:/'n,
k=0
n—1
Ev™(T,XT) + Y_ Sitya
k=0
n—1

Eg(X7) + D Sigpn (39)
k=0

ma | _ MET)8(M)
Wnl < — .2

Bo(XF) - Eo(&p") < H@st)

n

5 Proof of Theorem 2.2

5.1 Preliminary remarks.

We start by two lemmas.

The following lemma is given in Bichteler and Jacod [3] in a more general context. Due to

its importance for our results, we include it here.

Lemma 5.1 Let p € IN, p > 2. Suppose that [ ||z||Pv(dz) < oo and that f(-) is Lipschitz.
Then the solution X of (1) is in LP(Q) and

E[Oiugt 166 117] < nxcry p(00)(1 + B[ XoP) - (40)

Proof. We know by the general theory (see, e.g., [14]) that equation (1) has a solution and it
is unique. Let X denote the solution with the convention X,_ = 0 and define

TF :=inf{t > 0; | X > &k} .
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Let
k
}(? _:::)Q nﬁ<Tk4")CTb_:H12Tk.

Then X7~ = X on [0, T*)N[|| Xo|| < k] and moreover the T*’s are increasing with limy_,o, T =
00 a.s.

The hypothesis on v allows us to apply Lemma 4.1 to deduce

|+ Bixir)

T
< pylo0) [ BIFXE)Pdo + G, B| ol

Elsw [X*|] = G, (JE [sup
0<s<t

0<s<t

| #(x32)dz,

where the right side is finite, because | XT"~|| < k, and f(-) is continuous. Since f(-) is
Lipschitz, . .
1FCGEEDN < () (IO + 1X5271)

and applying Gronwall’s lemma we have

E [sup P

0<s<t

< nx(@)p(e0)(1 + Bl Xo|?) -
The right side is independent of k, so Fatou’s lemma gives the result. W

In view of the preceding lemma, our proof of Corollary 4.3 can be rewritten to get:

Corollary 5.2 Assume (H1’), (H2’) and (H3’) (resp. (H2”) and (H3”)).

Set
v(t,z) := Eog(Xr—t) - (41)

Then, there exists an increasing function K(-) such that for any multi-indez I with |I| < 4
(resp. 8),
'
10rv(t, 2)| < Mgy pas (1 + [l ™) (42)

with M = max(2M’,2|I|) (resp. max(2M",2|I|)).

Lemma 5.3 Assume that [ ||z||**v(dz) < oo for some integer p > 1 and that f(-) is Lipschitz.
Then there ezists an increasing function K(-) such that, uniformly in n one has

max B|| X, || < nxr) 2p(0)(1 + E| Xo]*7) - (43)

0<k<n

Proof. For p =1, one has

E| Xgyyzml® < Bl Xiral? + Bl f (X Zaavyz/m — Zira)? -
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The Lévy-Khintchine formula provides an analytical expression for the characteristic func-
tion of Zr/y,; since Zr/, has moments of orders up to 2p, differentiation under the integral sign of
J(1—exp(i <u,z>)+i<u,z>) Ly <yv(dz) permits the computation of these moments.
Under (H1), one can then check that

g &) Cp2 (OO)T2
Bl Xayrynl® < Bl| gyl + 2222

for some constant C' depending only on f(-). One then sums over k to obtain the result for
p = 1. One then proceeds by induction. N

We are now in a position to prove (9).

5.2 Proof of (9)

In this subsection we suppose (H1’), (H2’), (H3’). We follow the guidelines of Subsection 4.3.

Let Z denote the Lévy process (Zsyr—7/n — Zr-1/n , 0 < s < T/n) and let G denote its
infinitesimal generator. Consider functions ¢ in C*(/R?) such that

> lorg(2)] < Cy(1+ ||2]1*) (44)

1<|7]<4

for some positive real number Cy and some integer My > 2. Consider Dynkin’s formula (33)
with Z instead of Z™ and v instead of v™. Make a Taylor expansion to get the approximate
Dynkin formula, similar to (36):

E(Zz) = 9(0) + —C(0) + B (45)

with ()
~ o0
E|Rn| S nK(T)JM;D
n

and furthermore the increasing function K(-) is uniform with respect to 8, o, v and n, and
depends on 9(-) only through the constants Cy and M, appearing in (44).
Choose ) )
'¢'(Z) =v (T - T/TL?X;—T/'IL + f (X;—T/n) Z) -
This function () is of class C*(R?) and satisfies (44) with My = M! = M"™ = max(2M’, 8)
(remember that M™ appears in (H3’) and use (42)). Thus (36) can be used. We get:

_ _ T _ _
Ev (T - T/n,X3) = Bv (T - T/n, X3_g,.) + ~BAv (T —T/n, X3 _zyn) + R gy (46)
with (we use (42) and (43))

NK(T),M"™ (00)
n2

E|R;.’Zl"—T/nI <
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Proceeding as in (39) with X™ instead of X™" and v(-,-) instead of v™(,-), we deduce:
n NK(T),M"
|[Bg(Xr) ~ Bg(X7)| < =02

for any function g(-) satisfying the hypothesis (H2’).

