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Abstract. We consider the class of simple random walks or birth and death chains
on the nonnegative integers. The set of return probabilities Py, n > 0, uniquely determines
the spectral measure of the process. We characterize the class of simple random walks with
the same spectral measure or same return probabilities to the origin. The analysis is based
on the spectral theory developed by Karlin and McGregor (1959), continued fractions and
canonical moments.

1. Introduction. Let (Xn)nem, denote an irreducible random walk with state space
E = {0,1,...,N} and one-step transition probabilities Pj,qj,7j for jumps down, up and
hold. If E = INy we formally define N = 0o and assume 4 >0, pjy1 >0 p;+q;+
;3 <1 (j 20)and pp = 0. In the case of a finite state space (N < oo) we assume
>0 (j=0,...,N-1), gy =0, ;>0 (j =1,...,N) and 5y = 0. The possible
inequality p; + ¢; + 7 < 1 is interpreted as a permanent absorbing state :* which can be -
reached from state 7 with probability 1 — Pi — §i — ;. It is shown by Karlin and McGregor
(1959) that the n-step transition probabilities of this process can be represented as

1 r0).(x e T
Pl = P(X, = jlX, = i) = 315 9(2)Q4 (2)dy(z)
J21 Q¥ (2)dy()

where 1 is a distribution function on the interval [—1,1] called the spectral measure of
the random walk (X, )new, and Q;(z) is a polynomial of degree j defined recursively by

QO(-T) = ]-7 Q—l(x) = 01

(1.2) TQn(z) = GnQnt1(z) + TaQn(T) + PrQn—1(z) (0 S n < N).

(1.1) 1,jEE
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When N < o0, gy = 0 and Q N+1(z) is left undefined. The last equation then imposes
a condition on ¢ in that the support of ¢ is on those z values for which zQn(z) =
PN@N-1(z) + N QN (). |

The distribution v has infinite support if and only if the state space of the walk is
INy. If i = 0 and n < j, it follows from (1.1) that the polynomials Q;(z) are orthogonal
with respect to the spectral measure . Multiplying (1.2) by Q,—;(z) and integrating then
shows inductively that

! p Dk :
/ Qia)dp(e) = PLcPe
-1 q0 ... qk—1

Moreover, the distribution 1 is determined by its moments

1
(1.3) . Cn =/ z"di(z) = Py n=012,...
-1

which coincide with the return probabilities of the random walk from state 0 to state
0. In this sense every probability governing a random walk on the nonnegative integers
determines a distribution function % on the interval [—1,1] by its return probabilities
from state 0 to state 0. However, a distribution function ¥ on the interval [—1, 1] is not
necessarily the spectral measure of a random walk for which (1.1) is valid. The problem
of characterizing all spectral measures has been investigated by Whitehurst (1982) and
Van Doorn (1992). If ¢ is in fact the spectral measure of a random walk an important
problem is to characterize all random walks on the nonnegative integers with the same
spectral measure 1. Because v is determined by its moments it follows from (1.3) that this
problem is equivalent to the characterization of all random walks corresponding to a given
sequence (P(ﬁ))n=o,1,2,,,_ of return probabilities from state 0 to state 0. A partial answer to
this question has been given by Karlin and McGregor (1959). These authors showed that
the correspondence between the symmetric distribution functions on the interval [-1,1]
and the random walks on {0, 1,2, .. .} with reflecting barrier at the origin and one-step up-
and downward probabilities ¢; and p;, pp = 0, for which p; +¢; =1 (5 > 0), is one to
one.

