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Abstract

The Grassberger-Procaccia (GP) empirical spatial correlation integral, which
plays an important role in dimension estimation, is the proportion of pairs of
points in a segment of an orbit of length n, of a dynamical system defined on
a metric space, which are no more than a distance r apart. It is used as an
estimator of the GP spatial correlation integral, which is the probability that
two points sampled independently from an invariant measure of the system
are no more than a distance r apart. It has recently been proven, for the case
of an ergodic dynamical system defined on a separable metric space that the
GP empirical correlation integral converges a.s. to the GP correlation integral
at continuity points of the latter as n — oo. It is shown here that for ergodic
systems defined on R¢ with the ‘max’ metric that the convergence is uniform
in r. Further, a simplified proof based on weak convergence arguments of the
result in separable spaces is given. Finally, the Glivenko-Cantelli theorem is
used to obtain ergodic theorems for both the moment estimators and least
square estimators of correlation dimension.

Keywords: Glivenko-Cantelli theorem, fractal, almost sure convergence,

moment estimators, least square estimators, dynamical systems, chaos.
Short Title: Ergodic Theorems



1 Introduction

Let u be a probability measure on the Borel sets B of a metric space (X, p).
Set S, = {(z,2') € X x X : p(z,2') <r}. The Grassberger-Procaccia (GP)
spatial correlation integral C (r) of p [13] is defined to be

C(r) = x (S, (1)

where the measureability of S, relative to the product o-field follows from
the continuity of p. Clearly, C (r) is the probability that two points sampled
independently from p are no more than a distance r apart. Let T be a
measure preserving transformation with respect to y. Put z, = T(zp-1) =
T™)(x,) for some zo € X, where T™ is the nth-fold composition of T' with
itself and let

n-1

1
po = - E 6“, (2)

k=0
where 0, is the unit point mass at z. The GP empirical spatial correlation
integral Cy, (r; o) [13] is given by

Cn (r;mo) = p3> X i (). (3)

C,, (r; o) is the probability that two points selected with replacement from
the first n points of the orbit of 2o are no more than a distance r apart. 1
The main result of this paper is the following Glivenko-Cantelli theorem.

Theorem 1 If X = R¢ and p is the ‘maz’ metric, then ergodicity implies

lim sup |C,, (r; 7o) — C'(r)| =0 (4)

n—00 r
a.s. fL.
The correlation integrals arise in the empirical studies of dynamical systems.

One objective in such studies is the estimation of invariants of a system from
the observation of time series produced by it[9]. These, in turn, are used to

1Some times the GP empirical correlation integral is defined to be the probability that
two points selected with out replacement from the first n points of the orbit are no more
than a distance r apart. The difference in these two quantities is O(n~1!). Hence the
conclusions of this paper apply equally to either.



characterize the system. A popular invariant to estimate is the correlation
dimension v [13] which is defined by

log C (r)

o ()

v= lim ,

r—0+ logr
whenever the limit exists; it is undefined otherwise. (For an up to date
review ofdimension estimation, see Cutler [6].) The above result is used
to obtain erogdic theorems for the moment estimators and standard least
square estimators of correlation dimension. It is shown that these estimators
converge almost surely to v, under the conditions of Theorem 1, if and only
if there exists positive constants cand ry such that,

C(ry=cr’ ifr<r,. (6)

This property is called ezact scaling. In Serinko [19], it is shown how to mod-
ify the least square estimators to obtain an estimator of correlation dimension
which is consistent under the assumption of the existence of .

The choice of metric space in Theorem 1 is that most often encountered
in practice. The primary reason for using the ‘max’ metric instead of the Eu-
clidean metric is that fast algorithm [?] exists for computing C,, (r; zo) in this
case, while there is no price to pay for this convenience since the correlation
dimension is the same in either case.

