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Abstract

Independent pairs (X1, X1), (X2, X2), ..., (X, X,) are considered, where each
3; is distributed according to some unknown density function g(X) and, given
3; = 3, X; has conditional density function g(x/3X) of the Wishart type. In each
pair the first component is observable but the second is not. After the (n + 1)-th
observation X,y is obtained, the objective is to estimate X, corresponding to
X,+1- This estimator is called the empirical Bayes (EB) estimator of 3.

An EB estimator of X is constructed without any parametric assumptions on
g(X). Its posterior mean square risk is examined, and the estimator is demonstrated
to be pointwise asymptotically optimal.

1 Introduction

Symmetric positive definite £ x k& matrix X is said to have a Wishart distribution if its
density function has the form

r—k—1

g(x/%) = Cip[det(E)] Fdet(x)] * exp{-05te(xm 1)}, r>k  (L1)

where C, = o A ;?=1 r (ﬁ-{u)] , r >k, and ¥ is symmetric positive definite

k x k matrix. Note that here and in what follows matrices are denoted by bold characters,
(z)i j or 2 is the (i, )-th element of a matrix 2, tr(z) = Yf_;(2);,;, 7 is the transpose of z.

*The research was carried out during a visit by M. Pensky to the Department of Statistics, Purdue
University. The author would like to thank Prof. James Berger and Prof. Shanti Gupta for their help,
hospitality and support.



The Wishart distribution is fundamental to multivariate statistical analysis. Many
authors were occupied with its investigation. One of the basic problems, the problem
of estimation of X given observations X;,Xa, ..., X, on X ~ ¢(x/X), was solved long
ago: unbiased estimator of ¥ has the form 3, = (nr)™? ?_1 X; ( see Anderson (1984)).
However, sometimes the situation occurs when not only X but also X is random, and we
need to make some conclusions about the value of the random parameter. Namely, the
following problem arises.

Independent pairs (X;,%;), (Xg, 2), ..., (Xn, X,) are given where each 3; is dis-
tributed according to some unknown density function ¢g(X) and, given X; = X, X; has
conditional density function ¢(x/X), ¢ = 1,...,n. In each pair the first component is
observable but the second is not. After the (n + 1)-th observation X,;; =Y is obtained,
the objective is to estimate ¥,.1 = S corresponding to Y. The problem of estimation of
S is called the empirical Bayes (EB) estimation problem.

EB model was very popular recently and EB estimators were constructed for a num-
ber of families of conditional distributions. However, the vast majority of papers dealt
with the situation when observations are univariate. EB estimation in the multivariate
case was conducted by Ghosh, M. (1992), Ghosh M., Shieh G. (1991), (1992), Judge,
G.G., Hill, R.S. & Bock, M.E. (1990), Kubokawa, T. & Robert, C. & Caleh, A.K.MD.E.
(1992) and Shieh, G. (1993), who obtained various EB estimators for the mean and co-
variance matrix of normal distribution.

In the present situation both observations and parameters are matrices. An EB
estimator of 3 is constructed without any parametric assumptions on g(X), only some
constraints on the moments of ¥ are imposed. The estimator is produced using a general
technique proposed by the author (see Penskaya (1992), Penskaya(1993)).

Let us denote
p(x) = [ alx/D)g(R)dx, (12)

F(x) = /A 5 ¢(x/%)g(2)dE. (1.3)

Here and in what follows A is a space of symmetric positive definite £ x k matrices,
X = H;?:l I}, d%; ;. If we knew prior density g(X), then under the square loss, the
Bayes estimator S(Y) of X would take the form

S(Y) = —2. (1.4)

An EB estimator S, (Y) of 2 is an estimator of S(Y) from observations Xj, X, ..., Xx.
Note that S(Y) and F(Y) are matrix-valued functions, whereas p(Y) is a scalar-valued
function of the matrix Y.



