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1 Introduction

The Skorohod integral introduced in 7] is an extension of the Ito stochastic
integral which allows us to integrate processes that are not adapted to the
underlying Brownian filtration. A stochastic calculus for the Skorohod inte-
gral was developed in [3|, and it was proved that this integral has properties
analogous to those of the classical It6 integral. In particular, a change of
variable formula and a local property were obtained.

The Skorohod integral also generalizes the two-sided stochastic integrals
introduced in [6]. In this type of integral one considers integrands of the
form ®(u,v) where u is a diffusion process and v is a backward diffusion.
The two-sided integral is defined as the limit of Riemann sums of the form
3 ®(u(ts), v(tig1)) [W (tiy1) — W(ts)], where W is a Brownian motion.

In this note we are interested in the following problem. Suppose that
u and v are respectively an adapted and a backward adapted stochastic
processes. Under what conditions on 4 and v is the product uv Skorohod
integrable? In the next section we will show that a sufficient condition is
the boundedness of the familly of random variables {u, v, 0 <t < 1} in
the Sobolev space D!/22, This is the main result of this paper and, as an
application, it allows as to deduce the Skorohod integrability of the rough
stochastic processes introduced in [1].

In Section 3 following the estimates obtained in [2] we provide a nonsym-
metric sufficient condition for the product uv to be Skorohod integrable.

2 Skorohod integral of a product of two processes

Let us first introduce the basic notation and some preliminaries. We will
assume that W = {W,,t € [0, 1]} is a Wiener process defined on the canon-
ical probability space (2, F, P). That is, Q = Cy[(0,1)], F is the completed
o-field on Q and P is the Wiener measure. Set H = L?([0,1]) and for any
h € H put W(h) = fy hy dW:.

We will denote by P the class of random variables F' of the form

F=f(Wh),...,W(hn)), (2.1)

where f is a polynomial and h; € H, 1 < i < n. For a random variable F
of the form (2.1) we define its derivative as the random process given by

DF=Y g;i (W(ha), .., W (ha)) u(2) .



The Sobolev space D!? is the completion of P by the norm
1
IFIE, = B(F?) + B [ (DF)2dt. (22)

In this way the derivative operator D is an unbounded operator with domain
DY2 C L%(R) and values in L x [0,1]). We will denote by § its adjoint.
The operator ¢ is called the Skorohod integral and it has a domain Dom é C
L2(2 x [0,1]). It can be proved that Dom§ contains the square integrable
and predictable processes, and on these processes it coincides with the Itd
stochastic integral. On the other hand, the space L2 := L2(|0,1]; D1?) is
included in Dom é.

Let us denote by L the generator of the Ornstein-Uhlenbeck semigroup.
The operator L can be written as L = }.5°; —nJn where J,, denotes the
orthogonal projection on the nth Wiener chaos. For any real numbers s and
p > 1 we define the space D*P? as the completion of P by the norm

IF||sp = (I — L)*2F],,.

For s = 1, p = 2 this definition is consistent with Eq. (2.2), as it follows from
the expression of the operator D in terms of the Wiener chaos expansion
(see [5]).

For any Borel subset B of [0, 1], Fp will denote the o-field generated by
the family of random variables o{W (1¢),C C B, C € B(|0,1])} and the P-
null sets. We will say that a stochastic process u = {u,t € [0, 1]} is adapted
(resp. backward adapted) if u; is Fjo;-measurable (Fit,1)-measurable) for
any t € [0, 1].

Suppose that u,v € L?(Q x [0,1]) are square integrable processes such
that u is predictable and v is backward predictable. We want to study the
following problem:

Under what conditions does it hold that uv € Dom §?

