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Abstract

Empirical Bayes (EB) estimators for mean life time and reliability function are
constructed when failure time has p.d.f.

/ey = 2, (—ﬁ) t>0,0€0
- I‘(V) 0,, p 0 ’ ’ ’

which includes gamma and Weibul density functions as particular cases with a = 1
and v = 1, respectively. It is assumed that @ = (a1, a2), a1 > 0, and a prior distribu-
tion of # is completely unknown and unspecified. It is shown that under squared loss
prior risks of EB estimators of mean lifetime and reliability are O (N ~!(In N)1t%)
which is better than polynomial rates of convergence obtained before.

KEY WORDS: mean lifetime, reliability function, nonparametric empirical Bayes
estimation
1 Introduction

Estimation of two reliability characteristics, the mean life time and the survival function,
of some equipment given failure times 17, 15, ..., Ty is one of the main problems of reliabil-
ity theory. Here T4, T3, ..., T are i.i.d. random variables and have conditional probability
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density function (p.d.f.) f(t/6) given § > 0. In most of practical applications f(t/6) is
gamma or Weibull distribution density. However, sometimes none of these distributions
fit well enough. As such we consider f(¢/8) of the form

av—1 o

a t t
1/6) = —% <——)It>0,0 0, 1.1
419 = s Sgean (=) 16> 0), 0 (1)
where I(A) is the indicator function of the set A, and the parameter space © is a subset
of (0,00), the positive real line. It is easy to see that gamma-distribution and Weibull
distribution are particular cases of (1.1) when a@ = 1 and v = 1, respectively. In this
situation the mean life time m(#) and the survival function U(#,t) have the forms

m(9) = /0°° tf(t)0)dt = 6% (D(1)) ™" T(v + ™) (1.2)

Ub,1) = / " f(z/8)dz = (T(v))"'T(v, 8711%), (1.3)
i
where I'(a, z) is incomplete gammma-function (see 8.350, Gradshtein & Ryzhik(1980)).

A number of authors have dealt with estimation of (1.2) and (1.3) in non-Bayesian
as well as in Bayesian contexts (see, for instance, Ananda(1992), Belyaev(1992), Cal-
abria(1992), Tiwari & Zalkikar(1993)). However, both non-Bayesian and Bayesian have
examined the problem from extreme point of view in the sense that for the former, 8 is
a fixed unknown constant, whereas for the latter, # is a random variable with known
distribution.

The purpose of the present paper is estimation of the mean life time m(f) and the
survival function U(t,6) from empirical Bayes point of view where 8 is a random variable
with unknown distribution. Thus we have observations T3, 75, ...,Tn on failure times of
N units where Tj,¢ = 1, ..., N, are distributed according to density function f(t/6;) of the
form (1.1). Here 0; are unobservable, i.i.d. random variables having an unknown p.d.f.
g(9) with support in O.

Suppose the observation Ty = y on failure time of (N + 1)-th unit is made. Let
On+1 = z be the value of random parameter § generating the value y and the reliability
characteristics (1.2) and (1.3) of (N+1)-th unit. Thus the goal is to estimate mean life time
m(z) and reliability function U(z,t) of (N + 1)-th unit. Here we shall be concerned with
a slightly more general problem, namely we construct empirical Bayes (EB) estimators of
2% for b > 0 and of U(2,t). Since variance v(8) of lifetime has the form

F(V—I— %)F(z/)—l’z(z/—l—a‘l)
I?(v)

R

v(6) = /0 T2 5(1/6)dt —m?(8) = 8 (1.4)

it will enable us to get EB estimators of both the mean and variance of the lifetime
distribution.



The problems similar to those covered in this paper were considered for special dis-
tributions like exponential, gamma and Weibull distributions by Chiou(1993), Lahiri &
Park(1991), Li(1984), Nakao & Liu(1990) among others. However no attempt has been
made to construct empirical Bayes estimators of reliability function for the general family
of conditional p.d.f.’s (1.1), may be because in this case U(6,t) has a complicated form
(1.3). No assumptions on parametric form of g(f) are made in this paper. Estimators con-
structed here have O (N~ (InN)'**) rate of convergence to asymptotic optimality which
is better than polynomial rates obtained earlier for exponential and gamma conditional
distributions, e.g. see Singh(1976, 1979), Singh & Wei(1992), Walter & Hamedani (1991).
Research conducted here is in part based on technique proposed in Penskaya(1992, 1993)
but is significantly noval from all the works mentioned above.