Now let us introduce the risk function. Consider the (2, j)-th element (So(Y));; of
an EB estimator S, (Y). Its posterior risk is given by

(V)™ Epr [ [8(¥))is = (S(O)isl (¥ /D)g(S)d= (1.5)

where E,» is the mathematical expectation over all possible values of X;,Xs, ..., Xn. It
is easy to see that (1.5) can be broaken into two components. The first component

(B(Y))™ Epn [ (S(V)es = (D)l o(¥/D)g(D)d=

is the posterior risk of the (z, j)-th element (S(Y));; of the Bayes estimator (1.4), and it
is independent of S,(Y). . Thus the quality of EB estimator (S,(Y));; is described by

the second component
AGN(Y) = Epn [(Sa(Y))is — (S(Y))isl”-

The overall risk is the sum of A(*)(Y), and therefore we will characterize our EB estimator
by its risk _ _
An(Y) = Epn [t (84(Y) = 8(Y)) (Sa(Y) - S(Y))] - (1.6)

For A,(Y) to converge to zero some constraints on g(X) must be imposed. We will
assume that

/A [tr(2)]? ¢(B)dE < oo, /A det(2)g(R)dE < oo. | (1.7)

Estimator S, (Y) is called pointwise asymptotically optimal, if A,(Y) — 0 as ns for every
Y.

Note that the quality of EB estimator can also be characterized by a prior risk.
However, it seems reasonable to use a posterior risk as a measure of quality of an EB
estimator. First, using A,(Y), we calculate mean square error of our estimate at a point
Y, which is actually the point of interest. Furthermore, if we apply the risk function (1.6),
then the observations having very low probabilities, i.e., the observations that we would
never get, stop influence the risk function. Thus we are able to search for more effective
methods of estimation at our point of interest Y.

In Section 2 of the present paper we construct estimators F,(Y) and p,(Y) of
the numerator F(Y) and the denominator p(Y) of the Bayes estimator (1.4). We also
investigate mean square errors of the estimators F,,(Y) and p,(Y). In Section 3 we
present an EB estimator of ¥ and obtain an upper bound for its risk (1.6), in the form

A(Y)=0 (n"“+1§%”+K5) (1.8)

bJ
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where K = 0.5k(k + 1), m = 2m,, p and m, are arbitrary positive integers. Computa-
tional aspects of the estimation are discussed in Section 4. Section 5 contains the proofs
of the assessments of Section 2 and Section 3.

2 Estimation of F(Y) and p(Y).

To construct an EB estimator of X, which is an estimator of (1.4) from observations,
we will obtain estimators p,(Y) and F,(Y) of p(Y) and F(Y), respectively, and then
estimate the ratio F(Y)/p(Y). :

It is easy to guess that the usual technique of substitution of estimator g,(X) for
g(X) turns out to be extremely complicated here. Actually, we have to estimate density
function in [0.5k(k + 1)]-dimensional space from indirect observations. This problem
results in a huge system of linear equations which is ill-posed. And after we estimated
g(X), we would need to calculate the integral in a space of positive definite symmetric
matrices.

So we need to apply another method of estimation of F(Y) and p(Y). It was
proposed by the author ( see Penskaya(1992), (1993)). To derive F,(Y) and p.(Y), we
should search for approximate solutions ®.(x;Y) and pn(x;Y) of equations

[ 4G/ Z)®.(x; Y)dx = Bg(Y/2), (2.1)
[ 16/ Z)on(x; V) = (Y /). (22)
If we found functions ®.(x;Y) and @(x;Y) such that for every Y
D.(Y) = /A tr [&.(x; Y)®.(x; Y)] p(x)dx < oo, (2.3)
4(Y) = | [on(x; Y)P pl)dx < oo, (2.4)

and, moreover,

B.(Y) = [ [[ atc/2)8.0x V)dx - Bq(Y/D)] o()4E -0, ¢ 0),  (25)

(Y) = [ [ [ ax/Dhentox Vyix - o(Y/)] g(D)E ~0, (5 >0), (26

then our proposed estimators F,(Y) and p,(Y) would be

F.(Y) = nt ; &, (X,,Y), &=e(n); 2.7)
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pa(¥) =171 Y00 (X5, Y), b= hn). (2.8)

i=1

Mean square risks of the estimators F,,(Y) and p,(Y) are of the form
on(Y) = By [tx(Bn(Y) = F(Y))(Fa(Y) - F(Y))] (2:9)

52(Y) = Eyn (p(Y) — p(Y))". (2.10)

It is easy to check (see Penskaya(1993)) that under conditions (2.3) and (2.4) mean square
errors of estimators (2.7) and (2.8) are bounded by

on(Y) < tr [B.(Y)Be(Y)] + 271 D.(Y), &=e(n), (2.11)

o (Y) < B(Y) +n7dy(Y), h= h(n). (2.12)

Thus, provided (2.5), (2.6) are valid, there exist dependences h = k(n) and € = ¢(n) such
that the errors (2.11) and (2.12) tend to zero as n — oco.

