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Abstract

The @ — Q plot is a standard device for confirming “approximate” normality of a
sequence of iid observations. A curious fact from real life empirical experience is that all
too frequently the @ — @ plot does really look overall quite linear. This is especially the
case if one looks at the central part of a @ — @ plot. Any deviation from an overall linearity

is also typically seen at the tailends of the Q — @ plot.

In this article we investigate these empirical experiences and prove a collection of large
sample theorems that justify these empirical experiences. We also show how the Q — Q
plot can be used as more than a diagnostic; some of our Theorems attempt to indicate
how the Q) — Q) plot may be used to learn about the true underlying population. The large
sample theorems are strong laws and laws of the iterated logarithm on some statistics
of importance in this context. These include extreme and studentized residuals and the
correlation coefficient computed from a @ — @ plot. Some real and simulated data are

analyzed for illustration. All proofs are given in an appendix.

*Research supported by NSF grant DMS 9307727. AMS Subject classification: 62E20,
62G30.



1. Introduction. The @) — @ plot is undoubtedly one of the most commonly used tools
in applied statistics today. Indeed, it seems to have a universal appeal: frequentists,
Bayesians, and practitioners in general really quite routinely use the Q — @Q plot, typically
as a justification for the further normal theory methods they use. In other words, the
Q — Q plot is usually a device for convincing others that there is no red flag: its use is
more as a green signal for proceeding with subsequent work. The common standard we
apply to ourselves and teach our students appears to be that one should not overreact to
wiggles in the plot and as long as the plot gives a visual impression of overall approximate
linearity, it is generally safe to proceed with methods that assume normality. We looked
up the sections on @ — @ plots in five of the most standard texts on statistical methods:
with some variations in the actual words used, this was the standard recommended in all
of them. We found the presentation in Moore and McCabe (1993) to be somewhat more

critical than in the other texts.

Methods that are very basic and are very widely used automatically face a very real
danger: abuse due to routine use. The most widely used methods need the most scrutiny.
The purpose of this article is to take a critical look at how we as a profession use the Q — Q
plot and teach our students everyday, what is justified and what probably is not, and try
to understand what the @ — @ plot says and what it does not say. Why is it that all too
frequently we see data sets that produce an approximately linear Q — @ plot? Can we do
some mathematics that explains this life experience? Why is it that the central part of a
Q — Q plot looks normal so universally? Why is it that if there is a problem, it always
appears to be at the tails of the @ — @ plot? And when we see such a problem, can we
try to understand what we are seeing and learn from it? For example, if we see a Q — Q
plot in which the central part looks very very linear but there is a systematic downward
bent at the upper tail, can we actually say something more than just saying that there is a
problem? Can we do some mathematics that explains how particular shapes may associate

with particular true underlying populations?

In this article, we present some asymptotic theory that tries to answer these types of
questions. There are two types of results: strong laws, and a collection of results that go a
step beyond the strong laws in the sense of establishing some actual rates of convergence.

In arriving at these results, we needed to use two types of results: some classic asymptotic



theory like laws of the iterated logarithm for partial sums of iid sequences, plus some
asymptotic theory for extreme observations from iid sequences. For the classical asymptotic
theory we needed, Serfling (1980) is a standard reference. For the asymptotic theory of

extremes we needed, we recommend Galambos (1978) as a very useful reference.

The following is a brief nontechnical outline of the subsequent sections: in Section 2,
we give a collection of Theorems that address our life experience that we often see Q — Q
plots that look remarkably linear, especially so in the central part of the plot. In Section 3
we ask how we can learn from @ — @ plots about the true underlying population; this is
done by means of a collection of strong laws for extreme residuals; studentized residuals
are considered in section 4. Two illustrative examples are presented in Section 5. Section 6

is an appendix containing the proofs.
2. Why Q — @ Plots Tend to Look Linear.

2.1. Notation. The exact definition of a Q — @Q plot varies a little from source to source.
The asymptotic nature of our results makes this distinction unimportant. We will define
the @ — @ plot as a plot of the pairs (z(i_%)/n, X)), where 2z, is the 100 ath quantile of
the N(0,1) distribution and X (i) 18 the 1th sample order statistic (in other places, Z(i—L)/n
may for instance be replaced by z;/(n41): this is what we mean by the difference in the
definition at different places). As usual, ® will denote the CDF of the N(0, 1) distribution.