In this paper we study this relation in more detail by using certain quantities which are
in one to one correspondence with the moments ¢n of distribution functions on the interval
[—1,1] and are called canonical moments. A short review of this theory is presented in
Section 2. This is used in Section 3 to provide an alternative proof of the Karlin and
McGregor representation which does not rely on the L2-theory of self-adjoint operators.
These results are applied in characterizing the distributions on [—1,1] which are spectral
measures of a random walk. Finally, in Section 4 we determine all random walks on the
nonnegative integers such that (1.1) is valid for a given spectral measure ¥ on [—1,1]. It
is shown that a random walk corresponding to a given spectral measure 1 is unique if and
only if the process is recurrent. In the transient case all processes corresponding to a given
¥ are described in terms of their one-step transition probabilities.
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2. Canonical moments, continued fractions, orthogonal polynomials. In this
section we briefly provide some background material which is necessary for proving the
results in Section 3 and 4. For more details the reader is referred to Skibinsky (1986)
or to Dette and Studden (1996). For a distribution function ¢ on the interval [—1, 1]
with moments ¢; = f_ll idp(z) (5 =0,1,2,.. .) let cj' denote the maximum of the jth
moment fil zldu(x) over the set of all probability measures g having the same given
moments c1,...,¢;j—1 and let ¢; denote the corresponding minimum. The jth canonical
moment of the distribution ¢ is defined as

cj—c

J . ‘
pi=—F—=- J=12.3,...

if c; < c}' and left undefined if c}-" = ¢;. The measure 9 has infinite support if and
only if its canonical moments satisfy 0 < p; < 1 for all j € IN. If ¢ has finite support
the canonical moment sequence is of the form py,...,pr_;, px for some k > 1, where
0<pi<l,t=1,...,k—1and py = 0 or 1. There is a one to one correspondence
between the ordinary and canonical moment sequences, and consequently a distribution
1 is determined by its canonical moments (see Skibinsky (1986)). More precisely, for
every sequence (pi)renv € (0,1)V there exists exactly one measure ¥ (on [—1,1]) with
infinite support and canonical moments (pg)repv. Similarly, every “terminating” sequence
(P1,.-.,pk) € (0,1)*71 x {0,1} corresponds to exactly one measure with finite support.
Canonical moments are closely related to the orthogonal polynomials with respect to P
and to the continued fraction expansion of the Stieltjes transform of 1. More precisely the
monic orthogonal polynomials with respect to the measure di(z) can be found recursively

by Po(z) =1, Pi(z) =z +1-2G
(2.1) Pk.|.1(:c) = (:II + 1- 2C2k - 2C2k+1)Pk(37) — 4C2k—1C2kPk—1($) k = 1,2, .o
where (1 = p1, (j = ¢j—1p; ( 2 2)and ¢; = 1 —p; (j > 1). The ability to write the

recursive equations in (2.1) in terms of the canonical moments is essential in the results to
follow. The continued fraction expansion of the Stieltjes transform of ¥ is given by

(2.2) / d(z) _ LI 4616 | 4l |

1z—z [z4+1-20 [241-20—20 |z+1-20C—2C

where z € €'\ [-1, 1] and the continued fraction on the right hand side converges uniformly
on every compact set with positive distance from the interval [-1,1]. Note that the con-
tinued fraction in (2.2) terminates whenever p; € {0,1} and that the polynomial in the
denominator of the nth approximant is precisely P,(z) defined by (2.1). The sequence of
polynomials Py(z), Pi(z),... will terminate at Pyy1(z) if (an+1(an42 = 0. This is the
case if ponv = 1, pan41 = 1,pan+1 = 0, or payy2 = 0 and the zeros of the polynomial
Pn41(z) give the support of the measure . '



From the Karlin McGregor representation (1.1) we obtain in combination with (2.2),
a continued fraction expansion for the generating function of the return probabilities from
state 0 to state 0, i.e.

Py(z) = ) Ppe"
n=0

_ 1 | 4¢1(22” | 4(3(47? |
1+ -20)r [T+ -2G-20G)z [1+(1-20-206)-

(2.3)

For alternative derivations of this continued fraction expansion see Good (1958) or Flajolet
(1980) who used probabilistic and combinatorial arguments.

3. The Karlin McGregor representation revisited. In the following let p,, gn, 7
denote the one-step down-, up- and holding transition probabilities of a random walk on
the nonnegative integers such that pp = 0, g + 7 < 1 and Ppi+7i+q <1 (j €E).
Similarly, p']-,q_’i, r_’7- will always denote one-step transition probabilities of a process such
that pp =0, go+ro=1, pj+rj+gj=1 (0<j<N).