Now our goal is to find ®.(x;Y) and @i(x;Y) satisfying (2.1) — (2.6). After a
quick look at equations (2.1) and (2.2) and at the density function (1.1), we come to the
conclusion that ®.(x;Y) and x(x;Y) have the following forms

r—k—1

B.0xY) = [det(Y)] T [det(x)] T W.(x—Y)I(x—Y € A), (2.13)

r—k—1

en(x;Y) = [det(Y)] 2

[det(x)]~ =5 vn(x — Y) I(x — Y € A). (2.14)
Then equations (2.1) and (2.2) appear as

/ exp {05 tr [(x - Y)=| } . (x - Y)dx ~ 5, (2.15)

/exp {—0.5 tr [(x - Y)E'l] } r(x —Y)dx ~ 1. (2.16)

The last two integrals are evaluated over all values of x such that x € A and x-Y € A.
Note that Y is positive definite matrix, therefore the intersection of the two sets coincides
with the set (x : x — Y € A).

We say that matrix z = \/u is a square root of symmetric positive definite matrix
u if z is a matrix of upper triangular type with positive diagonal elements such that
Zz = u. It can be shown that there always exists an unique square root of a symmetric
positive definite matrix.



Let us introduce new variable z = v/x — Y. Note that z here is a positive definite
matrix of an upper triangular type and range of z is

B = {Z 1 2z, €R, 2,; >0, 5= 1.,k 2< j} (2.17)
Jacobian of transformation is .
J =2 2577+ (2.18)
Jj=1

Taking into account the fact that tr(ab) = tr(ba) for any matrices a and b, we write
integral equations (2.15) and (2.16) as

/B exp{~0.5 tr(z57'%)} V. (2)dz ~ 275, (2.19)

/Bexp {—0.5 tr(zE_li)} vn(2z)dz ~ 27F. (2.20)

Here Ve(2) = . (2) ITiy 25577, vu(2) = $(@2) i 25577

Combination of formulas (2.13) — (2.20) leads to the following result: as soon as
V.(z) and vy(2z) are solutions of the equations (2.19) and (2.20), respectively, estimators
F,(Y) and p,(Y) are presented by formulas (2.7) and (2.8) with ®@.(x;Y) and @r(x;Y)
given by

&.(x;Y) = [det(Yx)] V. (Vx=Y) Il [(\/x - Y)J_J]j_k—1 I(x—Y € A),
(2.21)

on(%;Y) = [det(Yx1)] ]H_l I(x—Y € A). (2.22)

5

v, (\/x—Y)jliI1 [(\/;c——_Y)

Here (\/x — Y) _.is the j-th diagonal element of the matrix vx — Y. Let us put

JiJ
K = k(k+1)/2
and pick up an even number m = 2my, my; > 1. Formulas (2.21) and (2.22) contain

functions V.(z) and v(z) which are to be found. Function V.(z) is determined by the
Lemma 3 which is based on Lemma 1 and Lemma 2. Lemma 4 provides a form for vy (z).

Lemma 1 . If

2 1y "t 1
win(®) = = exp{ -5} ¥ i () (2.23)

=0
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then
< gmgrtitm, (2.24)

.
_1/ Wjm (t\/_) exp ( ;02) dt — 9t

Here H,(t) are Hermite polynomials

dT
H.(t) = (—1)Tet2—Jt—r (e—tz) , r=0,1,2,..

Lemma 2. Let functions Q;n(t),5 = 1,2,...,k, be given by the expressions
L LY "7 00— s4)
Qim(t) = Eexp{—t_z} Z(:J [aP= D] (2.25)

where coefficients al¥), s = 0,...,m + j — 2, are the solutions of the system of the linear
equations

Jtm=—2 1> 1)
) = 2T g im e 2.26
s=maw2(%,l—l)[ | = -5+ ] ’ (2.26)
with I D! ( Di2i-1
(2@ < 2s — 1)1 2~ .
b = o IS )+ T 2), (2.27)

fs>1-1,1=0,.,j+m—2,and b) =1, if 1=1,5 =0.
Then for some C > 0 independent of € and 0, the following inequality is valid

e~ /Ooo Qim (t—‘?) exp (-5-2) [(j ~1)+ H dt — '~

< Ce™gtim, 5 =1,2,..., k.