Also we will write simply z; in place of Z(i—1) /n.

As an index of how linear a plot on the plane looks to the human eye, we will use
the coefficient of linear correlation between the coordinates in the plot. In the context of

Q — Q plots, we therefore have the following index of linearity:

n
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As we stated earlier, we will also try to understand the central part of the Q — Q plot
separately from the whole plot itself; this will therefore necessitate a separate index of

linearity for the central part and a specification of what we mean by the “central part”.
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This is done by defining, for 0 < o < .5, the trimmed correlation

n—k
Y. % Xa)
. imlt1 .
a a,n — — - ) (22)
S22 Y (X — Xi)?
imhdl =kl

where k = [na], and Xy is the trimmed mean.

This definition therefore says that r, is the correlation in the Q — @Q plot when 100 a% of
the points are trimmed from each end of the plot. Therefore, according to our empirical
experience, we tend to see a larger value of r,, if v is larger because this corresponds to more
trimming. We will assume in this article that the true underlying CDF F' is continuous,
although it is not necessary to assume this for most of the results. For previous work in
the spirit of our results, one should see Filliben (1975), LaBrecque (1977), Anderson and
Darling (1954), Shapiro and Wilk (1965) and Seber (1984) for some unified information.

2.2. Almost Sure Limit of r,, and r,.

Theorem 2.1. Let X;, Xa,... be iid observations from a distribution with CDF F with

finite variance o2 = o?(F). Then r, — p(F) with probability 1, where

0 : (2.3)

Proof. The proof is deferred till the appendix.

There is an interesting lower bound on the limiting correlation p(F') for symmetric F'

that comes out of (2.3).

Corollary 1. Let F' be any CDF with a point of symmetry, say 6, and in addition with
2 Ep|lX -0
o(F) > \ﬁ Ep|lX - 0|
v o

(Er|X — 0)5 - (D(2=22)) 5

g

a finite variance ¢2. Then

In addition, for any 0 < p < %,

p(F) >

P S

c(p) (say)
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and hence,

p(F)Zmax{\/gE—F%j—g—l, Q sup c(p)}. (%)

9 o<p<i

Discussion of Corollary 1. Corollary 1 is valuable in the following sense: direct use
of formula (2.3) requires evaluation of the quantiles of F'. Except in quite special cases,
there are usually no closed form expressions for the quantiles. Thus (2.3) has to undergo a
numerical integration or Monte Carlo followed by a numerical evaluation of the quantiles
themselves. In contrast, Corollary 1 only involves the moments of F which require only
the density for which almost always there will be a closed form expression in practice;
in fact even the moments may have closed form formulae. In addition, the strengthened
inequality (*) stated at the end gives sharper lower bounds on p(F). Because of all of

these reasons, Corollary 1 is useful.

Notice that Theorem 2.1 needs finiteness of the variance of F. One may suspect that if
the underlying CDF does not have a finite variance, then there will be a drastic departure
from overall linearity at the tailends of the @ — @ plot, resulting in a small value of the

correlation r,. The following result justifies this intuitive expectation.

Proposition 2.2. Let F be the family of normal scale mixtures; i.e., X % W+ oz,
where u, o > 0 are any arbitrary fixed constants, Z ~ N(0,1) and 7 > 0 is distributed
independently of Z. Then

FEAE) =0

Again, a proof is postponed till the appendix.

Interestingly, the limiting correlation p(F') may be close to zero even when F is not
at all thick tailed, but in fact very concentrated. The intuitive explanation is that if F
is so concentrated that it acts like a point mass, then the corresponding Q — @Q plot is
likely to look like a flat line, as though the exact value of z; had no effect on X (1)- The
actual mathematics is more intricate than this simplistic explanation because ¢ in the
denominator of the formula for p(F') is also very small if F' acts like a point mass. The

following example is a good illustration.