Definition 3.1. A distribution ¢ on the interval [~1,1] is called a spectral measure or a

random walk measure if and only if there exists a random walk (X,)nemw, on the nonnega-

tive integers with one-step down-, up- and holding transition probabilities D, 45,75 (Po = 0)

such that one of the following two conditions is satisfied

(A) The polynomials Qn(z) defined by (1.2) and the transition probabilities of (Xp)nemn
satisfy the Karlin McGregor representation (1.1).

(B) The polynomials Qn(x) defined by (1.2) are orthogonal with respect to dy(z).

Note again that (B) is obtained from (A) by putting ¢ = 0 and n < j in (1.1). To show
the converse the equations (1.2) are written in the form

2Q(z) = PQ(z)

where @) denotes the column of polynomials Qo(z), @1(z),... and P is the matrix of one
step transition probabilities. The sequence of polynomials terminates at Qn(z) if N < oo.
A simple iteration gives

(3.1) +"Q(z) = P"Q(z).
If the polynomials in (1.2) are orthogonal with respect to the measure dy(z) then the
representation (1.1) is obtained by multiplying the (i + 1)th row of (3.1) by Q;(z) and

integrating with respect to the measure dy(z).
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The polynomials in (1.2) are more conveniently put in monic form as Py(z) = 1
P(z)=z—7Fpandfor1<n<N

(3.2) Pas1(2) = (2 — 7a)Pa(2) = Gn1BnPa1(2).

If N < o0, Pny1(z) is formally defined by (3.2).

It is important to note that the measure 4 on the interval [—1, 1] uniquely determines
the polynomials in monic form and the polynomials are uniquely determined by the coeffi-
cients 7, and §n—1pn. Thus the polynomials in (1.2) or (3.2) are orthogonal with respect to
some distribution 1 on the interval [—1, 1] if and only if for some set of canonical moments
we have

ro = —142¢;
(33) Th = -1 + 2<2n + 2C2n+1 1 S n S N .
dn—1Pn = ‘4<'2n—1c2n

All solutions of these equations for {p;, i, i }icr give the same monic orthogonal polyno-
mials and hence will have the same spectral measure.

These equations are more readily analyzed if there is no absorption or the transition
probabilities add to one; in which case the mapping from the set {p;,q;,7;}icr to the

canonical moments turns out to be one to one. This normalization is accomplished by
dividing (1.2) by @n(1). Define transition probabilities

' Qn+1(1)— R y Qn—l(l)— n
(34) . qdn = Qn(l) dn, Tp = Tn, Pn = Qn(l) Pn ( EE)

where, in the case of a finite state space (N < o), ¢)y = 0. The “standardized” polynomials

(3.5) Ro(z) = g:g; 1<n<m),

then satisfy the recursion
(3.6) TRn(z) = ¢, Rnt1(z) + r,Ru(z) + pl, Rn—1(). 1<n<N.

Clearly ¢;,_, P}, = Gn—-1Pn. Also Ry(1) =1 and (3.6) imply p, +7r/,+ ¢, =1for 1 <n < N
which proves the following result.

Lemma 3.2 The transition probabilities {p,,q;,, 77 }ncE defined in (8.4) satisfy (3.3) and
ro+gy=1,p,+r,+4q,=1(1 <n < N) Moreover, if the state space is finite, i.e.
N < oo, then we have ply +ryy = 1 if and only if z = 1 is a zero of the polynomial Py1(z)
defined by (3.2).



Note that by the preceding discussion the random walks with one step transition proba-
bilities {Pn,qn, n}necre and {p},, ¢}, 7, }nep have the same spectral measure. The system

7'(,] = —1 + 2(1
(3.7 @y—1Pp = 4(an—1C2n 1<n<N
r, = =14 2(on + 2C2n+1

can be rewritten as
1—ry=2q
q:,_ﬂ’;z = 4(on-1(2n = (292n—2Q2n—1)(2p2n—1P2n) .
1 -7, = 2p2n—1P2n + 2020 Q2011

In this case a simple induction shows that if pj = 0 and p), + 7, + ¢, =1for0<n< N
then

% = 2q1
(3.8) @5 = 2¢2n92n+1 1<n< N
Ppn=2P2n-1P2n  1<n<N.