Let us define

p) = [ Fw/0)g(6)do, (1.5)

o(y,5) = [ 0°F(y/0)9(0)db, (16)

Wy,t) = [ U0,0/0)9(0)d, (1.7)

and denote the mathematical expectations with respect to densities g(8), f(t/8), p(z)

and IY, p(z;), respectively, by E,, E;, E, and E,~.

If we knew the prior density g(f), then Bayes estimators 3(y, b) of #° and Y(y,t) of
survival function that minimize squared error losses (see Zacks(1971) ) can be calculated

* B(y,b)
Bly,b) = OR (1.8)
_Y(y,1)

However, as prior density is unknown, these minimum expected loss estimators
are not available to us for use. So we construct empirical Bayes estimators Sy(y,b) =
Bn(y,b; Th,T3,...,Tn) and YTn(y,t) = Tn(y,t; T1,Ts,...,Tn) as the estimators of (1.8)
and (1.9), respectively, from observations Ty, T5, ..., Ty. With these notations our EB esti-
mators my(y) and v,(y) of mean lifetime (1.2) and variance of lifetime (1.4), respectively,
are given by

mn(y) = T@) 7' T(v + e )Bn(y, 1/a); (1.10)
FT(v+2)T(w)-T%(v+a? :
vn(y) = +2) (Fj(y) wra?) Bn(y,2/a). (1.11)



An EB estimator pn(y) of a parametric function r(8) may be characterized by the
posterior risk

R(y; en) = (p(4)) "By [ (en(y) = r(0))F(u/0)g(6)do,

or by prior risk

E,R(yien) = Epv [ [ (enty) = r(0)F(u/0)9(6)dody.

It is easy to notice that both risks can be broken into two components. The first com-
ponents R(y; e) = (p(y))™' 5~ (e(y) — r(0))*f(y/0)9(0)df and R(e) = E,R(y; ¢) are, re-
spectively, the posterior and the prior risks of the Bayes estimator p(y) and they are
independent of pn(y). So that we shall characterize EB estimators by second components

A(y; on) = Epn(on(y) — o(y))* (1.12)
A(en) = E,An(y; on). (1.13)

that are, respectively, posterior and prior risks of EB estimator on(y).
In general, for R(y; on) to be finite or for A(y; o) to converge to zero for each y,
some constraints on # are necessary. We assume that the parameter space is an interval

0 =laj,as); 0<a; <ay < oo, (1.14)

with known a; and a,.

We say that EB estimator gy is asymptotically optimal with rates O(7n) of conver-
gence to optimality if A(pn) = O(rny) as N — oo. We also say that EB estimator pn is
pointwise asymptotically optimal with rates O(7n) of convergence to optimality if there
exists a positive function C'(y) such that A(y; on) < C(y)7n for any value of y and N.

In what follows we demonstrate that both EB estimators of 6° and of U(f,t) are
pointwise optimal with rates of convergence O(N~'ln N). It seems that this rate of
convergence can not be substantially improved. Actually, in the case of EB estimation of
6° the lower bounds for A(y; Bx) over the class of all possible estimators of B(y, b) from
observations Ty, T3, ..., Ty was shown to be O(N~!In N(lnln N)™') (see Penskaya(1995)).
However the difference between upper and lower bound is probably due to the fact that
the lower bound is not exact. We also establish that prior risks have the following rates
of convergence

A(By) = O(NTH(InN)*®), A(Ty) = O(N~*(In N)™*®)

which is better than polynomial convergence rates obtained before ( see Singh (1976, 1979,
1992)).



2 Construction of empirical Bayes estimators

Let us break EB estimation of (1.8) and (1.9) into three steps. The first step is estimation
of the numerators ®(y, b) and ¥(y,t) that are linear functionals of the prior density ¢(6).
The second stage is estimation of denominator p(y) which is the marginal density of T}
and the third is estimation of the ratios (1.8) and (1.9).

