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ABSTRACT. An algorithm is given for computing the Hausdorff dimension of the set
A = A(8, D) of real numbers with representations £ =y ..  dn,8~", where each dn € D,

n=1

a finite set of “digits”, and § > 0 is a Pisot number. The Hausdorff dimension is shown
to be log A/log 8, where X is the top eigenvalue of a finite 0-1 matrix A, and a simple
algorithm for generating A from the data g, D is given.

1. INTRODUCTION

This note concerns the set(s) A = A(8, D) of real numbers with representations z =
%  d,B8", where each d, € D, a finite set of “digits”, and 8 > 0. These sets have been
the subject of several recent studies. Keane, Smorodinsky, and Solomyak [3] considered the
special case D = {0,1,3} and 8 € (2.5,3): they showed that although for almost every
B € (2.5,3) the Hausdorff dimension of A is 1, there is a sequence S of algebraic integers
in (2.5, 3) such that the dimension of A is less than 1. Pollicott and Simon [5] extended
the results of [3] by showing, among other things, that for D = {0,1,3} and 8 € (2.5,3)
set of discontinuities 8 of the Hausdorff dimension dimg(A) is dense in this interval. These
discontinuities are at algebraic numbers 3. !

The main result of this paper is that the Hausdorff dimension of A = A(8, D) is com-
putable provided g is a Pisot number § (arbitrary) and D is a finite subset of Z[§]. In
particular, it will be shown that

log A(8, D)
logf ’
where A = A(B, D) is the largest eigenvalue of a certain 0-1 matrix A = A(8, D) (and,

therefore, X is itself an algebraic integer). Moreover, it will be shown that for the Hausdorff
measure in the critical dimension § = log A/ log g,

(2) 0 < Hs(A) < .

A simple algorithm for computing the matrix A from the data 8, D will be provided. Thus,
(1) permits (in theory!) the computation of dimg(A) to any degree of accuracy. In the

(1) dimg(A) =
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11t is not known if there are discontinuities at transcendental values of 3.
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special case 8 = 1 +4/3 and D = {0, 1,3} (the most difficult case considered in [3]), Eq.
(1) may be used to obtain the approximation (and rigorous upper bound)

(3) dimg(A) ~ 0.485923

2. FINITE APPROXIMATIONS TO A

For the remainder of the paper § > 1 will be a fixed Pisot number with algebraic con-
jugates Bz, , B4 and minimal polynomial p(z) = 2% — Ez;é axz®, where each ay is an
integer and d > 2. (Recall that a Pisot number is an algebraic integer all of whose algebraic
conjugates lie inside the unit disk.) The set D of digits will be an arbitrary finite subset
of Z[B] (the set of all integer polynomial expressions in ) of cardinality at least 2; the
maximum absolute value of an element of D will be denoted by h. Define

A={Yd.f™ : d, € D};
n=1

Am={2dn,@_” : d, € D}, m=1,2,....

n=1

Note: In fact, the arguments below are valid in somewhat greater generality: the digit set
D may be any subset of Z[3]*, for any k > 1. In this case, the set A is a compact subset of
RE*. For the sake of simplicity, only the case k = 1 will be discussed here.

The finite sets A, should be thought of as discrete approximations to A. (It can be shown
that as m — 00, Ay, — A in the Hausdorff metric, but this fact will not be needed.) The
growth of the sets A, determines the Hausdorff dimension of A, as the following propositions
show.

Proposition 1. There ezists a constant 0 < A < 3 such that as m — oo,
|Am |7 —> A,

Proof. It is easily seen that [An4n| < |Am||As|. Consequently, the existence of the limit
follows by the fundamental subadditivity lemma. That A < 8 follows from Theorem 1
below, and that A > 0 follows from Corollary 2 in section 5, which shows that A is the top
eigenvalue of a certain 0-1 matrix. o

Theorem 1. dimg(A) =logA/logf.
The proof will be accomplished in sec. 6 below. The first step is the following lemma:

Lemma 1. The boz dimension dimpg(A) of A satisfies

log A
log 8

Proof. This is a direct consequence of Proposition 1. For each m > 1 let U,, be the collection
of intervals [z — k™™, 2 + k3~™] where z € A,, and k = 2h/(8#—1). This is a covering of A
by |An| intervals of radius K3~™. The advertised inequality for dimp(A) therefore follows
from Proposition 1. 0O

dimB(A) <
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Since the box dimension of a set always dominates its Hausdorff dimension, the lemma
implies that
log A
log 8
Thus, to complete the proof of Theorem 1, it suffices to establish the reverse inequality. It
is in this direction that the hypothesis that § is a Pisot number will be used. (Note that
neither the existence of the limit in Proposition 1 nor the inequality for the box dimension

in Lemma 1 required this hypothesis.) The following lemma is the only part of the argument
where the Pisot property is explicitly needed.