Thus the solution of (3.7) for pl,, q,, r}, is unique if p}, + ¢, +r, = 1,0 < n < N.
Conversely, the solution of (3.8) for the canonical moments pg, 1 < k < 2N, is clearly
unique and an induction argument shows that

0<p2n Sp:z

3.9
(39) 1/2 <pap-1<1

1<n<N

From (3.8) it is easy to see that the canonical moments can be written in continued fraction

form as
G2n—1 = q;z—1/2|_ P'n—1/2|__ 4;—2/21_ o q0/2
(3.10) e B [ 1 [ 1 [1
pon = PR/2| _ ana/2|  @/2
=1 [ 1 1
for1<n<N.

Theorem 3.3. Let (X5)n>1 denote a random walk on the nonnegative integers with
transition probabilities pn, @n, 7rn With Po =0, pp +Tn +§n < 1 (n € E). Then there exist
a unique spectral measure 1 on the interval [~1,1)] satisfying the representation (1.1).
Moreover, for every spectral measure v there ezists a unique random walk (X,)nemw with
one step up-, down and holding probabilities p;,,q,,, 7, satisfying py =0, pl, + ¢/, +r!, =1
(0 <n < N).



Proof: The assertion is established by showing that the sequence of polynomials in (1.2)
determines a sequence of canonical moments. The corresponding distribution turns out to
be the spectral measure of the process. Consider first the case where N = co. Starting with
Di, Gi, Ti, one calculates the p}, g{, r} from (3.4) and arrives at the canonical moments given
in (3.10). Since (3.9) holds there exists a unique measure corresponding to these canonical
moments (see the discussion in Section 2). By Lemma 3.2 and the statement following (3.3)
this measure is the (unique) spectral measure of the random walk (X n)nelN,- Conversely,
for a given spectral measure (in terms of its canonical moments) the preceding discussion
shows that the solution of (3.7) is unique if p!, + ¢/, + ", =1 for n > 1.

The case N < oo requires further elaboration. From (3.1) it follows that 1 must
now be supported on the N 4 1 zeros of the polynomial Pyy1(z) which is proportional
to (z —7n)@n(z) — pNQn—-1(z). From the theory in section 2 this will be the case when
(2N+1C2N+2 = 0. This, in turn, is true when either p,y = 1, P2N+1 = 1, pan+1 = 0 or
p2N+2 = 0. For the case n = N we have from (3.7) and (3.8) the equations

1-ry= 2P2N—1P2_N + 2¢2N 2N 41
PN = 2paN—1P2N

which shows that py + rjy = 1 if and only if ¢oxgan4+1 = 0. Thus if PN =1or poy < 1
and pan+1 = 1 the measure 9 is determined by its canonical moment sequence which is
obtained from (3.10) (note that (3.9) implies poy > 0). If

0<1—7N—pDPN =2¢2NG2N+1

then poy < 1 and psn41 < 1. By (3.9) pay > 0 and we either have P2N+1 =0 (gany1 =1)
or 0 < pan+1 (g2nv+1 < 1) and pyn4o = 0. Thus in all cases the measure % is defined by its
canonical moment sequence which terminates with either p,y = 1, P2N+1 =1, pan41 =0

or pan42 = 0. n

Note that the second part of Theorem 3.3 extends a result of Karlin and McGregor (1959)
who showed a one to one correspondence between the symmetric distribution functions on
the interval [—1, 1] and the random walks with infinite state space and transition probabil-
ities satisfying ¢o = 1, p, + ¢, = 1 (n € E). The following result characterizes a spectral
measure in terms of its canonical moments. The proof follows from the previous discussion.