Following to the approach of Penskaya(1993), to estimate ®(y, b) and ¥(y,t) we first
wish to find functions ¢.(y, z) and ¥.(z,y,t) such that for every € and y

By loe(w, ) < o0, B, [hu(e,y, ) < 00, j = 1,2 (21)
lim [ (. 2)f(a/8)do = 6 £(y/0); (2.2
lim [ (v, 0 (e/0)d = U(8,1/(y/0). (23)

Having found such functions, our proposed estimators of ®(y, b) and ¥(y, t) are then given
by

dy(y,b) = N1 Z 0e(y,Tj), €=¢e(N); (2.4)
\I;N(yat) =N~ Z:¢s(y7Tj7t) €= E(N) (25)

Furthermore if we can find functions ¢(z,y) and ¥(z,y,t) independent of ¢ such
that they satisfy (2.1), then formulas (2.4) and (2.5) will give us unbiased estimators of
®(y,b) and ¥(y,t) with O(N~!) variance. So let us first search for functions ¢(z,y) and
¥(z,y,t). In this case, equations (2.2) and (2.3) can be written as

/Ooo exp (——0‘1:5“) e Lp(z,y)de = 0®exp (—O_Iyo’) y* (2.6)

o

/000 exp (—0‘1xa) " W(z,y,t)dz = [[(v)]'T (1/, —%) exp (—G—Iyo‘) y*r~l (2.7)

Let us solve equations (2.6) and (2.7) in turn.

To find ¢(z,y) we change variable £ = 2* in the integral in formula (2.6) and denote

1

By, @) = oz My (2, y7) |

Then equation (2.6) takes the form

| ean (<07 — ) Gy, 2)de = 0 (2.8)
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and thus we only need to find a solution 3(y, z) of the last equation such that E,(3(y, z))¥ <
00, j =1,2. It is easy to see that a solution of (2.8) has the form

@(y,z) = [L(B)] (= —y)* ' I(z < y)

provided b > 3/4. If b < 3/4 let us use the formula (see Erdélyi et al., 4.14.30)
/oo ezp(—yz)z¥?J,(2vaz)dz = a®*y~ Yexp(—ay ™), 0 > —1. (2.9)
0

Here J,(z) is Bessel function of the first kind (see Gradshtein et.al., 8.402). Putting in
(29)a=¢"1, y=0"1, o =b—1, and using simple equality

/Ooo exp(—z0~ 1)z dz = ['(b)6° (2.10)

we obtain

b—1

I — @)™ aes (2\/?> exp(—2/0)dz = 0 [1 — eap(=0/c)].  (2.11)
o |['(b) €

Since @.(y, z) should “approximately satisfy” equation (2.8) and ezp(—fe~!) turns to zero
as € — 0, the previous equality gives us

)b—l

Pe(y,z) = !% —((z — y)e)bz;l Jp—1 (2 z— y)] I(z > y).

£

Returning to ¢(z,y) and ¢.(y,z), we get finally
% — y® b—1
v:(y,7) = o(z,y) = ay® Tz =y I(z > y) (2.12)
I'(b)
for the case b > 3/4, and

ov—1 o — y® b—1 b1
. !( rfé)) —(e(z* = y%))2 S (2

pe(y,z) =

$Oll/—-'01

(2.13)
for the case 0 < b < 3/4. Let us choose ¢ = 2a,(In N)~1.

For solution of equation (2.7) recall that I'(v,071t*) = a6 [2 exp(—u/)u""'du.
So, if we find a function ¢(z,y, u,t) satisfying the equation

—v,av—1,,v—1

/Ooo exp (—9‘%") " Mp(z, ¥, u, t)de = a——yr(—y—)u—exp (—«9_1(3/“ + u)) (2.14)



then we may choose
P(z,y,t) ——/ Y(z,y,u;t)du (2.15)
ta

and after that check whether function (2.15) satifies (2.1). By transformation £ = z* we
express (2.14) in a form

/Ooo exp (—9‘1(:1: —y® — u)) x”"lyl—o‘”ul"”z/)(:z:%, y,u,t)dz = o(L(v))"107.
Now, denoting 5 X
V(z,y,u,t) = 2" Ty T (25 y, u, t), (2.16)

we arrive at simple equation that gives us

Bz, u,t) = ofL(W)] (2 — y* — w) (e —y* — u > 0) (2.17)
Taking into account (2.15) and (2.16) we finally obtain

tOt

xa_ya’

Y(z,y,t) = @ oy g — )21 B( v,v) I(t* <z%—y*%). (2.18)

I2(v)

Here

B(A;v,u) = /Al w1 —u)*du (2.19)

is incomplete beta-function (see Gradshtein & Ryzhik(1980)).