Often one is concerned with the image of a segment of an orbit under some
function, rather than the orbit itself. Theorem 1 can easily be generalized
to this setting. To do so, let (2, F,m,S)be a dynamical system and let
(Y, 7) be a metric space. Take h measureable from  to Y. The QP spatial
correlation integral of mh~!is given by,

C® (r) = mh=* x mh=1(S"), (7)

where S| = {(y,4") €Y xY :7(y,9') <r}. Put w; = S®)(wp) for some
wo € Q@ and yi = h(w), k= 1,2,.... The sequence {yx} is the image of the
orbit of wp with respect to A. Set :

mant = L5705 ZL¥, (8)
n - n = Wi - n = Yk °

The empirical GP spatial correlation integral for the image of the orbit is
given by,
CM (r;wp) = m@oh=1 x m&h~1(S"). (9)
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The modification of Theorem 1 is as follows.

Theorem 2 IfY = R? and 7 is the ‘maz’ metric, then ergodicity of
(92, F,m, S) implies,

lim sup |C,(lh) (r;wo) — C® (r)l =0 (10)

n—o0 p

a.s. m.

Theorem 2 is of particular value in the understanding [6, 7] of the OP phe-
nomena [15]. In that case, = C[0,00), S is the left shift, and A is a finite
dimensional projection.

A result [17] in the same direction as Theorem 1 is the following,

Theorem 3 If (X, p) is separable, then ergodicity implies
lim, Cu (ri20) = C (1), (1)
a.s. p at continuity points of C (r).

In addition, Aaronson et. al. [1] used a weak convergence argument to show
that C, (r; o) converges a.s. pto C(r)at continuity points of C (r)when
X = R'. In fact, as shown here, this argument yields a simple proof of
Theorem 3. The question of uniform convergence when (X, p)is separable
is unanswered. Finally, it should be noted that Denker and Keller [8] have
shown for certain weak Bernoulli dynamical systems in R¢ that

Vn[Co (r;20) — C(r)] (12)

converges weakly to a normal distribution for each r.

The paper is organized as follows. The ergodic theorems for the estimtors
of correlation dimension are stated and proven in the next section. The
proofs of Theorems 1 through 3 are given in section 3. Finally, the proof of
a lemma used in the proof of the Theorem 1 is presented for completeness in
an appendix.



2 Ergodic Theorems for the Estimators

The following definitions are needed below. For any distribution function
F(r) and real r', such that F(r') > 0, define the truncated distribution
function with truncation point ' F(r|r') by

o) it <o

F(rl) = { F(r)

1 ifr>r

(13)

and the quantile function F~! by

FYu)=inf{zeR:F(z)>u} 0O0<u<l, (14)
F7Y(0) = El_i)ror}r F7(e). (15)

The following corollaries, which are standard results in the empirical pro-
cess literature, will be used in the examples of this section. They are stated
for completeness. Theorem 1 and the fact that C, (r;z¢)and C (r) are dis-
tribution functions, imply that C, (r;zo) converges weakly to C (r)a.s. pu.
Therfore one has the following.

Corollary 1 Under the assumptions of Theorem 1,

lim [ £(r) dCa (o) = [ £(r) dC (r) (16)
a.s. p for all f which are bounded and continuous on the support of dC (r)

Corollary 2 Suppose that C(r) is strictly increasing for s < r < t. Then
under the assumptions of Theorem 1,

lim sup |C;'(u;z0)—C71(u)| =0, (17)

n—»00 uy <ulug

a.s.pu, where C(s) < uz < ug < C(t). Further, if —00 < s < t < o005
C(s") =0, s <s; and C(t) =1, then equation (17) holds with uy = 0 and
Uqg = 1.

This is a consequence of Theorem 1 and the uniform continuity of C~! on
[uh u2] .



Ezample 1. MOMENT ESTIMATORS [20] [21]. Suppose that the GP
spatial correlation integral satisfies

C(ry=a(r)r*, 0<r<r, (18)

for some ry > 0, where a(r) is a slowly varying function, i.e. lim, o+ %(tr—r)l =
1,t> 0. Set
K(5) dc (rlr) if p>0,

r!