(4) dimp(A) <

Lemma 2. (Separation Lemma) There exists a constant C = C(f, D) > 0 with the follow-
ing property. For any m > 1 and any two distinct elements z,y of An,,

|z -yl > CB™™.

Proof. Tt suffices to consider only the case where D C Z. This is because any polynomial
expression y_n-; d, /"™ whose coefficients d,, lie in a finite subset D of Z[3] may be rewritten
as a polynomial expression Y ™*" d! 3~" whose coeflicients d!, are all elements of a finite
set D’ of integers (r and D’ depend only on D, not on m or the particular choice of
Yo dnS™). Let e =Y d, ™ and y = Y v, d7,37™ be distinct elements of A.,. Set

n=

F(&) = 3o = o™

then F(8) # 0, and consequently F(8;) # 0 for each of the algebraic conjugates 8; of 3.
Recall that the coefficients d,, — d, are uniformly bounded in absolute value by a finite
constant 2h. Since f is a Pisot number, || < 1 for each j, and consequently |F(8;)] <
2h/(1— |B;|). But the coefficients d,, — d], of F' are integers, so

d

F(p) [T F(8;) € Z - {0}.

j=2

It follows that |F(8)] 2 (ITizal(1 - 8;0))/(2R)2.

3. THE ASSOCIATED DIGRAPH

The relation between the finite sets A,, and the infinite set A may be visualized with
the aid of the directed graph G whose vertex set is U_o(Ap, X {m}) (with Ag = {0}) and
whose directed edges are

m m
(Z d.f~ ", m) — (Z d.f"+dB ™, m+1), deD.
n=1 n=1
The second coordinate m of a vertex will be called its depth, and the digit d’ will be called
the color of the directed edge (note that d’ is independent of the representations chosen for
the two vertices in question). Observe that the directed edges of G only connect successive
depths m,m+ 1, so any path in G (a sequence of vertices, each successive pair connected by
a directed edge) can only go “down”. More precisely, if (vn)n>1 = ((Zn,7))n>1 is an infinite
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path in G starting from the root vertex (0,0) then there is a sequence of digits d,, such that
for each m,

Tm = Z dnff";
n=1

consequently, lim, e m = 2 where z = 02, d,~". We will say that such a path
converges to . Thus, the boundary 0G of G is identified with the set A. (Note, however,
that a point € A may have more than one such representation, so there will in general be
many paths converging to the same limit point.)

For any finite sequence dyds . ..d,, of digits (elements of D), let v(d;dz...d,) denote the
vertex (> ey dn8~",m). Note that for any given vertex there may be several representa-
tions v(dydz...d,,). For any two vertices ¢ = v(dyds...dn,) and y = v(djd;...d;,) at the
same depth m, define their G—distance p(z,y) by

m

Z(dn - d;z):@_n

n=1

p(z,y) = "

Define the constant

k=2h/(B-1).
For any vertex z of G define its neighborhood N(z) to be the set of vertices y at the same
depth such that p(z,y) < &.

Lemma 3. Let didy... and did; ... be arbitrary sequences of digits. If
mh'_gnoo v(dids...dp) = mh'_rgo v(did, . ..d,)

then for every m > 1,

Proof. The hypothesis implies that 3 oo, d,0™™ = Y oo, d,7". Since digits are bounded
in absolute value by h, it follows that for each m,

Y d =) dr T < 2087/(B - 1).
n=1

n=1

This is equivalent to the conclusion of the lemma, by the definition of x and p. O

Note: If the elements of the digit set D are all nonnegative then the bound 2h8~™ /(8 - 1)
in the preceding argument could be improved to h3~™ /(3 — 1). In this case, we could use
k = h/(8 - 1) instead of k = 2h/(1 — B). This reduction can make a large difference in the
size of the set of neighborhood types.

Say that two vertices z, y (not necessarily at the same depth) have the same neighborhood
type if there is a bijective mapping between N(z) and N(y) that preserves the distance
function p. Let 7 be the set of all neighborhood types in G.

. Lemma 4. 7 is finite.