A sufficient condition would be that the product uv € L2 and to have
this it is enough to assume that u,v € LY2 and that

/01 (B@?)?dt + ]01 (/OSE(lDtuslz) dt)zds < o0,

/01 (E(w})’dt + /01 (/OSE (le’Ut|2) dt)zds < 00. (2:3)

We would like to impose weaker hypotheses on u and v. Assuming (2.3)
we can estimate the L2-norm of the Skorohod integral of the product u v as
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follows:

E[swo)?] - /0 ' B(u) E(u?)dt + 2 F / / Di(usvs) Ds(uzve) dt

{t<s}

1
- / E(w})E@w?)dt+2E ((// v Dy ugty Dg vy ds dt)
0

t<s}

1
- / E(u?) E(})dt + 2 E (( / / Elvs Dy vsug D, usmt,s,dsdt]).
0

t<s}

Notice that, for t < s, vsDsve is Fs yj-measurable, ug Dyus is Fo g-measurable
and the o-fields Fjo 5 and Fy; 1) are conditionally independent given F .
Therefore,

E [vstvt -utDtule-'[tys]] =F [UstUt|7[t,s]] -E [utDtusLF[t,s]] .

So, by the Cauchy-Schwarz inequality we obtain:
. 1 1/2
E(@wo)) < ( | Edra | [E(v?)]zdt)
0 0

/
+2 (‘ [ B((BwDw 7)) ds dt)l 2

t<s}

/
X (‘ / / E((E(vstmf[t,s]))"’) ds dt)l 2 (2.4)

t<s}

From the estimate (2.4) we are able to deduce our main result. We will set
1
L:={ue L*Qx[0,1]): /0 (BE(uf))? dt < 00, suprepo,) luell1 /2,2 < 00}
Theorem 2.1 Suppose that u and v are processes which are adapted and

backward adapted, respectively, which belong to the class L. Then uv €
Domé and we have

E((6(uv))?) < [ /0 1 (E@)))’ d /0 1 (E(vf))2dt]

+4 sup ||Ut”21’/2,2 ||'Us”§/2,2-
8,t€[0,1}
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This theorem is a consequence of the estimate (2.4) and the following
lemma.

Lemma 2.2 Let u be an adapted process belonging to the class L. Then
for all s € [0,1] we have

/0 E (’E [utDtUslj'-[t,s]]

In the same way, if v is a backward adapted process in the class L we have
for allt €[0,1]

1 2
/t E ’E [vs Dsvt| Fis. )
Proof:

We will only consider the forward adapted case. Using the Wiener chaos
expansion we can write

2
)dtsz sup el (25)
te(0,s]

)dssz . (26)
s€(t,1]

up = ZI (fal: t))—Zn' falts, ooty t) dWs, ... dWs,,

{t1<...<tn <t}

and Dius = Y me g P In—1(fn(:t,8)).
Then,

E [UtDtUs|-7: ¢, 3]]

|
o) n—1
X(En'Z/ fn(tl,---ytn—l,t,s)
n=1 k=0

{t1<.. <t <t<tpi1<.. . <tp_1<s}
o] n—1

f[t,sl)
= > nlk )

ne1 k=0 /{t1<...<tk<t<tk+1<...<t,,_1 <s}

Xthl .o thn_l)

fk(tl, . ,tk,t)

an(tl, ven ,tn_l, t, s)dtn e e dtk thk+1 .« thn—l
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i n!<fk(" t)
k=0

o0

/ Falrtieats o bty ) AWy, - th"_1>
n=k+1 {t<tpy 1< <tr1<8}

o0 [o o] 1 o0
< O VEFIRNAGOIP Y. =] D o
{kzo k—o Vk + 1k! “ n=k+1
2 /2
X / Sa(otests -y tna1, b, )Wy, .. dWY, }
{t<ti41<..<tn-1<s}
1 1/2
= (E(|(I — L)iu? n!
2\ 1/2
/ fn(';tk+1" voytn_1,t, S) thk+1 ...th"_l I ) .
{t<tp1<...<th_1<s}
Therefore
2 1/4 1
E (1B (uDyus| Fig )I*) < B(I(I = L)Y/ ] )Z T
X n'2/ 21, ..y ta1, 6, 8) dbr .. . dEn_1.
n_;’_l Ot]kx{t<tk+1< Llp— 1<S}f ( ! ! ) ! !