Example 1. Let X %U " where U ~ Uniform [0,1] and n > 0. We will ultimately let
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n — 0. Then, from (2.3),

1
o(F) :/ 2EoL(2)dz - " AR

n

[SIE
3=

:”:1\/%:_‘{/ {(1_3;)%_35 }@‘1(1—x)d:c

0

Using now the fact that ®~1(1 — z) = O(4/log %) as ¢ — 0, and making the change of

variable y = log %, one gets that

/(f{(l—x)

1 & 3
= O(=) since / e Yy2dy < oo
n 0

3=

- a:%} 711 - 2)dx
(2.5)

Combining (2.4) and (2.5), one has

Discussion and application of the Theorem. First a curious technical point. Since
p(F') is the almost sure limit of a correlation sequence, it follows |p(F)| < 1 for any F'
with 2 moments. This can actually be proved by a direct and tricky argument, and is
a nice inequality by itself. Actually, it can be shown that p(F) > 0, since F~!(a) and
®~1(q) are both nondecreasing functions of a: essentially the fact that the covariance of
two nondecreasing functions of a (uniform) random variable must be nonnegative. This of

course makes sense since the correlation sequence r,, is positive itself by construction.

Notice also that symmetry of F was not assumed in the Theorem above. Thus this
Theorem can be used to quantify how linear to the eye the Q@ — @ plot will look for
skewed populations as well. The following table gives the computed values of the limiting
correlation p(F') for a number of standard distributions. We find it really quite amazing

how large the linear correlations are across this broad spectrum of examples. In the
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following table, F,, denotes the CDF of the maximum of n iid N(0,1) variables.

Table 1.
F pE)
Normal 1
Uniform /2 = 977205
Double Exponential 981051
t(3) 90077
t(5) .983236
t(7) 993375
Tukey distribution 970633
(.9N(0,1)+.1N(0,3))
Logistic 966273
F .986636
Fy 985113
Fip 982345
Extreme value .98

(with density exp(— exp(—z)) exp(—=z))

Of these, the last four distributions are skewed and the others are symmetric (a
location and scale can be added in an arbitrary way in all of these examples because we
are considering correlations). These numbers obtained by an application of Theorem 2.1
give an idea of why we tend to see linear looking @) — @ plots in our empirical experience.
Also see Tables 2 and 3 where the value of r,, is reported for 25 simulated samples of size
n = 30 each for the uniform and the Double Exponential case. This also leads to the fact
that if Q@ — @ plots are to help in deciding whether one has normal data or not, overall
linearity should not be the standard of judgement. One has to go into finer features of the
@ — @ plot, like its shape at the tails. But first let us understand the qualitative behavior
as regards visual linearity of the central part of a @ — @ plot. The following Theorem is

an analog of Theorem 2.1.
Theorem 2.3. Let 0 < o < .5. Suppose X3, Xo,...,X,, are iid observations from a CDF
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F~l(1-0a)
f zdF(z)
F-l(a)

F on the real line. Let p, = 5 . Then 7, — po(F) with probability 1, where

fl"a F~Yz)®~ 1 (x)dx

a3

pa(F) = > =Yg
\/fa {@—l(x)}de ' fF——-l(a) (CL’ - Ma)zdF(.’E)

The Proof of Theorem 2.2 is very similar to that of the preceding Theorem 2.1. However,

a brief outline of the proof is indicated for completeness in the appendix.

In all cases that we tried, the limiting correlation of the central part, i.e. po(F) of
Theorem 2.3, was found to be increasing in «. In other words, the more one trims the
more linear the Q-Q plot looks, probably an anticipated fact. We believe that an analytical
proof of this monotonicity in « should not be difficult although we didn’t try it. It is our
expectation that simply calculus should suffice for this monotonicity result under some
conditions on F'. Figure 1 is a plot of p, (F') for F' = Uniform and the Double Exponential.
One is tempted to conclude that uniform data look more normal than other types of data
in the central part of a @ — @ plot. The other interesting fact one sees from Figure 1 is
that even 5% trimming from both ends of the plot results in a correlation as large as about
.994 in each case. The central part of a @ — @ plot is likely to look nearly perfectly linear
in large samples with just a small amount of trimming from each end, again signifying that

the information about the population can only come from finer features of the ) — @Q plot.

Table 2

Correlation in Q — @ plot for simulated
uniform data

(n = 30, 25 sets)

962 966 .969 987 970
994 973 975 .969 .969
977 979 982 981 969
989 975 973 985 976
986 964 975 972 981
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920
963
921
992
986

Table 3

Correlations in @ — @ plot for simulated

Double Exponential data

(n = 30, 25 sets)

952
962
980
993
973

978
975
956
942
989

857
985
934
925
907

990
974
955
.960
975

The following Table is given to help understand the effect of trimming on the linearity

of the Q) — @ plot.

F

No trimming

977205
981051

90077
966273

Uniform
Double Exp

£(3)

Logistic

Table 4.