Proposition 3.4. Let ¢ denote a probability measure on the interval [—1,1] with canonical

moments p1, ps,...
a) 1 is the spectral measure of a random walk if and only if

(311) 2P2n—1p2n + 2q2nq2n+1 <1

whenever 1 <n < N.



b) If y is a spectral measure of a random walk, then the canonical moments of odd order
satisfy pan—1 > 1/2 whenever 1 <n < N.

Some further remarks when N < oo are in order. By Lemma 3.2 and the proof of The-
orem 3.3 it follows that rly + ply = 1 if and only if z = 1 is a support point of 3 or
equivalently ganyg2n+1 = 0. In this case poy =1 or pay4+1 = 1. This is in agreement with
the general theory of canonical moments since in these cases the corresponding measure
must have mass at the upper end point z = 1 (see Skibinsky (1986)).

From the equations (3.3) it can be shown inductively that

do < 2q1
drn < 2¢2n92n+1 1<n<N-1.
Pn 2 2P2n—1P2n 1<n<N

If ¢2v¢2nv4+1 = 0 an induction in (3.3) from the top end shows the reverse inequalities.
Equality must then occur and p, + §» + 7, = 1,0 < n < N. Thus in the non-absorbing
or recurrent case the process is actually unique. Moreover, if there is a strict inequality
Pn + Gn + Tn < 1 for some n then ¥y + pn < 1. It then follows that all of the processes
corresponding to a given 1 (with finite support) are either recurrent (in which case the
process is unique) or they are all transient. The recurrent processes correspond to pox = 1
or pon+1 = 1 while the transient processes correspond to pay+1 = 0 or poyy2 = 0.

Finally the case pon = 1 is further specialized. It was shown in (3.9) that pap—; > 1/2
forall1 <n < N. If pony = 1 one can again start with the value n = N and show similarly
that pap—1 < 1/2 so that pyp—y = 1/2 for 1 < n < N. In this situation 7, = r/, = 0,
0<n <N, g =gqy=1and py = ply = 1. The spectral measure v is symmetric W1th
N + 1 support points including —1 and +1 (see Skibinsky (1986)).

4. Random walks with the same spectral measure. In this section the set of
solutions of (3.3) is described more fully. The random walks with holding probabilities
n = 0 for all n € E are of some special interest. If 7p = —1 + 2¢; = 0 then p; = 1/2,
and 7 = —1 4 2(2x + 2(2x+1 = 0 implies inductively that psxy; = 1/2 whenever the
canonical moments are defined. Conversely, if all canonical moments of odd order are 1/2
then 71 = 0 for all £ € E. This, in turn, is equivalent to the spectral measure 1) being
symmetric. Equation (3.3) then reduces to

(4.1) §i-1Pi = q2i—2p2i 1€ E (go:=1)

Lemma 4.1. Ifr; =0, p;+ G =1, (o =1, pv =1 if N < o) then the canonical
moments of the spectral measure ¢ satisfy

_ 1 _
(4.2) Pri-1=5, DPi=p2i.
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Note that if the measure 1 is symmetric then

1 1
j / 2rdi(z) = /0 ¥ dibo(y)

-1

where 1y is obtained from 1 via the transformation y = z2. The canonical moments
pi of the measure ¢y can be shown to be f; = pa; (see Dette and Studden (1996)) in
which case the canonical moments of the measure 1)y are precisely the downward transition
probabilities, i.e. p; = ;.