(2.28)
Lemma 3. Approzimate solution V.(z) of equation (2.19) has the form
V.(z) =ZU(z;¢) z, (2.29)
where U(z;€) is the diagonal matriz with elements
(213 2
Uij(zi€) = 27" % Qjm (z”’ ) I wim (z f) . (2.30)
=1

£

Here functions w;m(t) and Q;n.(t) are defined by formulas (2.28) and (2.25) - (2.27),

respectively.



Lemma 4. Approzimate solution vy(2z) of equation (2.20) has the form

k LN 41 ..
on(e) = 7 T wy (222) [l (52)), (2.31)
j=1 h =1 h .
where functions u;(t), j = 1,...,k,k+ 1, are even and satisfy the following conditions
- 1, if =0,
/ wi()tdt = { 0, ifl=1,..,m—1, (2.32)
I A #£0, ifl=m, m=2m,,

J

/oo u?(t) PR ldt <00, j=1,....k k+ 1. (2.33)
0

Validity of Lemma 1 can be verified by mere substitution of wj,, into (2.24) and
application of formulas 7.386 and 8.950 of Gradshtein & Ryzhik(1980). Lemmas 2, 3 and

4 are proved in Section 5.
Based on Lemma 3 and Lemma 4, we formulate the following Theorem.

Theorem 1. Estimator F,.(Y) of F(Y) is given by (2.7), where ®.(x;Y) has the
form (2.21) with V.(z) determined by Lemma 3. Estimator p,(Y) of p(Y) is (2.8), where
on(x;Y) is defined by (2.22) with vy(z) of the form (2.31). Here parameters ¢ = €(n)
and h = h(n) have the following asymptotic form

e(n) ~ h(n) ~ n TR, (2.34)

Mean square errors (2.9) and (2.10) of the estimators F,(Y) and p,(Y) are bounded
by

oY) < Con” ¥ { [[,a(¥/2)g(2) tr(Z) (det( D))" T, (VEY;7 ] +
(2.35)

+ Laa(Y/Z)g(D)[tr(E)P[1 + Thoy Hj] 45,
— m 2
onl¥) < O™ L) + [ [ ¥/ o] |, 299
respectively, where K = k(k+1)/2 and constants Cy and C; are independent of n and Y.

Theorem 1 is proved in Section 5.



3 EB estimation of X

Now, as we constructed estimators F,(Y) and p,(Y) of F(Y) and p(Y), respectively,
our objective is to obtain an estimator of S(Y). For this purpose we select some positive
constants g and v, and

6~ T (3.1)
and put
Pas(Y) = pa(Y)[L + 8a(pa(Y))7F]". (3.2)

Then our proposed EB estimator of ¥ turns out to be
S.(Y) = [an(Y)]—l F.(Y), (3.3)
where F,,(Y) and p,(Y) are defined in Theorem 1.

Let us show that the estimator (3.3) is pointwise asymptotically optimal, i.e., its
posterior risk A,(Y) tends to zero as n — oo for every Y. For this purpose we establish
the relationship between A,(Y) and 0,(Y) and 0,(Y) (see (1.6),(2.35), (2.36)).

Theorem 2. There exists positive Cs independent of n and Y, such that for each
value of Y

An(¥) < Co {80 0u(¥) + 82 (VIR(Y)J(p(¥)) 7+
(3.4)
+ 0n(Y) te[F(Y)F(Y)p™(Y) [P‘Z(Y) +6a E] } '

Substituting &,, 0,(Y) and 0,(Y) into (3.4), we finally get that there exists a

function C(Y) such that

AL(Y) < C(Y) n FFERY (3.5)
The last inequality means that estimator (3.3) is poinwise asymptotically optimal for ev-
ery Y.