Proof. For any two digit sequences didz...dn, and didj...d}, there is a distance-preserving
inclusion

N(d,d,...d,) — N(v(dids .. .dmd,d,...d})).
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This is because there is a replica of G embedded in G emanating from the vertex v(didy . ..dp).
Consequently, for any infinite sequence dyd; ... there is a chain of distance-preserving in-
clusions

N(’D(dl)) - N(W(dzdl)) - ‘ - N(’D(dm .. dgdl)) —_ e,

By the Separation Lemma, all such chains stabilize, because no neighborhood can contain
more than 4h/C(B — 1) + 1 distinct vertices. It follows by a routine argument that there
are only finitely many neighborhood types.

O

Lemma 5. Let did;...dpy1 and didy...d,, ; be arbitrary sequences of digits of length
m+1. If

p(v(didy .. .dmyr),v(dydy .. .dp 1)) < K
then
p(v(didy...dn),v(didy. . .d,)) < k.

Proof. If the last inequality were not true then |y my(d, — d},)3™"| > k8~"™. Because the
digits d,, d], are bounded in modulus by h, it would then follow from the triangle inequality
that

m+41 .
S (d — d)B"| > KB = 201 > kBT,
n=1
by definition of k. This would contradict the hypothesis. O

Corollary 1. For any vertices v,v' of G such that v — v', the neighborhood type of v’ is
completely determined by that of v and the color of the directed edge v — v’.

For the sake of computation it will be necessary to have an algorithm for enumerating
the set 7 of neighborhood types. For this purpose it is best to think of a neighborhood
type as a finite set of real numbers contained in [—k, k] with 0 as an element. (Thus, for
a vertex (z,m) of G, the neighborhood type is the set {f™(z' — z) : 2’ € N((z,m))}.
The neighborhood type of the root node (0,0) is the set {0}.) Define the offspring of a
neighborhood type 7 to be those neighborhood types 7’ such that for some directed edge
v — v’ of G, v has type 7 and v’ has type /. The offspring of 7 may be enumerated without
actually searching the graph for vertices of type : they are, for d’' € D, the finite sets

{Bz+(d"-d) : zer,d" € D}N[-k,k].
An algorithm for listing the members of 7 follows:

begin
T = {{0}};
S = {{0}};
while S # 0 do
begin
T:=TUS;
S := {offspring of S};
S =8-T;
end
return 7

end
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That this algorithm does in fact generate the entire set 7 of neighborhood types follows
from Corollary 1 and the fact that for every neighborhood type 7 there is a path in G from
the root vertex (0,0) to a vertex of neighborhood type 7.

4. ADMISSIBLE PATHS

Each directed edge (arrow) of the digraph G may be labelled by triples (7,7, d’), where
7,7 are the neighborhood types of the initial and terminal vertices, respectively, and d’ is
the color (digit) of the edge. The set of labels is finite, since both 7 (the set of neighborhood
types) and D (the set of colors) are finite. Say that a label (r,7/,d") is admissible if there
are vertices v, v’ of the digraph G such that

(1) v — v’ is an edge of G;

(2) the neighborhood types of v, v’ are 7,7'; and

(3) among all edges v” — v’ ending at v, the edge v — v’ has the smallest color.

(Recall that the set of edge colors is the digit set D, which is naturally ordered as a subset
of R. However, any order on the set of colors would work.) Note that this definition is
independent of the choice of v, v’ in the following sense: if there are vertices v, v’ such that
(1)-(3) hold, and if w,w’ are vertices such that there is an edge w — w’ with the same
label as the edge v — v’, then (1)-(3) hold for the pair w,w’. This follows from Lemma 5
and Corollary 1. Call a path v in G admissible if every edge in v has an admissible label.
Denote by £ the set of admissible labels.

Lemma 6. For each vertex v of G there is a unique admissible path v from the root vertex
(0,0) to v. ‘

Proof. This is certainly true for vertices v at depth 1, because for each such vertex there is
only one edge terminating at v, namely (0,0) — v, and this, by its uniqueness, has minimal
color and therefore an admissible label. Suppose that the statement is true for all vertices
at depth m > 1; we will show that it must then be true also for all vertices at depth m + 1.
Let v' be any vertex at depth m + 1. There is at least one directed edge v — v’ with v
a vertex at depth m; consequently, there is a unique edge v — v’ with smallest color. By
definition of admissibility, v — v’ has an admissible label, and any other arrow v — v
terminating at v’ has an inadmissible label. Thus, if there is an admissible path from the
root vertex (0,0) to v’ then its final step must be v — v’. But by the induction hypothesis
there is a unique admissible path v from the root vertex (0,0) to ». The path obtained by
adjoining the edge v — v’ to 7 is clearly admissible, and it is the only possible such path.
O

Note that it is not a priori impossible that for a given pair of neighborhood types 7,7’
there be admissible labels (7,7’,d) of more than one color d. In special cases (e.g., for s,
the largest solution of z2 — 2z — 2 = 0, and D = {0,1,3}) it happens that for any given
pair 7,7’ there is at most one admissible label connecting them; in such cases the size of the
incidence matrix defined below may be reduced. We have not been able to show, however,
that this is always the case.