J§'log (3) dC(rlr)  ifp=0. (19)

M (plr') = {
The slow variation of a(r) is equivalent to the existence of the following limit
M (p) = lim M (p|r'), (20)

p > 0. (See Theorem 1 of Feller [11, p. 281].) Under the assumption of slow
variation, it can be shown [21, 20] that

—1/M (p) ifp=0.
The first step in this estimation procedure is to approximate v by
n o [ pM(plr')/[1 =M (p|r')] ifp>0,
B (plr') = { —1/M (p|r) if p=0, (22)

for some 0 < 7’ < ro. The second step is to estimate 5 (p|r')by

ooy J PMa(p2o|r') [[1 — My, (p; zolr’)] i p > 0,
Br (p; zolr') = { —1/ M, (p; zo|r") if p=0, (23)

where

(&) dCu(rymolr)y i p>0,

r

p 24
[0log (5) dCa(riaol) itp=0. Y

M, (p; zo|r') = {

Takens [20] was the first to propose f, (p; zo|r') with p = 0 as an estimator
of v. However, he only considered the special case of constant a(r) and he



did not consider its almost sure limit under realistic assumptions on the dy-
namics. Wells et. al.[21] were the first to consider the case of p > 0. They
were able to find almost sure limits under strong mixing, for a slightly modi-
fied estimators, which are based on two independent orbits of the dynamical
system. With Theorem 1 it is possible to obtain the almost sure limits under
ergodicity.

Lemma 1 Under the conditions of Theorem 1, if p > 0, orp =0, v > 1
and C (r) is continuous in a neighborhood of the origin, then

Jim 8. (p; zolr') = B (pIr'), (25)

a.s. p. Further, B, (p; zo|r') converges to v a.s. u if and only if C (r)satisfies
ezact scaling and r < ro.

Proof: If p > 0, it follows immediately from Corollary 1 that

Jim M, (p; zolr') = M (p|r') (26)
a.s. . Therefore ,
lim B, (p; zo|r') = B (pIr') (27)

a.s. ji.

On the other hand, note that logr is not bounded on (0,7¢), therefore
if p = 0, Corollary 1 cannot be used to obtain the almost sure limit of
M,, (p; zo|r'). Instead, Corollary 2 will be used to show that,

lim / " togr dC, (r; zolr) = / log 7 dC (r|r') (28)
: 0

n—oo 0

a.s. . Two changes of variables and the concavity of log z give
/r log r dCy, (r; xo|r") — /T logrdC (rjr') =
0 0

1

/ [log C; (u; zo|r') — log C~* (u|r')] du <
0

1O (u; zolr') :1:0|r')
log [/ Tl du (29)

It follows from Theorem 1 that C,, (r; zo|r') converges uniformly to C (r|r')
a.s. p. This together with the assumed continuity of C (r)near the origin
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implies that C; (u; zo|r’') and C~1 (u|r’ ) obey the conclusion of Corollary 2
over [0,1]. Further, v > 1 implies that fo —W du < oo. Therefore one

has

1 /
1im|/ Gt (wzol) y )=

n—00 Cl( |’)
) 101u:1:r'—Clur'
-1 ! ! ! 1
,}H&S“plc (u; :co|r)——C (u|7‘)|><|/0 mdﬂ:ﬂ (30)

a.s. pi. This completes the proof of the first part of the lemma.

Clearly, if C (r)satisfies exact scaling then S (p|r')= v, p 2 0, if ' <
ro. Therefore the moment estimators converge to v a.s. pif ' < ro. Next,
suppose that 3, (p; zo|r') converges to v a.s. pif r’ < 1o, that is S (p|r') = v if
r’ < rg, p > 0. Then the definition of § (p|r')yields, after some manipulation,

C(r')r'" = (v +p) /OT' rP71C (r) dr, (31)

" <rp, p > 0. The right hand-side is differentiable, therefore one has

dC (r') _ ,
= vC (r'), (32)

r’ < ro. This equation has the solution,
C(r)=cr’, (33)
if r < rg, where c is a positive constant. This completes the proof.