Inequality (3.5) contains the function C(Y) which is finite for every Y. Formula
(3.4) gives us the idea of the relationship between C(Y) and the value of u. Let |[Y]| be
a norm of the matrix Y. Since p(Y) — 0 as ||Y]| — oo, then for big values of ||Y]||, the
smaller 1 we pick up, the smaller A,(Y) we obtain. On the other hand, the smaller 4 is
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selected, the smaller rate of convergence we get ( compare with (3.5)). It is likely that
the bound (3.4) can be further improved by the choice of 6, depending on Y, i.e.,

8 = 6a(Y).

However, this choice, as well as examination of the dependence between C(Y) and pa-
rameter m, is the matter of future studies.

4 Computational aspects

As it was mentioned in the Introduction, EB estimation of the parameter X of the Wishart
distribution involves estimation in the k(k + 1)/2-dimensional space, therefore it could
be computationally intractable. However, in this paper we succeed in the rejection of the
amount of computations. Actually, estimator S,(Y) is expressed explicitly in terms of
V.(z) and vi(z) which, in turn, have the known forms (see Lemma 3 and Lemma 4) with
some parameters to be evaluated.

Matrix function V.(z) contains coefficients a{),j = 1,...,k, s =0,1,...m+j — 2,
in its presentation. These coefficients are provided by k systems of (m + j — 1) linear
equations with (m + j — 1) unknown values each. It is easy to notice that matrices of
the systems are almost triangle (see (2.27)), namely, b;’s) =0, if s <[ — 2, and thus some
special methods can be applied to their solution.

Scalar function vx(z) is the product of the functions w;(t), j = 1,2,...,k,k + 1,
that satisfy the conditions (2.32) and (2.33). Conditions similar to (2.32) and (2.33)
are very common in kernel density estimation. For the sake of construction of functions
u;(t), j = 0,1,..., k, we choose a system of linear-independent even functions {x;(?)}, ¢ =
0,2,...,m —1, and put

0=l ofeie). (@)

Here 7; = Int(0.5(k 4+ 2 — j)) and Int(¢) is the integer part of 2. Coefficients ol ) are the
solutions of the systems of m linear equations with m unknown values

Z a8l = 1=0,.om—1, j=1,.. kk+1, (4.2)

with
o _ )1, ifl=0,
MU=V o, ifl=1,..,m—1,

IB(J) _ )2 [t p;(t)dt, if lis even,
o 0, otherwise.

Usually solution of the systems of the form (4.2) is a standard procedure, and, since
m << 0.5k(k + 1), the size of the system is not high.
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5 Proofs

Proof of Lemma 2. To prove Lemma 2, we apply formula 3.471.9 of Gradshtein &

Ryzhik(1980)
/Ooou"_lexp{—%—'yu}du—2( ) (2 )

with K, (t) being the Bessel function of the first kind (see 8.402 of Gradshtein & Ryzhik
(1980)), v = 672, B = €?/4, v = —(s+0.5). We will also use the fact that K, (t) = K_,(¢)
for any v and positive . Changing variables u = t?, we obtain

© (20+2) et ~(s+0.5) €
t eXPY— =5 — =5 dt = (06) ) Ks+0,5 (5) . (51)

Applying series expansion for K,.o5(t) (see 8.468, Gradshtein & Ryzhik(1980))

—t (s + !
Kitos(1) \/_; Zl'(s—l (2t)!

and combining two equalities of the form (5.1), we get

O e v a5} 2 (2 ) 6:2)

where b;f;) are defined by formula (2.27). Now we multiply both parts of (5.2) by a{/
and take a sum over s = 0,1,...,m + j — 2. After changing the order of summation and
recalling that a{/), s =0,...,m+ j — 2, are the solutions of the system of linear equations
(2.26), we arrive at the following relationship

s o) ams (1) [6- 4 ;";] ey

. j+m—2 )
cemgim iy TS A,

s=maz(0,l—1)

which proves Lemma 2.