Equations of the form (4.1) are closely related to the theory of chain sequences. See,
for example, Wall (1948) or Chihara (1978). A sequence ai,a3,as,... is called a chain
sequence if there exists another sequence gy, ¢; ... such that

(4.3) (1 - gi_l)gi = a; ') 2 1

where 0 < ¢g; < 1. Here, we will discuss only the case where 0 < g; < 1. The sequence
(gi)i>o is called a parameter sequence for the chain sequence. Any chain sequence has a
maximal and minimal parameter sequence. The minimal sequence (mi)i>o is clearly given
by choosing my = 0 and recursively calculating the other m;. The quantity gy cannot be
chosen too large, otherwise the remaining g; will not be in the interval (0,1). The maximal
parameter sequence (Mi)iZO is given by

Q41 ait+2
. M;=1- - —_ .
(4.4) F—Il ’—'1

In the following discussion this expression will be shown to be equal to

1
Tita )

(4.5) Mi=1-(1-g;)(1 -

where T;4 is defined as

oo £
(4.6) Tp=1+ Y J[ 2

f=it1k=i+1 1—gx

with the convention to be +oo if the series diverges. Using (4.5) and observing T; =
1+ gi(1 — gi)"'Ti41 it is then easily seen that (1 — M;_1)M; = a; and that g; < M;; in
which case the sequence (M;);>¢ is the maximal parameter sequence. Since the results
from the theory of continued fractions, needed to show that (4.4) and (4.5) are the same,
are relatively neat and simple we include them here. They are also used in verifying parts
of Theorem 4.4 below.



Lemma 4.2. If p; >0,1<i<n, then

Y p | p2 | . pa -
4.7 ’J_ _ . - 1+
(+7) 1 |1+P1 |1+pz 14 pn E=1P1 pe
Proof: The identity follows by noting that
1] px]. 1
= 1 = —_
sk(w) ok I% or | W‘
- and that both sides of (4.7) are given by s1 053 0-+- 035,(1). =

Note that since p; > 0, the expression in (4.7) is increasing with n. Therefore, if n — oo,
the limit is well defined if we include the possibility +o0o. The expression for the maximal
sequence (M );>o in (4.5) is now an immediate consequence of the following corollary.

Corollary 4.3. If0<g;<1,i>1, then

(4.8) S=(¥_|%J_‘_(1__lm_... =1+§_:1:[(1i]_igi)

Proof: Equation (4.8) follows from (4.7) by writing the continued fraction for S as

fl_l_ Pr_ | P2 |
1 |14+p0 [14p,

where p; = ¢:/(1 — g:). "

The equations

ro=—-142¢
(4.9) r = —1 4 2Ck + 2C2k41 1<k<N
Jk-1Pk = 4C2k-1C2k
resemble the chain sequence except 7; > 0 and instead of p; +§; = 1 we have g; +p; +7; < 1.

In order to describe the set of all transition probabilities {pn,qn,7n }necE satisfying the
system of equations in (4.9) define (for a given set of canonical moments)

2C2j+1025+2 | C2j+3C2j+4 |
4.10 h;:= J J — ] J -
(4.10) T = Gojre — Gojrs 11— Cajga — Cajgs
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(j=0,1,...,N —1) and

(4.11) Si=1+3 J[Z k=1,2,....

Note that in the case of a finite state space (N < oo) some care is necessary in these
definitions. If the sequence of canonical moments terminates with p; = 0 for [ € {2N +
1,2N +2} then the continued fraction and the series terminate. If p; = 1 for [ € {2N,2N +
1} a simple induction shows for the continued fraction h; = 2¢2;¢2j4+1. In this case we
formally define S; = oo (j = 1,2,...) and 1/oo = 0. The reason for this convention
becomes clear from the following result.

Theorem 4.4. Let ¢ denote a speciral measure on the interval [—1,1] with canonical
moments satisfying (3.11). A random walk on the nonnegative integers with one-step
down-, up, and holding transitions probabilities Py, Gn, 7n has ¥ as its spectral measure if
and only if {Pn,qn,7n ncE satisfies (4.9) and

1
(4.12) 2(q1 — 5_1) = ho<q < 2q1

(4.13)  2(q2j92j+1 — 3 ) = h; < g < 2{1—C2J—C2j+1*—cz—1. 142]}
2j+1 9i-1
< 2¢2925+1

holds for all 0 < j < N. Moreover, if g, = hj, for some jo € E, then g; = hj for all
Jo<j<N.