Ezample 2. STANDARD LEAST SQUARE ESTIMATORS. Suppose that the
GP spatial correlation integral satisfies

C(r) = a(r)r”, (34)
with lim,_o+ loga(r)/logr = 0. A standard least square estimator of v is
given by

In(r;20) = v + d(r) + €,(r; 20), (35)

(f



where d (r)is the asymptotic bias, which is given by

m

a(r) = 35 0(r3)(8: - 7)/Ser (36)

1=1
and €,(r; zo) is the random error, which is given by

m

€a(r;20) = Y _(log Cn(ri; zo) — log C(ri)) (i — T)/ Sew,s (37)
i=1
and
r € D", (38)
r; = log Ty (39)
— 1 &
v(r) = loga(r), (41)
— 1 & )2
Szz - m ;(371 - :1:) ’ (42)
with
D™ = {(r1,72,...,m) € (0,00)™ : r; # rjfor some i # j,i,5 =1,2,...m}.
(43)
The estimator is the slope of the least sqaure line fit to the points
(logri,log Cp(ri;z0)), ¢=1,2,...m. (44)

As is seen in the next two results, the choise of points to which the line is fit
will effect the asymptotic accuracy of the estimator, unless exact scaling is
satisfied.

Lemma 2 1. d(r)= 0 for allr € D™ with maxi<icm i < ro, M =2,3,...
if and only if for some positive constant c

C(r)y=c” ifr<ro. (45)

2. limy_g+d(Ar) =0 for allr € D™ ,m = 2,3,... if and only if a(r) is
slowly varying.



3. Taker >0 and0 < s < 1. For eachm, let r(™ = (s™r,s™+lr ... s?m~1r),
Then

lim d (r™) =0 (46)

m—00

Proof:
(1) If C (r) satisfies exact scaling and maxi<i<m i < 1o, then it easily shown

that d (r) = 0. Next suppose that d (r) = 0 for any r € D™, with max;ci<m i <
ro. Let '

k

Ty = Zx'/k (47)
=1

Aix = xi— Tk, (48)

i1=1,2...k;k=2,3,...m. In this notation,

m

d (l‘ = Zv(ri)Ai,m = 0. (49)

=1

Note that

 _JAimat Ema—za]/m fi=1,2...m -1
At,m B { (m - 1)[.’13m _fm—l]/m if 2 = m. (50)

Substitution of equation (50) into equation (49) gives,

m m—1
S v(r)Aim = D v(ri)Aim
=1 =1

1

{3 oo 2] + () — Dl = Tl
= {5 otrdns = 2al + lr)m — Vfm =il
0. (51)

It immediatly follows that

m~-1

v(rm) = Z v(r;)/(m —1). (52)

i=1



The righthand side does not depend on 7, if maxi<i<m ri < ro. Therefore,

the lefthand side is constant for r,, < ro. Hence C (r) satisfies exact scaling.
(2) If a(r) is slowly varying, then for any r’ > 0,
,\llr& d(Ar) = Al_l_)l(l)‘{'_ Ev()\rg)A;,m

= 3" tim [o(hr) — o)) Ay

=1
=y AEI&_ log (a (Ar;) Ja (Ar") A;
i=1
= 0. (53)

Next suppose that limy_o+ d (Ar) = 0 for any r € D™, m = 2,3..... Then
considerations similar to those leading to equation (52) give

m—1

,\li.%lwt ; log (a (Ar;) Ja (Arm)) = 0. (54)

This is equivalent to
lim & (Ar1) a(Arg) e (Arm-1) _
A—=0t a (Ary) a (Ary,) a(Ary)
This equation is invariant under the interchange of indices, therefore
lim 2 (Ar))  a(dr2) e (Arm—2) a(Ary)
20t @ (Arp—1) @ (Arm—1) @ (Arp—1) a (Arm—1)

Y a(Ar1) a(Ary)  a(Arm-1) ( a(/\rm)))m

= Dtk a (Arn)a(Arm) " a(Arm) (Arm—1

= i (o)

= 1 | (56)

1. (55)

Hence, limy_o+ a (Ary,) /a (Arp—1) =1 for any r; > 0, j = m — 1,m. There-
fore a(r) is slowly varying.

(3) See Cutler [5].
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Lemma 3 Under the conditions of Theorem 1
im 7, (r;20) = d(r) + v, (57)

a.s. p. Further, v, (r;zo) converges to v a.s. pif and only if C (r) satisfies
ezact scaling and max;<i<m < To.