Limiting correlation

5% trimming

994937
994055
998365
999526

10% trimming

997846
996242
999601
999816

3. Extreme residuals. The findings of the preceding section indicate that finer features

of a Q — @ plot such as its shape at the tailends are necessary to look at over and above

just the overall linearity of the @ — @ plot. In order to make the point that tailends of the

Q — Q plot are instructive, we have included simulated @ — @ plots for data arising from

uniform, normal,Double Exponential and ¢(6) distributions. Note the following interesting

features in these simulated @ — @Q plots (Figures 2 through 6):

a) For the uniform data, the last point is below the least squares line which is given on

the same plot;

b) For the normal data, the last point is above this same line;

c¢) For Double Exponential data, it is above the line as well, but seems to be more above

than it was for the normal data;



d) For the ¢(6) data, of which there are two simulated plots, in both cases the last point
is above the line, but the magnitude by which they are above are noticeably different

in the two simulated sets.

Admittedly, these are one time simulations and perhaps mean nothing. Interestingly,
we will now state a collection of almost sure results that vindicate some of the the general
phenomena we noticed in these limited simulations. We give these one at a time. But first

let us clearly explain notation and exactly what we are doing.

Consider the cluster of points (z;, X(;y) that form the Q@ —Q plot. Fit the least squares

line of fit for these pairs which has the equation

X(i) =a+ bz
where n
2. %X (i)
b=b, =" (3.1)
> 2
=1

and a = X — bz = X since the {2;} add to zero.

The residuals are defined in the usual way:
e; = Observed X(;) — Predicted X(i).

In particular, the residual corresponding to the very last point in the @ — @ plot is the

extreme residual

En = X(n) - X — Zn.b.

The almost sure results we are now stating are about the behavior of these quantities e,.
The proof for the normal case needed the most work. We will outline these proofs in the
appendix. There is a unifying thread in all of these proofs for the different distributions:
en Involves in its expression three types of quantities: the maximum order statistic X(n),
the sample mean X, and the slopes b,. The unifying thread in the proofs is that X (n)
is handled by quite delicate limit results in Extreme value theory, X is handled by more
standard laws of the iterated logarithm for sample means, and b,, is handled by limit results
on L statistics, by and large results due to Wellner. We will now state the almost sure

results concerning e,.
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Theorem 3.1. For each of F' = uniform, Double Exponential, there is a sequence ¢,, such
that the extreme residual e, ~ ¢, i.e., e,/c, — 1 with probability 1. The sequence ¢, are

as follows:

cn = —/logn/v/2m for F' = uniform [0, 1];

cn, = logn for F' = Double Exponential;

for F = N(0,1), lim Sup{ T lOgn} <1 and lim inf{ = ny 210g"}

oglogn oglogn
For F' = ¢t(m) where m denotes the degree of freedom of the ¢ distribution, the following

holds:
limsupe,/ nw = co with probability 1

liminfe,/ n= = 0 with probability 1.

Discussion of Theorem 3.1. The sign of ¢, is positive for Double Exponential data,
i.e., the observed point is going to be more than the predicted and hence above the least
squares line. In the uniform case, the sign of ¢, is actually reversed: so now one is going
to see the last point BELOW the line. And for data from t distributions, there is too much
fluctuation from sample to sample and there is no almost sure limit as the zero lim inf and
infinite limsup testify to. Note that each assertion is intriguingly consistent with what
we saw in the simulated Q@ — @ plots discussed above. We find this very appealing and
instructive ourselves. We were not able to strengthen the result for the normal case to the

existence of a limit.

4. Studentized residuals and learning about the true population from the
@ — Q plot. The results on extreme residuals presented in Section 3 give some qualitative
understanding of the shape of the @ — @ plot as a function of the true underlying CDF
for a few standard cases. There is one fundamental difficulty in learning about the true
CDF by visual examination of the residuals; it is that residuals are not scale invariant.
It is therefore valuable to study the scaled residuals as well so that for every distribution
within a given location-scale family one sees the same asymptotic behavior. A standard

method towards this end is to consider the studentized residuals

. — (4.1)




More formally, take any number o such that 0 < o < 1, and take i = [na] (the integer

part of na); define now the studentized residual indexed by o as

£
€p = S€;.

Then it turns out that for each « in the interval (0,1), there is an almost sure limit for e},
provided the true CDF F' has two moments. The following result gives the expression for

this almost sure limit.