Proof of Lemma 3 . Since X is a symmetric positive definite matrix, then there
exists matrix H = v/. By definiion, ¥ = HH, so that X! = H-'H-!. Let us change
variables z = tH in (2.19). Jacobian of the transformation is ]'[] —1 HJJ j» and formula

(2.19) takes the form

/Bexp {——;—tr(tf)} V.(tH)dt ~ 2% (f_[ Hj;-j) HH. (5.3)

7=1
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Substituting V.(z) of the form (2.29) into (5.3), we obtain the system of k¥ equations

oo t2 ) 0 k o0 t2
/0 exp (—5) Q;m(tHj;,€)[(j — 1) + t7]dt E/O exp (—5) Wi m (tHyi, €)dt ~

i#]

(5.4)
1 k .
~ 278 (2m) " [[(Ha) ™, 5 = 1,000 k.
=1
Each of the last equtions, in its turn, may be broaken into
J5° exp (= 55m) wim(t,€)dt = 0, i §, 0= Hi,
(5.5)

_k k—1 .
I exp (—45) Qim(t,€)[( — 1) + &ldt ~ 27%(2r) e o= my,.

It follows from Lemma 1 and Lemma 2 that equations (5.5) are asymptotically valid,
which completes the proof.

Proof of Lemma 4. To prove the Lemma we should simply verify that the differ-
ence

Br(X) = /A exp {—0.5tr(z2_1i)} vp(z)dz — 27F (5.6)

converges to zero as h — 0. Actually, changing variables A~z — z and using Taylor
expansion with Lagrange’s reminder for the exponential function, we obtain

2 K
/BhZ' [tr(ZE"li)] Euj(zj’j)nuk+1(zi,j)dz +

%
2 i<g

Br(E) = 2

h™ —1~\]™ : —k
+/Bm [tr(zE z)] exp{—0.5¢} H u;(25,5) H uksa(2i)dz — 277,

7=1 i<j

where 0 < £ < tr(zX7'%); m; = m/2.
According to the conditions (2.32) and (2.33), the first component of the sum is
equal to 27% and all the others vanish, so that

hm —1~ mi
8D < 5o /B [t2(25718)] ™ vi(2)da.
The last integral is dominated by
m k

1B1(Z)| < 27}2—7 S {Oenl =1 +X) [ )5] "} (5.7)

mi): =1
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The right part of inequality (5.7) tends to zero as h — 0, which proves the statement.

Proof of Theorem 1. Let us first calculate mean square risk g,(Y) of the estimator
F.(Y). It has the form (2.11), and so we need to find upper bounds for B.(Y) and for

D.(Y).
Changing variables t = (\/x - Y) H! and taking into account the equality 3¢(Y /%) =
Hg(Y/3)H, we present B.(Y) as

B.(Y) = /A ¢(Y/2)g(S)H R, (H)HJS.

Here H = VX and R.(H) is the matrix-valued function of the form

= 9k (ﬁHJJJ) [/ exp{—0.5>_t? }tU(tH;¢)tdt — E| . (5.8)

1<

Since U(tH;¢) is a diagonal matrix, elements of which depend on the products ¢; ; H; ;, j =
1,..., k, only, then from symmetric considerations we obtain that the integral in the right
part of equality (5.8) is also a diagonal matrix. It implies that R.(H) is the diagonal ma-
trix with j-th diagonal element equal to the difference between the left and the right part
of the formula (5.4) times (2’“ ko sz) For the sake of construction of upper bounds

for the diagonal elements of the matrix R.(H), we need the following apparent assertion.

Lemma 5. For any ~;(¢) and v;

Z{Hz — %l TT Ul + 1v(e) —’Yi|)}-

i=1
i#]

f[ }_Iv

i=1

Applying Lemma 5 with (see Lemma 1 and Lemma 2)

e V2 £
= [ n () ()
i =0 0 =H;; fori# j, and

@)= [ () @ (22) [G-1)+ 5

v; = 0'7, 0 = Hj;, we obtain that there exists C5 > 0 such that each of the elements of
the matrix R.(H) is bounded by Cse™ [T5; Hj,; Sk H; . Therefore

min(i,j)

I(Bo(Y))ij] < Cse™ 2 / (Y/Z)g( }H,2||H1,J|HH],]ZHJ;deg_

j=1
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The last inequality implies that there exists Cs > 0 such that

2

tr[B.(Y)B.(Y)] < Coc™™ ! /A d(Y/2)g(2)tr(T)det 21/2)2 VEmD| . (5.9)

Note that, provided the second assumption in (1.7) holds, the integral in (5.9) is
finite. It happens because for any positive definite Y and any m > 0

s1‘1{p lq(Y/E)(\/E)i—im , t=1,..,k.