Proof:
One has,

lim en(r;z0) = lim ) “(log Cr(ri; To) — log C(r;))(x; — T)/ Sz (58)
i=1

= 3> Jim (Iog Cu(rs 20) ~ log O(rs)) (2 — )/ Sus
=1

By Theorem 1 and the continuity of log z, one has

lim (log Co(ri; xo) —log C(r:)) =0, (59)
a.s. . Therefore
lim 2, (r;z0) = d(r)+v+ lim e (r; o) (60)
= d(r)+v,

a.s. t. This completes the proof of the first part of the lemma.
The second part of the lemma follows from the first part and Lemma 2,
part 1. This completes the proof.

Remark 1 Ezact scaling of C (r)is not sufficient for either the moment es-
timators or the standard least square estimators to be strongly consistent.
One must also know ro. In practice, this is unlikely to be the case. Conse-
quently, even in this, the best behaved case, modifications to these estimators
are needed to make them consistent.

Remark 2 Without any assumption on a(r) one has, under the conditions
of Lemma 3,
lim lim 7, (r(m);xo) = v+ limd (r(m))

+ Jim, Jim en(<™; 20) (61)
= v,



In Serinko [19], it is shown how the limits in (61) maybe taken simula-
teously to yield a consistent estimator of v without additional assumptions
on C (r) beyond the existence of v. However, the assumption of ergodicity is
strengthen to the weak Bernoulli mizing and the almost sure limit is weakened
to a limit in measure.

3 The Proofs

Proof of Theorem 1:
First note that C, (r;zo)and C (r)are distribution functions. Therefore it
suffices to show that C, (r;zo)converges to C (r)a.s. pfor each r and that
Cn(r~,z0) = lim,_o+ Cp(r — €, o) converges to C(r~) = limeo+ C(r — ¢€)
a.s. pfor each r. The uniformity will follow from the Glivenko-Cantelli the-
orem for distribution functions [4, pp. 275-276].

In what follows fix r. It will be convienent to write

Crn (r;z0) — C(r) = /;r pZo x pZ (dz) — /Sr p X p(dz). (62)

A vertical section of S;, S° = B, (z), where B,(z) = {z' € ®?: p(z,2') < r}is
the closed ball in ®? of radius r centered at z. Therefore the measureability
of S, with respect to the product o-field along with Fubini’s theorem [4, p.
240] and the addition and subtraction of terms gives,

Ca(r;zo) = C(r) = [ o (52) o (da) - [ w(S7) e (de)
= [z (B (@) v (o) - [ (B, (=) s (do)
= [ (B @) - (B (z))] o (dw) (63)
+ [#(B. @) w2 (d2) = [ 4 (Br (2)) 1 (d2). (69)
Fubini’s theorem also yields 4 (B, (¢))€ L(). Therefore the pointwise er-

godic theorem [2, p. 13] implies that the term in (64) goes to zero as

n — 00 a.s. .
One has for the term in (63),

12



/ |,ui° (B: @) — 1 (B: (2))| o (d2) <
sup |2 (B- (2) — 1 (B- (@)
The closed balls in R¢ with respect to the ‘max’ metric take the form
B, (z)=[z1—ryz1+7] x[zz2—rza+ 7] X - X [£a — 1,20 + 7],

where z = (21, Z2, ... z4). Krickeberg[14] has proven the uniform convergence
in R¢ of Cartesian products of connected real sets, of which these balls are a
sub-family. His argument uses a theorem due to Gaenssler[12] which assumes
1.2.d observations, but only in order to use the strong law of large numbers.
One may substitute the pointwise ergodic theorem in place of the strong law
of large numbers, hence the conclusion of Krickeberg’s result holds under the
assumptions of this theorem. Therefore

ui2 (Br (@) = 1 (B: ()| =0, (65)

a.s. p. For completeness a direct proof of (65) is contained in the appendix.