Theorem 4.1. Let X, Xo,..., X, be iid observations from a CDF F on the real line.
Assume F has two moments. Then e}, converges with probability 1 to
F~Ya) — (fy F~Y(2)® ! (z)dz)® 1 (a)

s(a) =
Vo2 (F) — (fy F1(2) @1 (z)da)?

(4.2)

The derivation of this expression is given in the appendix.

Evaluation of s(a) for a given F' will usually require numerical computing in the
sense it would not be possible to write s(«) in terms of elementary functions. In certain
special cases, however, basically closed form expressions for s(c) are possible. For example,
if F is Uniform, then s(a) = (2a — 1 — @ 1(a)//7)/~+/(1/3 = 1/7) and if F is Double
Exponential, then s(a) = —3.64961(log(2(1—a))+1.387416® ! (c)) for & > 7 and 3.64961
(log(2cr) — 1.387416®*(c)) for @ < 1. The constants with decimals are approximate, of
course. Figure 7 gives a plot of the function s(«) for three common cases: uniform, Double
Exponential, and the ¢ distribution with 3 degrees of freedom. The 3 degree of freedom
was chosen as a type of extreme slow tail with a finite variance. Other degrees of freedom
can also be studied. Other choices of F' should also be studied. These plots promise to be
useful in the following way: given a real data set, one computes the studentized residuals,
omitting a few extreme ones due to the assumption of a fixed « in the Theorem. As a rule
of practice, may be the middle 95% of the residuals could be computed. If a smoothed
version of the observed studentized residuals generally matches the theoretical s(a) plot
for some standard F', then we have indeed learned from the QQ — @ plot more than whether
the data are normal or not normal. We have now better reasons to believe that the true
underlying CDF is the one whose theoretical s(a) plot resembles the observed smoothed

studentized residual plot. Smoothing can be done in many standard ways. We have simply
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used the List Plot command in Mathematica on the list of observed studentized residuals.
Certainly more sophisticated smoothing can be also done. We will present one real data

set and one simulated data set for illustration.
5. Examples.

Example 1. We will illustrate the potential for typical use of Theorem 4.1 by considering
the so called water salinity data set. This is a data set of 28 observations on the salinity
level in North Carolina’s Pamlico sound; the observations are biweekly. As far as we
know, this data set was first studied in Ruppert and Carroll (1980); it was subsequently
analyzed in Hettmansperger (1987), Rousseeuw and Leroy (1987) and Ruppert and Carroll
(1985). There is a highly enjoyable description of the original background of this data set
in Ruppert and Carroll (1985). Note that the basic goal of the statistical analysis done in
these papers with the salinity data set was different. Note also that there is clearly a time
series character inherent in this data set and there is apriori no reason to model this data

as iid realizations of a fixed CDF.

If we proceed anyway for the time being and calculate the studentized residuals after
fitting the ordinary least squares regression of the sample order statistics on the N (0, 1) per-
centiles, then something interesting happens. The observed studentized residuals (joined
by line segments) are plotted in Figure 8. Now we recognize this plot to resemble the
theoretical s(a) plot for the Uniform family. For purposes of comparison, this theoretical
plot is superimposed on the same plot. Note that in the theoretical s(«) plot for the
Uniform distribution in Figure 7, the ordinates go to 6 in the range plotted, but in the
plot under consideration for the given data set, the studentized residuals do not go that
far; this is because Figure 7 was plotted for between .001 and .999, a much larger range
than 2/28 to 27/28 which is the effective range in the observed residual plot. We find this
interesting; we have undoubtedly a time series character in the data set. Yet a model of
iid observations from a Uniform distribution may also be something to look at, it appears.
Note that this analysis does not say anything about the location and the scale of the Uni-
form distribution. These have to be estimated in a serious actual study by using standard
estimation methods. Perhaps robust alternative estimates may also be used. We will not

go into that aspect of the analysis since that is not the goal of this article.
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Example 2. We will now give a simulated example for 60 simulated observations from a
standard Double Exponential distribution. The purpose of the example is to see whether
the simulated plot indeed looks like the theoretical plot. This is important for purposes of
identification. Since the steps leading to the plots are exactly the same as in Example 1, we
omit discussions of that aspect. Figures 9 and 10 give the observed studentized residuals
together with the theoretical plot corresponding to the Double Exponential case. We find

the similarity striking indeed.
6. Appendix.