The second problem is estimation of p(y). Since p(y) is a usual marginal density we
construct kernel estimator of the form (see Singh(1979), Nadaraya(1989))

av—-1 N

puly) = o K (L) (2:20)

Here we select kernels K(z) and h as follows (see (1.14))

K(z) = (—2)" /], (2,/ ) (¢ <0), h=2a,(InN)". (2.21)

Now it remaines to estimate fractions ®(y,b)/p(y) and ¥(y,t)/p(y) (see formulae
(1.5) - (1.7) ). Since 8 € [ay; az] we denote

0, ifz<0
H(z)=4 z, if0<z<a, (2.22)

az, if z > ay



Our proposed empirical Bayes estimators in the absence of minimum expected loss
Bayes estimators 3(y,b) and Y(y,t) are, respectively,

B (y,8) = H (On(y,b)lpn ()] ), (2.23)

and
Tw(y,t) = H (In(y,O)en(v)] ™) (2:24)

Here ®n(y,b), ¥n(y,t) and py(y) are constructed according to formulas (2.4), (2.5) and
(2.20), respectively, with ¢.(y, z), ¥(z,y,t) and K(z) given by (2.12), (2.13), (2.18) and
(2.21). We should remind the reader that EB estimators of mean lifetime and variance of
lifetime have, respectively, the forms (1.10) and (1.11).

3 Convergence rates of EB estimators

In this section we show that our proposed EB estimators fn(y, b) and Tn(y,t) are both
asymptotically optimal and pointwise asymptotically optimal and investigate the rates of
convergence to optimality. For that purpose we examine posterior and prior risks (1.12),
(1.13). In particular we show that there exist positive functions C(y) and Cy(y) such
that

Ay Bn) SCi(y)NMIn N5 A(y; Twv) < Co(y)N ' In N. (3.1)
We also demonstrate that for prior risks the following relations are valid
A(By) = O (N (InN)™*e); A(Ty) = O (N7 (In N)'*e) (3.2)

as NV — oo. It means that for N — oo posterior risks of EB estimators of mean lifetime
and of survival function are O (N~'In N) and prior risks are O (N~!(In N)'+*),

Let us evaluate posterior risks (1.12) of estimators (2.23) and (2.24). To do that we
denote

d12V1(y7 b) = EpN(q)N(ya b) — O(y, b))27
d]2\72(y7 t) = EPN(QN(y) t) - \Il(y7 t))27
dns(y) = By (pn(y) — p(y))*.
So now our objective is to find upper bounds for d3, (y,d), d%4(y,t) and d35(y) and estab-
lish a relationship between A(y; 8n), A(Bn), A(y; Twn), A(Ywn) and diy(y,0), di,(y,t)
dia(y)-
Let us first calculate d%,(y, b). We have two different cases here. If b > 3/4 then we

produce estimator (2.4) with ¢.(y,z) = ¢(z,y) given by formula (2.12). In this situation
®n(y,b) is unbiased estimator of ®(y,b), and therefore di,(y, d) = N~o?(y,b), where

o*(y,b) = /wz(y,w)p(w)dx =

8



av—1

= aI‘l‘g(b) /‘12 f(y/&)g(@)d&/ x"‘(l_”)(m" — yo‘)Qb_Qewp(——:va/G)awo‘_ld:c.
a1 Y
Introducing the new variable z = 2* — y* and using inequality ( since av > 1)

(z + ya)l—u < (Z 4 ya)l/a—-u(z 1+ ya)l—lla < yl—au(z + ya)l—l/o: (33)

we obtain

o0

o(ust) < [ 0/0a(0) i [ e e a0 | o

The expression in square brackets is bounded by C(y*™! + xo) where X, is the indicator
Xo = I(a > 1) and the constant C is independent of y and N. Therefore we get

da(y,0) < CN'p(y)(y* ™" + Xa)y b>3/4. (3-4)

Note that here and in what follows we use notation C for different constants independent

of y and N.

Now let us consider the case of 0 < b < 3/4. In this situation estimator ®x(y, b) has
the form (2.13). Taking into account formulas (2.6), (2.10), (2.11) and (2.12) we present
bias of the estimator as follows

i) = [ [ J (z i ya) f(:v/(’)dw} 9(6)ds.