5.3 Proof of (10).

To obtain the expansion of the Euler scheme error (10), we must now refine the strategy. From
now on, we suppose (H1”), (H2”), (H3”).

It can be checked using the Meyer-It6 formula that the function v(¢,-) defined in (41) solves

(Bov + A)v(t,z) =0, 0<t < T,
{ o
o(T,-) =4(),

where A is the infinitesimal generator of the process (X;) (see (2)).

In view of (47), Buov(t,z) = —A o Ao Av(t,z). The estimate (42) shows that, for an
increasing function K(-),

|Bo00v(t, )| < ey aet(00) (1 + ™)

where M = 2M + 12.

Instead of (32), we now write:

_. _ T —
Ev(T,X}) = Ev(T—-T/n,X})+ ;EBOU(T —T/n, X72)

2

T VT n
+-2FE800’U(T — T/n, XT) + Ry

= Ev(T —-T/n, X5 —-ZEA’UT—T n, Xn
)", T

2

T _
+53 BA(A)(T —T/n, X3) + R} (48)

with (we use (43))

nK(T),M”* (OO)
—3 .

|R7| < (49)

In order to expand the right side of (32) around X2 . /n» We need an “approximate Dynkin
formula” more precise than (36).

Suppose that () is of class C*(RR%) and that
> 10:(2)] < Cy(1 + 2] M%) (50)

1<|1|<6
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for some positive real number Cy and some integer M,. Apply Dynkin’s formula twice:

- T - T/n ps . . -
B (Znja) = $(0) + —C(0) + /0 /0 EG o G(Z,)dbds .
We make a Taylor expansion of Z; around 0; we obtain:

T

~ o~ 2 i~ ~ ~
B(Zr) = 9(0) + - G(0) + 5 G 0 G(0) + B (51)

with
PK(T), M, (00)

E|R"| < =

and furthermore the increasing function K() is uniform with respect to 3, o, v and n, and
depends on ¥(-) only through the constants Cy and M, appearing in (50).

Choose
P(z) = v (T - T/n,X%_T/n + f (X'%_T/n) z) .

This function 9(-) is of class C¥(R¢) and satisfies (50) with My, = M = max(2M",12) (use (42)
again). Thus, we can apply (51).

Then apply (36) to

’Iﬁ(Z) = Av (T - T/n7 X%—T/n + f (X;—T/'n.) Z) ’
and finally make a Taylor expansion around 0 for

z— Ao Av (T - T/n,X%_T/n +f ()_(,_’;_T/n) z) .

As in the preceding subsection, easy computations lead to:

_ - T2 ~
Eo(T, X) = Bo(T ~ T/, X3_gyn) + — BT ~ T/, Xp_g) + Sh_a

where
7K (T),max(2M,12) (00)
n3

|ST—7/al <
and where the function ¢(-,-) is defined as follows:
1 1~ - _
Bt z) := SAM(t,2) + G 0 G 0 (0) + G 0 Av*(0)
where

v (2) = v(t, T + f(z)2) .
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We conclude as in [20]: consider now ¢(t,-), 0 < t < T, instead of g(-) in (9); ¢(¢, ) satisfies
(H2’) with M"™ = max(2M", 16), so that
_ _ T2
E'U(T, X;) = EU(T — h, X;—T/n) + mE(ﬁ(T ~T'/n, XT—T/“) + U;—T/n )

with
()M ()

|U¥—T/n| < nd

Proceeding as in (39), we obtain:

_ T2 n—1 n—1
Ev(T,X7?) = Ev(T, X1) + ) Y E¢(kT/n, Xarm) + Y Uir/m -
k=0 k=0

Finally, we observe that

T2 n—1 T /T
" Bo(kT/n, Xazja) = — / Ed(s, X,)ds +
n? = n Jo

with ( )

n Nr(T M= oo

"] < ()T -
Thus,
— T T e | OO
Eg(Xr) - Eg(%3) + = [ Bg(s, X,)ds| < TE0er ().

]
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