It follows from the above argument that C, (r; zo) converges to C (r) as
n — oo a.s. jfor each r. This same argument works with open balls to give
convergence of Cy(r~,zq) to C(r~) a.s. p. for each r. This completes the
proof.

lim su
n—o0o T

Proof of Theorem 2:
It suffices to note that the pointwise ergodic theorem [2, p. 13] along with
the measureability of A imply that

lim meeh~? (B, (v)) = mh™ (B, (v), (66)
a.s. m, where F:(y) ={y' € R?: 7(y,y’) < r}. Consequently, the proof of
Theorem 1 carries over with y and p® replaced with mh~ and m¥h~!, re-
spectively.

Proof of Theorem 3:
The pointwise ergodic theorem [2, p. 13] gives u2° (A) converges to u (A) as
n — oo a.s. pfor any Borel set A. In a separable metric space this implies

13



that uZ° converges weakly to p as n — ooa.s. £[16, p. 53]. Again in a
separable metric space the weak convergence of uZ° to p a.s. u, implies that
pZ x p converges weakly to g X pas n — ooa.s. u[3, p. 21}. This, in
turn, implies for any f|X x X — R which is bounded and continuous almost
everywhere p X u, that

lim [ / f(2) > x pge (éz) - / f(Z)p x u(dZ)] =0 (67)

a.s. p. The theorem follows immediately from the fact that the indicator of

S, Is, is bounded and continuous almost everywhere p x pif r is a continuity

point of C (7).

4 Appendix

Lemma 4 If X = R? and p is the ‘maz’ metric, then ergodicity implies
Jim sup 432 (B, (2)) = b (Br ()| = 0 (68)

a.s. j.

The proof of this theorem uses the following result, the proof of which can
be found in Pollard [18, p. 8].

Theorem 4 Suppose that for each € > 0 there exists a finite class of func-
tions G, containing lower and upper approzimations to each g € G, for which

gL < 9 < gy, (69)

and

[ (60(@) = ger (@) u(de) < e (70)

Then ergodicity implies,

(71)

lim sup |/ (z) pZo (dz) — / g(m)y(d:c) =

n—oo g

a.s. p.

14



Proof of Lemma 4: The first step is to use the tightness of probability
measures defined on the Borel sets of R¢ to “trim-off” infinity. By tightness,
given an € > 0 there exists a compact set Kqg C X such that

n(K3) < 2. (72)

Let
K={ze X: inf p(z,2') <r}. (73)
z'€Ko

Note that K is closed and bounded and therefore by the Heine-Borel Theorem
it too is compact. One has

sup |u7? (B: (@) — (B (@))] (74)
= sup|fx I, (=) 3" (d2') = [T o) (2') 1 (d2)|
< sup|fx I, (o) 32 (d2") = Sy 5, (o) (=) 1 (da)|

+ Sél,?c lfoE(z) (') p (da') — fxlﬁ,(z) (') ﬂ(d‘”')|

Consider the second term on the righthandside of the inequality. The triangle
inequality gives '

sup |4z (B: (@) ~ 1 (B: (2))| < sup |uB; () (75)
z€Ke® z€Ke
+ sup |u (B (2))|.
zeKe
By construction, B, (z) C K§, if z € K°. Therefore
— €
sup | (Br(2))| < w(KS) < & (76)
z€EK® 6
and B
sup 7 (B (@))| < pe (K9). (77)
The pointwise ergodic theorem gives for n sufficiently large,
e (K < p(Kg) (78)
+ |up (K§) — n(Ks)|
< L E_¢
- 6 6 3

15



a.s. u. These consideration lead to
€
up | [ I, () (+') 30 (d2') = Fp, o () w(de)| S 5. (79)

a.s. p.
The first term on the righthand side of (74) is considered. The problem
is to exhibit finite class G¢, corresponding to the uncountably infinite class

G ={9() =Ip,@»(") : z € K}, (80)

which satisfies the condition of Theorem 4. Because of the product structure

of the closed balls,
d
Ig,®) = [1 Lo, © i) (81)
7=1

where —B_,(_j) (z;) = [z; —r,z; +r] and 7; is the projection onto the j* coordi-
nate, j = 1,2,...,d. Take m an integer satisfying = < 5. A finite collection

of envelope functions gj(-m)satisfying- the conditions of Theorem 4 relative to
the uncountable collection of functions