1

By changing variables z = 2% — y* and applying the equality (2.11) we get
bely) = [ 0°F(y/0)exp(~0/)g(8)dh < a cxp(~ai/e) p(y). (35)

Variance of estimator (2.13) is N~*02(y, b) where

2, 2av—2

an o0 o y o a
)= [ [ S @ -0 (e/0)(0)dads (3.6)
and function Q4(z,¢) has the form Q,(z,¢) = 2°e1gy(2e™1) with

a(2) = (aT(B) ™! = o~ F Sy (23) (3.7)

Using series representation of Bessel function of the first kind (use formula 8.402 of Grad-
shtein & Ryzhik, 1980, with ¢ = b — 1,z = 24/x ) we obtain the expansion for ¢;(z)

e .
K = (E+ DT+ E+1) :

9



Now changing variables in (3.6) and using inequality (3.3) we obtain

72w, = e [ 50900 [ [ e + vy e F Mg (2) o] .
Let us break the integral in square brackets into two parts so that
02w, b) = 7 [ f(u/0)9(0) h(e,0) + I, 0)] 48 (39)
with
Ii(e, ) = /0 Nz yo) e FAR(2)dz, D(e,0) = /1 (e +y2)Ee T 2B (2)dz.

From the absolute convergence of series (3.8) it follows that g;(x) is bounded therefore
1 1
Li(e,0) < C / (26 + ¥ 5dz < C5° 1 + xa)- (3.10)
0

For the sake of construction of upper bounds for I5(e, 8) we use formula 8.471.1 of
Gradshtein and Ryzhik(1980): zJp—1(2) + zJp41(2) = 2bJy(2), which yields

a(z) = (2I'(b))™ = 26z~ T J,(2v/7) + 2~ 5 Jop1 (2V/7). (3.11)
Now it is easy to see that I5(e,8) is majorized by the sum of integrals
I(e,0) < C(Iy1(g,0) + I 2(g,0)) . (3.12)
where the first integral is
Loa(e, 8) = [T(b)]2 /1 Tze 4y R T2y < OB (3.13)
and the second integral has the form

Loale,0) = [ (ze +y?)'"5emF22 (s O (2vE) + 27 G L, (22) } e,

By changing variables and using the fact that 8 < a;, last expression may be majorized
by

I 5(e,0) = C/oo(z26+y Jraew { 278 J2(22) + 2271, (22 }dz
1
Applying formula 6.574.2 of Gradshtein and Ryzhik(1980)

/oo JHat)t ™t < oo, 2w +1>X>0,
0

10



225
and inequality (2%¢ + ya)l"%e—?zg < Ce??, 2,0 > 0, we obtain
L 5(6,0) < C(xa+ y* (™2 +1). (3.14)

Combining (3.9), (3.10) and ‘(3.12) - (3.14), we finally arrive at the following upper bound
for o2(y, b)
3b
oZ(y,5) < Cp(y)e® *(xa +¥°7). (3.15)

Choosing € = 2a; (In N)™" and taking into account finiteness of p(y) we obtain from (3.5)
and (3.15) that for 0 < b < 3/4

d1(y,5) < CN7H (I N)' =% p(y) (xa + ¥ 7). (3.16)

Let us evaluate the error di;,(y,t). Since the estimator (2.5) is unbiased estimator
of ¥(y,t), then d&,(y,t) = N~'o?(y,t) where

/ / z,y,8)f(2/0)g(8)dzdb. (3.17)
To produce upper bounds for o2(y, ¢) we use the apparent fact that (see (2.19)) B(A,v,v) <
v~ 11 — A)” for any A € (0,1), which implies

(0%

< a—av, oav—1 a __ oyw~-l a o o u‘ 1
¢(w,y,t)_yr2(y)w y* (e —y*) T (2% —y* = t%) (3.18)

The substitution of (3.18) into (3.17) and change of variables give

av—1

0,0) < gy e (07) /0@ e0)d (319)

v

where
/ z—l—y _I_ta 1/a—v+1-— 1/a(z+ta)2u 222V6$p( z/a)dz

By use of inequality (3.3) we derive
Qu(t,y) < yl““”/o (2 4y + 1) 7z + 1) 722 eap (—2/0) dz