Proof of Theorem 2.1. The idea of the proof is actually very simple. One handles
the numerator and the denominator separately. To do this, however, one multiplies the
numerator by 1/n and each term within the square root sign in the denominator is also

multiplied by 1/n.

Once this is done, the first term in the denominator converges to fol{@‘l(m)}zd:c since
it is a Riemann sum of that integral; the integral is seen to be 1. Thus the first term within

the square root converges to 1.

The second term within the square root in the denominator converges with proba-
bility 1 to the variance of the underlying distribution. On taking the square root, the

variance becomes the standard deviation.

The numerator now remains to be handled. This is essentially done in Example A*

in page 279 in Serfling (1980). Let us briefly explain.

Using the same notation as in Serfling (1980), one uses the double sequence t,; =
(¢ —1/2)/n, and uses J(t) = ®~1(¢), with & denoting the N(0,1) CDF as usual. Thus
J is everywhere continuous and the growth condition of Example A* is satisfied with any
r > 1, in particular » = 2. Note r = 2 is a legitimate choice because we have assumed a
finite variance. Finally, one must also have max|t,; — i/n| — 0, which is trivial, and the
existence of a constant a > 0 such that the condition a. min{i/n,1 —i/n} < t,; <1-—a.
min{é/n,1—14/n} holds. This is also valid in particular with a = 1/2. This establishes the

assertion of Theorem 2.1.

Proof of Corollary 1: We can clearly assume that § = 0. Thus, the numerator of
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(2.3) equals 2fll F~Y(z)® !(z)dz. Denote F~!(z) by g(z) and ® () by h(z). Thus
2

the numerator is E[g(X)h(X)] where X is Uniform [,1]. The first inequality in Corol-

lary 1 follows on using Cov(f, g) > 0 since f, g are both monotone increasing. The second

inequality follows from Holder’s inequality
E(fg) > (Ef?)?(Eg)s

for 0 < p < 1, with % + % = 1. The restriction p < % is needed for finiteness of (Eg?) in

this context.
The inequality (*) is an obvious consequence of the first two inequalities.

Proof of Proposition 2.2. We will prove this result by construction. Indeed, take F to
be the CDF of the ¢ distribution with m degrees of freedom, m > 2. Thus F has a finite
variance. We will ultimately let m — 2. Note that F' is well known to belong to the family

JF under consideration.

The denominator ¢ in the formula for p(F') is known to be ,/-"=. The numerator

/OlF_l(x)q)_l(a:)d:r
_ 2/11F‘1(:c)@_1(:c)da:.

2

Due to the facts that F~1(z) = O(Z-lllT)I) and @7 '(z) = O(,/log =) as ¢ — 1, it

follows that the above integral is O(1) as m — oo and hence p(F) = O(v/m —2) — 0 as

m — 2.

Proof of Theorem 2.3. There is no essential difference in the proofs of Theorem 2.1
and 2.3. The normalization in each term in the numerator and the denominator is still
1/n. On this normalization, the first term in the denominator is again a Riemann sum; the
second term in the denominator is a trimmed variance and converges with probability 1 to
a trimmed variance, that is, the variance of the distribution obtained on truncating F at
the ath and (1 — )th percentiles respectively. The numerator is handled in essentially the
same way as in Theorem 2.1. The function J(¢) is now piecewise continuous, having two
discontinuities, since it is equal to zero outside of a compact interval. The double sequence

tn; and the constant ‘a’ are the same as in Theorem 2.1.
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Proof of Theorem 3.1. First consider the case when F' = Normal (0,1). The proof is
somewhat involved and the main facts used in the proof and the main steps are outlined

below. The following facts are used:

a) nX/y/nloglogn is a relatively compact sequence: this is a consequence of the usual

law of the iterated logarithm for sums of iid random variables;

b) +/n(b, —1)/+/2loglogn is also a relatively compact sequence for appropriate p, which

is actually equal to 1 in the case F' = Normal (0,1): this is available for example in
Wellner (1977).

¢) zy is of the following order:

loglogn

1 — z,/+4/2logn = loglogn/(4logn) + of ). (6.1)

logn

This can be seen by using the fact that the tail area in the N(0,1) distribution,

1 — ®(x), is of the order ¢(z)/z as x — oo, where ¢ is the N(0, 1) density.
d) Also needed is the following fact:
The maximum order statistic X,y for the N(0,1) distribution satisfies the following:

For any 6 > 0 and for all large n, with probability 1,

ay, — Brllogloglogn + log(1 4+ 9)] < X(») < ay, + (1 + 6)B, loglogn (6.2)

where o = /2logn — elogntlosldn) g g — 1/,/2Togn.