Gi = {9() = Ign ,,, © mi(*); 2 € mK}. (82)

Jj=1,2,...,d is constructed, such that

g

[MI5Y

d
={g=TIgi:9 €™} (83)
=i

For any distribution function G its left-continuous inverse G™! is given
by
G '(u) = inf{z : G(z) > u} (84)

for 0 <u < 1. Also let

G(z™) = lsi}’(r)l G(z - §). (85)

As a consequence of K being closed and bounded, there exist a; < b;
such that m;K = [a;,b;], j =1,2,...,d. Let p; = pr;" and define,

Fj(2) = pj((—o0,z + 1)), (86)

16



and
E;(z) = pj((—00,z —r]), (87)
j=12,...,d,where z,r € R. Further, let

2 =7 (&), (59)

m

2Fm = pr ( k ) : (89)

m

and

k=12,....m—1, j =1,2,...,d. The sequences Eg-k’m) and a:(k ™) , k=
1,2,...,m —1; j = 1,2,...,d; are merged into a single sequence. The
elements a; and b; + 6, for some § > 0 are added to the merged sequence,
Jj =1,2,...,d. Any elements less than a; or greater than b; + 6 are discarded
from the merged sequence, j = 1,2,...,d. If two or more elements of the
merged sequence are equal only one is retained. If the spacing between any
two nearest neighbors in the remaining elements of the merged sequence is
greater or equal than 2r, intervening elements are added such that the new

spacings are less than 2r. Let a; = :z:(l’m) < m(2 m) <...< x(s”m) b;+ 6
denote the new sequence; j =1,2,...,d; so constructed
Let
J(k,m) ( (k,m) (k+1 m)), (90)
and
J(k+s_,'—1,m) { (k, m)} (91)

k=1,2,...,8;,—-1,5=12,...,d Ifz € J}k’m), then

I(—-oo,:cg.k"")+r] < I(—oo,.'c+r] <I —00,3‘5-k+1’m)+1')’ (92)
and
I( o™ _y] < I—op-r) < I oot _); (93)

k=1,2,...,8;—1, 3=1,2,...,d. By construction,
x‘gk,m) (k+1,m)

r <z —-r< a:g-k’m) +r< $§k+1’m) +r, (94)
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k=1,2,...,85—1; 7 =1,2,...,d, therefore subtraction of (93) from (92)
gives

gi” () = Tpgenim _y e (1) (95)
I59)()

I(zg_k,m)_,,,,g_ul,m) _H)(.)

a5 ),

for z € J}k’m), k=1,2,...,8;—1; j = 1,2,...,d. On the otherhand if
T € U:L—IIJJ(H” ~2™) 2 then let

IA A

g5 () = Iy () S Ty () € Tgor () = 9557 (), (96)

=1,2,..

3 Letg‘m) {g§’°L"‘)() ) () k=1,2,. ~2},i=1,2...,d It

follows from (95) and (96) that G; (m)satisfies (69) since [a;, b;] C UL _ZJ (km)

implies each = € [a;, b;] is in some JJ(k’m), k=1,2,...,25;-2; 3=1,2,...,d.
It remains to show that g(m)sa,tisﬁes (70). Clearly, it is satisfied for k =

Siy8i+1l,...,28;—2; s1nceg]( [}m) (1)— (k’m)( ) =0,if k= s;,8;+1,...,28;—2.
Next, suppose k =1,2,. -1, then

/@ﬁ%)é”%»MM) (97)

/ (I( (m)_y (k1m) o )(.’L') — I[ (m) G, ](:c)> pi(de) =
s (4,84 1) 4, () — a1 ) =
[F5 (25407) = Fs ()] + [E5 (5727) = B3 (25°™)]

j=1,2,...,d

2Hyperplanes parallel to coordinate axes of positve p mass cause discontinuities in
F and F;; j = 1,2,...,d. The way in which the sequences :c( m) (Em) p —

1,2,....m—-1;j=1, 2 ., dare constructed implies that all dlscontmmtles of F and F;
sj—lj(k+aj—1 m), . j=1,2,.