5. THE INCIDENCE MATRIX

The incidence matrix A (the 0-1 matrix whose lead eigenvalue appears in equation (1))
has rows and columns indexed by the set £ of admissible labels. For any two admissible
labels I = (7, 7,d') and I' = (7",7",d") the [,I’ entry of A is 1 if 7' = 7" and 0 otherwise.
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The matrix A determines a shift of finite type (¥ 4,0). Here ¥4 is the sequence space
consisting of all one-sided sequences l;l;... with entries in £ such that for every =, the
(Inylnt1) entry of A is 1. Observe that for every infinite admissible path in G the corre-
sponding sequence of edge labels is an element of ¥ 4. Conversely, for every element [;1,...
of X4 and every edge v — v’ of G with label /; there is a unique admissible path with initial
step v — v for which the corresponding sequence of edge labels is /1/5.. ..

Lemma 7. Let l,lI' € L be admissible labels, and let v — v' be an edge of G with label 1.
Then the number of admissible paths of length m + 1 with first step v — v’ and final step
labelled I' is A7), '

Proof. By induction on m. The case m = 0 is trivial. Suppose the result is true for some
m > 0; then for each I” € £ the number of length m admissible paths with first step v — v’
and last step labelled I” is A}s. Now Ay = 1 iff the neighborhood type 7 of the tail of
1" is the same as that of the head of I/, and Aj» ) = 0 otherwise. Thus, for any admissible
path with last step " — v" labelled !” the number of edges with label I’ emanating from
v" is A p. Hence, by the induction hypothesis, the number of admissible paths of length
m + 1 > 1 with first step v — v’ and final step labelled ! is

E AmuA]ll’]I e A;?i;H'

llIeE

O

For any ! € £ denote by v the vector in R® with /th entry 1 and all other entries 0. Let
7« be the neighborhood type of the root vertex (0,0), and let u, € R* be the vector with
Ith entry 1if [ is a label of the form (7.,7’,d’) and 0 otherwise. Let 1 € R be the vector
with all entries 1.

Corollary 2. |Ay| = utA™ 1.
Proof. This is an immediate consequence of Lemmas 7 and 6. O

Define A > 0 to be the spectral radius of A. By the Perron-Frobenius theorem, A is an
eigenvalue of A. For every | € L there exists m > 0 such that u,A™v; > 0 entry of A is
positive, because for every [ there is an edge v — v’ in G with label /, and by Lemma 6
there is an admissible path from the root vertex to v. Consequently, by Corollary 2,

(5) lim |[An|Y/™ = A
m—00

This gives another proof of Proposition 1, and shows that the limit A is strictly positive.

6. MAXIMUM ENTROPY MEASURES

It is well known that the shift (¥4, o) has an invariant probability measure of maximal
entropy (see Parry [4] and/or Bowen [1]), and that under such a measure the coordinate
process is a Markov chain. Let P = (p;,s) be the transition probability matrix of this
Markov chain. Since we have not shown that A is aperiodic and irreducible, we cannot
conclude the uniqueness of either the maximum entropy measure or the transition proba-
bility matrix P. However, there is at least one, and for this P, there are positive constants
C > ¢ > 0 such that for all 7,7’ in a recurrent class R and all sufficiently large n > 1,

(6) A <, < oA
This follows from of [1].
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The transition probability matrix P may be used to define a probability measure y on
A as follows. Select any edge v — v’ of G whose label [ is an element of the recurrent class
R. Let Y,Y3,Ys,. .. be a Markov chain with initial state Yy = [ and transition probability
matrix P; note that with probability 1 the sequence YpY1Y7 ... is an element of ¥ 4. The
sequence YpY1Y3 ... determines a random path XoX3X3...in G (each X, is a vertex of G)
starting at Xo = v and whose first step Xo — X3 is v — v’. The random path XoX;X5...
converges to a random point Z of A (recall that the boundary of the graph G may be
naturally identified with A). The random variable Z induces a probability measure y on A
(the “distribution” of Z) by

w(A) = P{Z € A}.