Proof: We first verify the right hand inequality for g;. Note that the first two equations
in (4.9) imply go <1 — 7 = 2¢; and

Pi+ @ <1—-75=2(1— (25 — (2j+1)
so that by the third equation in (4.9)

2C2j-1C2j)
.

(4.14) 3 <2(1 — (25 — (2541 —

The choice §o = 2¢; and successively using equality in this bound produces the maximal
solution for g; which is 2¢2;¢2;41 for all 1 < j < N. Note that, by Proposition 3.4 the odd
canonical moments of the spectral measure satisfy pyi41 2> 1/2 which shows g; < 1.

To prove the left hand inequality on g; we use (4.9) and write

iy = Semb b Sl _
Dj+1 1 -7 1 —(aj+2 = C2j+3
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Combining (4.15) with (4.14) and replacing j by j + 1 yields

2¢2; ; _ o : :
(4.16) . 1 — 52_7'+3Ci]z4. S q]+1 S 2{1 - C2]‘+2 —_ C2j+3 —_ M}.
2344 2745 q;

Looking at the extremes in (4.16) produces

_ 2{ Ci+r1Cej42 | C2j+3Cajte |} = by,

g; >
7 [1— o2 — Cojts |1 — Cojya — C2j+5

Repeating this argument shows that for all 0 < j < N and k> 1 with 2j + 2k < N

_ Caj+1625+2 | C2j+28—1C2j+2k |}
4.17 > 2 —e— = hik.
(417) 4 {|1 — (242 — C25+3 11— Cojtar — Cojart ?

It is easy to see that h; i is increasing with k£ which proves that in the case N = oo the
continued fraction in (4.10) converges and its limit k; is also a lower bound for g;. If the
state space is finite the continued fraction in (4.10) terminates because {sn+1{an+2 = 0.
To verify the value for h; in (4.12) and (4.13) we restrict ourselves to the case of an infinite
state space. The result for the finite state space follows by the same argument observing
the convention in (4.10) and (4.11) for N < oo. Note that by a standard contraction
formula

(+.18) |1 —1 Cll |1 '—CClzcz— G ‘J (_1 /—Cz‘

(see Wall (1948)) so that by Corollary 4.3

1

__—_=S
1—¢ —ho/2 71

which gives the equality in (4.12). To complete the proof we verify the value for h;, the
other cases are treated similarly by induction. From (4.10) and (4.12) we have

hy = 2{1—-(2—(3— lez } = 2{q293 + p1p2 — p1q1p12 ;
ho/2 -+
and §; =1+ %;’:—S]‘.H implies
+p1S
Pip2 — qulplz = pips — 1711721 = pipg (1 L SPl 2 )
N5 1—111+P152 pl( 2_1)
N P2 _ _ 2
(Sz — 1) (LS;;) S
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Combining these identities yields
9
hi =2 - =
1 {9203 S, }

which is the required representation in the case j = 1.
Finally, if h; = g; for j = jo, then (4.10) and (4.13) yields for j = jo + 1

_ 2C2j0+1C250+2
Rjot1 < o1 S 2|1 — Cajo+z — Czjo+3 — —Lhi— = hjo+1
Jo

which shows that there is equality also for j = jo +1 < N. n

Theorem 4.5. Let (X,)new denote o random walk on the nonnegative integers and let
1 denote the corresponding spectral measure of (Xn)nen. (Xn)new 18 the unique random
walk with spectral measure ¥ if and only if (Xn)nemw 13 recurrent.

Proof: If there is to be a unique random walk then the two bounds for gp in (4.12) must
be equal. Otherwise one can construct an infinite class of processes with the same spectral
measure by choosing §o € [ho, 2¢1] arbitrarily, solving successively (4.9) for p; and putting
G = 2{1 — (o5 — C2j+1 — 2C2j—1(2j/Tj—1} G =1,2,...,N —1). If ho = 2¢; then 51 = o0
and the proof of Theorem 4.4 shows §o = 2q1, and g; = g2jq2j+1 (j = 1,2,...,N — 1),
B; = 2p2j—1p2j (j = 1,2,...,N). On the other hand {p;,§;,7;}jcE satisfies (4.9) which
implies p; +§; +7; =1 (j =1,2,...,N —1, po = 0). Now let Fy(z) denote the generating
function of the first return to zero, then Py(1) = 1/(1— Fy(1)) and recurrence is equivalent
to Py(1) = co. From (2.3), the contraction (4.18) and Corollary 4.3 we observe Py(1) = S
which shows recurrence and proves the assertion. "

Corollary 4.6. A random walk (X, )nemnw on the nonnegative integers is determined by
its return probabilities {Pi}n=0,1,... from state 0 to state 0 if and only if 1t is recurrent.