Denote
V)=t v=min{0,a(v — 1)xa}. (3.20)

Substituting @Q1(¢,y) into (3.19) and using the fact that for every positive g the supremum
sup, [z2exp(—22/0)] is finite, we arrive at

dya(y,t) < ON7'p(y)(xe +y° V(1) (3.21)

11



Now it remaines to get upper bounds for d?\,e’(y). For this purpose we remind that
ds(y) = bi(y) + D?(h,y) where

1, 0v-1 [C a—av —u
bny) = e~y [ weme i (L) pluyda - ply), (3.22)
D(h,y) = N2y [ et (%) p(u)du (3.23)

are, respectively, bias and variance of estimator (2.20). Substituting the expression for
p(y) into (3.22), (3.23), changing variables u* = z and taking into account (3.3), we get

i) = [ /0) [ K(—2)ewp(~hz/0)dz - 1] g(0)s,

D*(h,y) = (VD)™ [ £(/0) [ [ K (=2)(" + b= =exp(~=h 0)dz) g(6)do.

Recall that K(2) = 0 for z > 0 (see (2.21)). Using the following relations (see Gradshtein
& Ryzhik (1980) )

/oo K*(z)dz = 1/2, /000 K(—z)exp(—zh/0)dz =1 — exp(—0/h),

similarly to the case of d%,(y,b) we obtain that
ba(y) < Cxa+y°ezp(—ar/h)p(y);  D*(h,y) < C(NB) ™ (xa +y°)p(y). (3.24)
From (3.24) it immediately follows that as soon as A ~ 2a;(ln N)™! we get

dis(y) < CN ' In N(xa + v )p(y)- (3.25)

At this point as we constructed upper bounds for d3,(y, b), d%-(y,t) and di5(y), our
goal is to obtain upper bounds for A(y; Bn) and A(y; Tn). For this purpose we show that
function H(z) given by formula (2.22) satisfy the following assertion: if E(éy — ) < 6
and E(ny —n)? < 8, 1 # 0, then :

E[H (én/nn) — H (€/n)] < 61072 (16a3 + 2) + 807 % (2445 + 8az + 2). (3.26)

To prove the statement we partition the domain 2% into two parts U = {w : [€y—¢| <
n/2,|nv — 1| < n/2} and U = @\ U. Then the following relationship is apparent

B[H (& /nv) = H(E/mI < [ (En/nn = /n)* dP +4a3P(D).

12



Application of Taylor’s expansion and Chebyshev inequality result in (3.26).

Substitution of ®x(y,b), ®(y,d), pn(y) and p(y) for én, €, Ny and 7 in formula (3.26),
respectively, and taking into account (3.4), (3.16), (3.21) and (3.25) yeild

Aly; ) < CNT'InN(xa + 3 (p(y)) ™" (3.27)
By use of the similar procedure we obtain upper bound for posterior risk of Tn(y,?)
A(y; Tn) < CN N V() (xa +5° ) (p(y)) ™ (3.28)

Here function V(t) is determined by formula (3.20).
Now finally we are able to find the asymptotic expression for prior risks for estimators

Bn(y,b) and Tn(y,t). Let us first produce upper bound for A(fBx). To do that, we break
the interval (0; 00) into two parts (0; A) and (A4; o0). Thus A(Bn) turns out to be

ABY) = [ Al b))y + [ Al Br)ply)dy = Aea(Br) + AxcalB).

By simple transformations we get Ay 1(fy) < CN7'In N(Axo + A%). After that, as
p(y) < Cy*lexp{—y*/a1} and A(y; Bn) < 4a2, we obtain that

An2(Bn) < CA“(”_I)e:z:p{—Ao‘/al}.