and z;

greater than L occur at points of U .,d. Tt is for this reason

that the functlon itself is used as its own envelope functlons for points in this finite set.
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It follows directly from the definition of :1:( m) , that

= ((km)=\ T (=(k-1m 1

F; (30™7) - F; (3™ < - (98)
k=23,....m—-1; j=12,...,d;

7 [ ll,m - 1
and 1
T [=(m-1m
1= (@) < 2 (100)

The spacing in the sequence x(k’m) k=1,2,. 1 is no larger than the
spacing between distinct elements of the sequence a: s k=2,3,...,m—

land it contains all distinct elements of x(k’m) k=2, 3 ,m— 1between
a; and b; + 6; j=1,2,...,d. Hence,

F; (™) - F; (81™) < (101)
| k=1,2,...,8;—1; 3=1,2,...,d. Likewise,
E; () ~ B (50 ) < (102)

k=1,2,...,8;,—1j = 1,2,...,d. Inequalities (101
(97) give, '

S

and (102) along with

m km 2
S (6557 @) — g™ (@) wilde) < = (103)
Now consider the original problem. Let k = (k, kz, ..., kq) where k; =
1,2,...,2s;, —2; j =1,2,...,d. Inequalities (95) and (96) imply that
m kjm 3y m
g™ () = Hg‘ 1 ™omi() < Fg,)() < _Hg,"‘U Momi(-) = g™ (-), (104)

=1

if ¢ € Jlom) = glom) o glkom) o gk =1,2,...,255 -2 § =
1,2,...,d. K C UyJ®™ therefore (69) is satisfied.
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It remains to show that (70) is satisfied. For each k one has,

d
k,m kvm k’m k,m
[g(J Vomi() — g ’ovrj(-)]sZ(g,‘{, Vomi() — g% )owj(.)).
—1

Jj= Jj=1

(105)
The proof of this is by induction. The above inequality and (103) give
L (6™ @) = g™ (2)) n(da) = (106)
d
Je I (o™ o6 = ™ 0mi(@)) wida) < 07
: (s5™ N (kjm)
> [ (gg™ omi(z) — g™ o mi(2)) p(dz) =
j &
A g,‘f“"""@) %(2) wi(de) < (108)

This completes the proof.
Finally, it is noted that with minor modification the same proof holds for
open balls.
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To: rege@stat.psu.edu

Subject: Tech Report

Hi Rege,

Hope your summer is going well and you are staying cool!!

I'm working on the tech report you sent Norma and I have
some questions before I go ahead and make copies.

1. On my page 12-13 it looks like an eguation broke bad.
It’s in Section 3 The Proofs.

One has for the term in (63)
\int [\mu~{x_0}_n (..... \leq

it breaks here and then on the next page to the
right margin it continues

\sup_x I\mu*{x_0} n.....
Is this okay?

2. The references..... in reference 19 .... Serinko, R. (1994).
{\it A consistent approach to least squares estimation of
correlation dimension in weak Bernoulli dynamical systems.\/}
Ann. Appl. Probab. {\bf 4) {\it 1234--1254}. <--- This is
how it printed up. The journal is in roman print and the
other stuff came out in italics and bold as I did it here.

Then references 20 and 21 are all in italics except for
what you put in bold. Is this the way you want it?

In case you would like to know, I assigned #95-34 to the report.
Let me know if all this is the way you want it and then I’11

go ahead and copy it. Do you want any extra copies made for
yourself? As usual, 15 copies go in 519.

Thanks and see you in August....

Teena
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Hi Rege,

Hope your summer is going well and you are staying cool!!

I'm working on the tech report you sent Norma and I have
some questions before I go ahead and make coples.

1. On my page 12-13 it looks like an equation broke bad.
It’s in Section 3 The Proofs.

One has for the term in (63)
\int {\mu™{x_ 0} n (..... \leg

it breaks here and then on the next page to the
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Is this okay?
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2. The references..... in reference 19 .... Serinko, R. (1994).
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correlation dimension in weak Bernoulli dynamical systems.\/}
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