Remark 4.7. Note that in the case of an infinite state space and no absorption (p +
¢; + r; = 1) the condition of recurrence in terms of S1 can easily be rewritten into the
commonly used criterion

(o]
the random walk is transient if and only if E —
—o ™k

k=0

where = (gb...4q%_1)/ (P} ---P}) (k> 1), mo =1 To see this assume that the random
walk is transient (S7 < 0o) then

1+§:P1---Pk _ 1+I_’l+§:(P1---P2k+P1---P2k+1)
by B9k @ o \Ne--Q2k 01

Sy

I}

Q241

=1

2 > .. D
= —,— Z g ((I2k+1 + p2k+1) = 22 —
%o k=

0 1™k
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where we have used (3.8) to go from the first to the second line.

Example 4.8. Consider the (p g,7) random walk (X,)nemw on the nonnegative integers,

that is
Pi=p (Gj21), pp=0
ri=r (J21), mp=1—¢
(4.19) ;=9 (j=20)

where p, ¢, r are positive with p+ ¢ +r = 1. If p > ¢ the walk is recurrent and there exists
no other random walk with the same return probabilities Pgy from state 0 to state 0. If
q > p, there exist an infinite class of random walks with these return probabilities. By
Theorem 4.4 and (4.9) the upward transition probabilities satisfy for all j > 0

_ pe | pg | pq | _ p+aqg—Ip—d
g: > - - —_. =
P N-r 17 J1-r 2

=D,

while the holding probabilities are given by

_ 1—¢q ifj=0
"J=*1+242:‘+C21‘+1="3={r Tt

Thus we obtain
NM-G]=1-rg=g¢
[1— 25 — C2j+1 — 2(25-1€2/Tj—1] =P+ 4 — Pe/T;—4

P; =pq4/q;1 (7=1)
=1-gq, Tj=m, (.721)

-
IN
1Y)
LN
IA
NN

(4.20)

and every random walk (¥, )nev with one-step transition probabilities (P,,,G,,7x) satisfy-
ing (4.20) has the same return probabilities Pjy from state 0 to state 0 as (X, )nem. For
example, a two parametric class of such processes is obtained by putting g, = p which
implies by Theorem 4.4 that §; = p (j > 2) and p; = ¢ (j = 3). The holding probabilities
are 7o = 1 — ¢, 7; = r, the downward transition probabilities (p;,p2) are determined by
P = pq/gi—1 (j =1,2), while (gy,7;) vary in the two dimensional set

pq
{(s,t)lp<s<yq, p<t<ptg-~"}

Similarly, by putting ¢;, = p, we obtain a jo-dimensional class of random walks with the
same return probabilities from state 0 to state 0 as (X )nem.
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The “extremal” random walks when ¢ > p should also be singled out. The maximal
value for g; is ¢ and the resulting random walk is given by (4.19). The minimal value is
given by g; = p and the resulting process has

pi=q (j=1)
(4.21) Fi=r (j21) ro=1—¢
gi=p (j20)

Note that the process in (4.19) is transient if ¢ > p and has no absorbing state, while
the process in (4.21) would be recurrent except for absorption from zero since go + 7o =
1—(g—p) < 1. The absolutely continuous part of the spectral measure 1 for these processes

has the density
1 +/4pg—(z —r)?
27p 1—2z

if (z —r)? < 4pq
while there is an additional jump of size 1 — ¢/p at the point z =1if p > ¢.
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