Now, choosing A = [a;(In(N) + (v — 3)Inln(N) — (v — 2)Ininin(N))]*/*, and combining

last two formulas, we arrive at
A(Bn) < CN7H(In N)**, (3.29)
Procceding similarly in the case of YT n(y,t) we derive the required upper bound

A(TN) < CN7Y(In NPV (¢). (3.30)

4 Simulation and discussion

In Sections 2 and 3 we obtained upper bounds for posterior and prior risks of EB estimators
Bn(y,b) and YTn(y,t) (see (3.27) — (3.30)). These bounds depend on constants C' which
in its turn depends on unknown prior density ¢g(#). Nevertheless the constant C' can be
majorized over all possible choices of ¢(8); to do that we simply need to substitute C by
its numerical value in every inequality. However evaluation of these upper limits is not of
much sense since the bounds we get through this procedure will be grossly overestimated.
Besides that, upper bounds (3.27) and (3.28) for posterior risks depend not only on the
value of C but also on the value of unknown marginal density p(y).
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Thus it seems interesting to study the behaviour of prior and posterior risks by
Monte-Carlo simulations. Let us perform simulations in the case of EB estimation of
mean lifetime, i.e. EB estimation of #* with 6 = 1. For this purpose we choose a; =
1, a=2, a=1, v=2and g(§) = (1n2)7*,0 € [1,2]. In this situation marginal density
p(y) and functional ®(y) = ®(y, 1) have, respectively, the forms

p(y) = (05+y )™ — (1 +y ")e™, B(y)=e"" —e™ (4.1)

and B(y) = @(y)/p(y)- .

For the sake of evaluation of prior risk of EB estimator of § we generate m = 200
independent samples (Tj1, Ty, .-y Tin, Tint1 = i), § = 1,...,m, of the size (N + 1)
according to the density p(y) and construct EB estimators ﬂ](\g)(yj), j =1,...,m, for each
sample. Then we use

' (B0 - 0)’ (42)

as asymptotic approximation for A(By). According to formula (3.29), Ay is of the order
O (N71(In N)?).

Table 1 presents values of Ay and of weighted prior risk {y = N(InN)"2Ay for
N =100, 200, ..., 2000. It is easy to notice that in our example CN is less than 1 for every
N.

For investigation of posterior risk A(y; Bn) we generate m = 200 1ndependent sam-
ples (Ti1,Tj2, .-, Tin), 3 = 1,...,m. Then we construct estimators ﬂN (y) based on the
j-th sample and estimate posterlor risk at a point y by

~

An(y) = m™ i (89 - 8)". (4.3)

We also calculate weighted posterior risk (v(y) = N(In N)"'An(y). Table 2 containes
the values of A ~(y) and ¢ ~(y) for different values of y when N = 100. The values of p(y)
are placed in the last column. )

Dependences between CN( ) and y and (n(y) and p(y) are displayed on Figure 1 and
Figure 2, respectively. Figure 2 shows that ¢ ~n(y) increases as p(y) decreases. In another
words, the less probable value we obtain, the bigger error we get. It seems that this effect
can be weaken by the choice of h depending on y, i.e. h = h(y). However, it is a subject
of future investigation.
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Table 1.
Prior risk of EB estimator

Table 2.
o N Posterior risk of EB estimator,N=100
N An en ’
A

100 10291 | .48524 Y ~n(y) Cn(y) p(y)
200 .08614 61367

.01 .1700 3.6905 .0037
300 .05516 .50869

.50 .0735 1.5969 1274
400 .04153 46279

1.00 0752 1.6331 1740
500 .06202 .80289

1.50 .0732 1.5898 1792
600 .04151 .60865

2.00 0788 1.7107 .1649
700 .04027 .65681

2.50 .0803 1.7447 .1429
800 .03955 .70815

3.00 0924 2.0064 1196
900 .03460 .67306

3.50 .1000 2.1710 0977
1000 .03032 63531

4.00 1137 2.4690 .0786
1100 .03068 .68811

4.50 .1140 2.4750 .0625
1200 .02326 55530

5.00 1253 2.7210 .0494
1300 .02630 .66507

5.50 .1460 3.1698 .0388
1400 .02840 75763

6.00 .1556 3.3779 .0303
1500 .02031 .56948

6.50 1797 3.9012 .0236
1600 .02322 .68249

7.00 .2018 4.3830 .0184
1700 .02488 .76454

7.50 .2507 5.4448 0143
1800 02511 80439 8.00 2575 5.5911 0111
1900 .02098 .69952
2000 .01740 .60241
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weighted posterior risk

oA
N

4 & 8
observation y

Figure 1: Dependence between the weighted posterior risk f ~(y) and y.

weighted posterior risk

o.0 0.05 0.10
value of the density p(y)

Figure 2: Dependence between the weighted posterior risk CAN(y) and p(y)i.
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