To finish the proof of the inequality (2.35), it remains to find upper bounds for
D.(Y). For this purpose in formula (2.3) we substitute (2.21) and (1.2) for ®.(x;Y)

and p(Y), respectively, and then make change of variables t = (\/x — Y) H!, where
H = /3. So we obtain that

D.(Y) = 2* [ a(Y/2)g(%)D.(S)d%
with

D.(%) / tr[fU(tH, e)tHATU (tH, &)t HE] H (#5757 HE ) exp{— Zt 1dt.

Jj=1 z< <jJ
(5.10)
Since for any symmetric positive definite matrix a, the inequality holds (see 13.215.6.ii of

Gradshtein & Ryzhik(1980))
a;j < /@i,

then for any symmetric positive definite matrices a and b

tr(ab) < tr(a)tr(b).
Applying the last inequality to (5.10) with a = HH and b = tU(tH, ¢)t and taking into
account the identity tr(HH) = tr(X), we get

D.(2) < [tz(D)]? /B f[(tgi,;k-lﬂj%;i-k-l) [tr(BU(LH, e)t ] exp{——Zt Ydt.  (5.11)

2<j

Then we calculate the integral in (5.11) in veiw of

(trtUt) (Zt ) < k[te(U?)] St U= U%(tH,e).

1<J 1<J
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So, we arrive at

D.(%) < Cre™ [tx(2)]?

k
L],

5=1
where the constant C; depends on dimensionality k£ only. Thus, returning to D.(Y), we
obtain

_ k
D.(Y) < Cre~?K /A (Y /D)g(D)[te(S)P1 + 3 HHdE.
7=1
Replacing ¢ by the expression (2.34), we get (2.35).

Now we ought tocalculate o, (Y). Substituting the expression (2.22) into formulas
(2.4) and (2.6), we derive that

Y) = 2t / Br(2)g(Y/2)g(D)dE, (5.12)

d(Y) < 2h7K [ o(Y/D)g(R)di(E)dz,

where

7—1

5(z) = /BGXP{ tr(zE Z }f[ [;Jk 1 2( ) Huk+1 (@)} dz. (5.13)

Now formulas (5.7) and (5.12) provide
bu(Y) < Csh™ /A [tx(=)]" o(Y/2)g(D)ds. (5.14)
Changing variables h™'2; ; — z;; in (5.13) and taking into account (2.33), we also obtain
di(Y) < Coh™p(Y). (5.15)

Here constants Cg and Cy are independent of Y and h. Selecting h of the form (2.34) and
combining (5.14) and (5.15), we derive (2.36), which is our objective.

Proof of Theorem 2. First, it is worth noting that since for any z > 0 inequality
71+ 627#)™ < [(pv — 1)8]M* is valid, then

|Pas(Y)™F < (v — 1)1/u51/u = Cu‘sl/u (5.16)

for every Y. Let us present the (z,7)-th component of the difference S,(Y) — S(Y) in a
form

(Sa(Y))i = (S(Y))is = Pt (¥) [(Fa(Y))i — F(Y)ig] + (F(Y))i, [prd (¥) —p7(Y)] -
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Multiplying each part of the equality by its transpose, taking the trace of both parts and
using the Cauchy inequality and (5.16), we get (see (2.9) )

An(Y) < 2{C2 6% g, (Y) + t[F(Y)F(Y)] Epnlpii (Y) —p (Y)P}.  (5.17)

So, now we ought to find upper bounds for E,»[p ;(Y) — p~'(Y)]?. To do that
we partition 0 x A into two parts G = {(w,Y) : |p.(Y) — p(Y)| < 0.5p(Y)} and its
complement G. Thus, mathematical expectation also breaks up into two components

By [pd (V) -7 (V)] <2 [ [p2 (V) — 7 (V)] dP+

+2[C.6;Y + p71(Y)]” P {Ipa(Y) — p(Y)] > 0.5p(Y)}

Now using Taylor expansion of pns(y) = pn(Y)[1+6n(p.(Y))#]* at a point p,(Y) = p(Y)
and §, = 0 and applying Chebishev inequality, we obtain

Epr (02 (V)57 (Y))* < 4p7(%) {on(¥) + E2(p(Y)) ™ + [C.67/* + 57 (V)] 0u(¥) ..

Combination of the last inequality and (5.17) completes the proof.
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