(NoTE: There is a different measure p for each choice of initial edge v — v'. For our
purposes, any such choice will suffice, as only Eq. (6) will be needed.)

Lemma 8. For p —a.e. z,

) lim log p([z — e,z + €]) _ log/\.
e—0 loge log 8

Proof. Tt suffices to show that v

Jim %log p([z — KB,z + k")) = log A

for —a.e. z. We may restrict attention to those z € A = 8§ for which there is an (infinite)
admissible path zoz122...in G (necessarily unique, by Lemma 6) converging to z, such
that zg = v and z; = v'.

Consider any infinite admissible path zgzizs ... in G starting at 25 = v,2] = v’ and
converging to a point z’ € A such that |z’ — z| < k87™7", where 7 is the depth of v. Then,
by Corollary 3, the depth (m + 7) approximants z,,z,, to z,2’, respectively, must satisfy
p(&m,2;,) < 25. By the Separation Lemma, there is a constant K = K(2k) < oo such
that any p—neighborhood of radius 2« can contain no more than K distinct vertices; hence,
there are at most K possibilities for z,. For each such possibility z] there is at most one
admissible path from v to z},, by Lemma 6, and by Equation (6) the u—probability of this
path is no larger than CA~™. Thus,

(8) Wz — 6B~ T2+ kTTT])) K KCAT™,
On the other hand, any admissible path that begins zoz123 .. .2, must converge to a point

of [z — k™™ ",z + kKF~™"], and by Equation (6) the probability of the set of such paths
is at least cA™™, so

(9) plz =6 T2+ 6TTTT]) 2 AT

Theorem 1. dimg(A) = log A/ logS.

Proof. The Haudorff dimension is never larger than the box dimension, so by Lemma 1
it suffices to show that dimg(A) is at least as large as log A\/log 8. The preceding lemma
shows that A supports a probability measure that satisfies Eq. (7). But Frostman’s Lemma
(see [2], ch. 1, ex. ) implies that no measure satisfying Eq. (7) can be supported by a Borel
set of Hausdorff dimension smaller than log A/ log 3. g
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7. THE HAUSDORFF MEASURE ON A

Define § = log A/ log G, and consider the §—dimensional Hausdorff measure Hy restricted
to the set A.

Theorem 2. 0 < Hs(A) < 0.

Proof. Consider again the covering U,, of A introduced in the proof of Lemma 1. The
cardinality of the covering is utA™~1, by Corollary 2, and each interval in the covering
has radius k8~™. It follows from the definition of the outer Hausdorff measure that

f t gm—1 -mé _ 1 t am—1 -m
Hs(A) < mh_r)noo(u*A 1)kp = mh_r'noo(u*A 1)kA™™ < o0,

the last inequality because A is the spectral radius of A.

The inequality Hg(A) > 0 is a consequence of the existence of a probability measure yx on
A with the property (8) above. This implies that for a suitable constant v > 0, u(J) < 7|J|®
for every interval J centered at a support point of p. Since > u(J) = 1 for every covering
of A, it follows that for every covering,

M >1/y>0.

8. A NUMERICAL RESULT

Consider the special case where 8 = 85 = 1++/3 is the larger root of 2 —2z —2 = 0 and
D = {0,1,3}. This is the most difficult case considered in [3]; there it is shown that for these
parameters A has Lebesgue measure 0. Using the algorithm described in section 3, we have
found that there are 43 distinct neighborhood types. For each pair 7,7’ of neighborhood
types such that 7/ is an offspring of 7, there is at most one color d such that (r,7’,d) is an
admissible label. Consequently, the matrix A may be “collapsed” to an equivalent matrix B
with rows and columns indexed by the neighborhood types and with 0-1 entries indicating
the absence or presence of admissible labels (7,7/,d) of some color; the top eigenvalue A
of B is the same as the top eigenvalue of A. The eigenvalue A may be approximated from
above using the spectral radius formula

. 1
A= lim | [|B"[%;
using n = 2048 gives the upper bounds
A < 1.62967 and 6 < .485923

A lower bound for A is by ", where by, is the minimum entry of B™; using n = 2048 gives
the lower bounds

A > 1.62436 and § > .482675

A Mathematica notebook containing the code implementing the algorithms for computing
the set of neighborhood types and the matrix B is available from the author.

Although the algorithm described in this paper applies in theory to any Pisot number
B and any digit set, in practice it is useable in very few cases. Even in the next simplest
case, D = {0,1,3} and 8 = (33, the largest root of 2> — 222 — 22 — 2 = 0, computation is
impractical, as there are 4017 distinct neighborhood types.
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