2\/210gn

This can be seen as inequality (51) in page 228 in Galambos (1978).
\/2log

" is obtained by writing

. 2
Now the stated assertion on e, loglog n

eny/2logn/loglogn
= X(n)V/2logn/loglogn — X+/2logn/loglogn — z,(b, — 1)y/2logn/loglogn (6.3)
— zpy/2logn/loglogn.
In the second and the third term one now uses the relative compactness facts about X and

by, listed above, on carefully multiplying and dividing by the same normalizing constant so

that relative compactness obtains. For example, the second term is the term that involves
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X. In this term one multiplies and divides by n/v/nloglogn in order that the relative

compactness fact listed above is usable. One does likewise for the term involving b,,.

In the first term one uses both inequalities listed as fact d) above; the upper bound is
used to show that limsupe,+/2logn/loglogn is less than or equal to 1+ ¢ for any given
0 > 0, and hence is less than or equal to 1. The lower bound of fact d) is then used to

show that the liminf is greater than or equal to 0.

Finally, the order for z, listed as fact c) is used in the fourth term of the above

expression (6.3).

The proof for the case F' = Uniform [0, 1] follows the same type of argument and is
the easiest of all the cases. The only thing one needs to be careful about is that in the
relative compactness result for b, listed as fact b) above, the constant y is evaluated to be
1/(2+/7) for the F' = Uniform [0, 1] case. The compact support of the Uniform distribution

makes the rest of the proof easy.

The proof for the case F' = Double Exponential also follows the same main steps.

Now one has to use the following fact about Double Exponential distribution:

The maximum order statistic X,) for the Double Exponential distribution satisfies
X(n)/logn — 1 with probability 1. This fact can be deduced either from Theorem 4.4.4
in page 230 of Galambos (1978) or alternatively can also be seen from Example 4.3.3 in
page 224 of the same book. The rest of the argument now follows the normal case steps

exactly.

The case when F' is a t distribution is an exception due to the different phenomenon
it demonstrates. We need to assume that (the degree of freedom) m > 2 in order that
the stated t distribution has a finite variance. A finite variance is needed for the relative

compactness argument we have been using.

The central fact responsible for this distinct phenomenon in the case of ¢ distributions

is the following fact about ¢ distributions:
The maximum order statistic X, of a t distribution satisfies the following two facts:

Fact 1: limsup Xy /n?%? = oo with probability 1
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Fact 2: liminf X,/ nm = 0 with probability 1.

Fact 1 is a consequence of Theorem 4.4.1 in page 225 of Galambos (1978); in this
Theorem one shows very easily that (44) holds for every positive number k and therefore

(45) of Theorem 4.4.1 in Galambos (1978) follows.

Fact 2 is a consequence of Theorem 4.3.1 in page 214 of Galambos. In this Theorem,
take as the sequence u,, u, = ﬂyn%, where 7 is any fixed positive real number. Then
it is seen without difficulty that the sum in (21) of that theorem in Galambos (1978)
diverges. Therefore it follows from this Theorem that X,/ nw < ~ infinitely often with
probability 1. But v was taken as any arbitrary fixed positive number; the stated assertion

in Fact 2 above therefore follows.

Once these two facts are established, the rest of the argument is again the same as
the normal case argument. In fact all the main steps follow directly once Facts 1 and 2

above are observed.

Proof of Theorem 4.1. The numerator in the studentized residual equals X ;, — X —bnz.
We can assume without loss of generality that the mean of F'is zero in this Theorem. From
standard asymptotic theory, X(;) converges with probability 1 to F~'(«) since i = [na]
and F was assumed to be continuous. X converges with probability 1 to zero, and by, the
slope of the least squares line also has an almost sure limit by virtue of facts described in

the proof of Theorem 2.1 and indeed this limiting value equals fol F~Y(z)0o Y z)dz = p
(say).

The average sum of squared residuals is seen on standard algebra to be equal to
n

s — b2 - 2 3" 22, which has the almost sure limit 0 — 2. Thus both the numerator
i=1

and the denominator in the studentized residual are handled and from this the Theorem

follows.
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