The second factor of the above expression can be written as

n—1

| 2t"'-,tn_’t’ dt ...dtn_
'nz:ln Z (/[.O,tlkx[t,s]n—k_l f'n( 1 i S) . 1

n!
kT Ik —k— 1)

x

1
nn!/ 2ty tne1,t, 8 dty...dtn_1,
n; 0,51 a(t1 " )\/kt(tl,...,tn_l)ﬁ—l !

where kt(t]_, ces ,tn—l) =# {Z < t} .
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So,
/ E(IE(uDeus)|Feq*) dt < sup B (I(I = L) wif?)
0

0<t<s
X Z nn'/ f2(t1, ... ta. s) \/ktn(tl,--l-,tn—l) +1dt1...dtn.
The symmetrization of (¢,...,t,) \/k:,.(tl,--l-,tn—l) i yields the
constant
oy e

As a consequence, the above summation is bounded by
1
2 2n! VA [|fa 8)I1P = 2 B(|(—L) 4u,[?)
and we obtain
s 2
| B(B@DalF)P) de < 2 sup (E(U - D),
0 0<t<1
which allows to conclude the proof. (]

As an example of an adapted process u; satisfying the conditions of
Theorem 2.1 and which does not belong to L2 let us mention the local
time L(z,t) at a given point € R (see [4]). Sometimes it is possible to
estimate directly the left side of Eq. (2.6) as is the case in the following
example.

ExAMPLE: Suppose that u; = f(W;) where f : R — R is a bounded
measurable function with bounded variation. That is, f’ is a finite signed
measure . In this case we have

E(uDeusl Firg) = E(F(W0) f'(Wo)lFiea))

1 z2
B /f flz+ W - Wt)\/27rte——ﬂd$

(y=Wat+Wy)?

/ 1 -
= [Hu=We W) e T

(y—We+Wy 2

|
= /n;f(y_W8+Wt)‘/ﬁe 2t »u'(dy)'
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The preceding computations are formal and they can be made rigorous using
distribution theory. Consequently,

12 (weDeval )| < W llo 5 [ &

y— Ws+W[)

|l (dy)
and
E(lE(utDtutl]:[t,s])l ) < Ilfll002 tlﬂl(R)] ( )Iul (dy)

9 2
_ M exp ( — €] tm) - 2(:_ t)) dz |p|(dy)

2t /2n(s — t) Jr?

- I @2
T2 Vis-t)

which is integrable in {t < s}.

One can use the above example to show that fol sign(Wy) sign(W; —
W:)dW: exists and to find estimates for its L? norm. This stochastic integral
has been studied in [1].

3 Skorohod integrability of uv for an arbitrary ada-
pted process u

In this section we will assume that u = {u, ¢t € [0,1]} is an adapted and
bounded process. The results of [2] provide a class of processes v such that
uv € Dom §. The main idea is the following equality which is a consequence
of the isometry of the Skorohod integral and the duality relationship:

[(5(u'u)) = E/ uZv? dt+2E(/01utvt(Lt(Dtus)ude3)> dt

1 + 1/2
smwwmwﬁd%wwwm@@,@n

where || - || denotes the norm in the space L?(2 x [0, 1]).
Define

1 1/2
— n 2
o(v) = sup (?{' /0 1D vsllemx[o,un)ds) :

7



Then iterating the inequality (3.1) one obtains (cf. Proposition 2.2 of [2]):

E[(6wv))?] < (1+V2)” full #(v)*. (3.2)

As a consequence we obtlain the following result:

Theorem 3.1 Let u = {u,t € [0,1]} be a predictable and bounded process.
Then for any process v € Nu>1L2([0, 1];D™2) such that ®(v) < oo we have
that the product uv belongs to Dom .

Examples of processes v verifying ®(v) < oo are the processes such that

sup Z (:) /01 E (|vas|2) ds < 00.

If we assume that the predictable process u satisfies fol (E('ug))2 ds < 00
then we obtain the following estimation

1/2

E[(6uv)’] < (1 + \/5)2( / 1 (E(ui))z) 21(v)?

where 2
®1(v) = sup '1—/1 ||D"vs||ﬁz axo,1jn) 95 .
n>0 \ 7! Jo : (@x[o,1}")

As a consequence, we have uv € Domé provided ®;(v) < oo.
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