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1. INTRODUCTION

Consider independent observations X;j,j = 1,...n, arising from population m; with
continuous cumulative distribution function G(z — 6;),i = 1,...,k. Let § = (64, ...,6k)
and let ;) < ... < (x) denote the ordered values of the parameters 6,...,0. It is
assumed that the exact pairing between the ordered and the unordered parameters is
unknown. For each t = 1,...,k — 1, the ¢ best populations are those associated with the
t largest parameters O(x), ..., 0(k—¢+1). Assume that the experimenter is interested in the
selection of the ¢ best populations. For this purpose, one may choose appropriate statistics
Y; = Y(Xi,..., Xin) for inference regarding 6; with continuous cumulative distribution
function F(y—6;),i =1, ..., k. Let Y[;j < ... < Y[4) denote the ordered statistics of Y7, ..., Y.
One then applies the natural selection rule that selects those populations yielding the ¢
largest Y], ..., Y[r—t+1) @s the ¢ best populations. Thus, a question which arises naturally

is: What kind of confidence statement can be made about this selection result?

Let CS; (a correct selection of the ¢ best populations) denote the event that the ¢
best populations are actually selected. Also, let ¥(;) denote the Y statistic associated with
the i-th ordered parameter (;). Thus, the probability of correctly selecting the t best
populations (PCS;) at § by applying the natural selection rule is:

PCS«(9)
=P{1S11il$ai<__ty(i) < b B Y}
k—t B k
B / [1F-be)ai— I Flu—eh) (1.1a)
i=1 j=k—t+1

k k-t
=/ [[ Fl-6)d[[Flv-0w) (1.16)

j=k—t+1
where F=1-F.

In general, to guarantee the PCSy(8) at least at a prespecified probability level, one
needs to specify a positive number §* such that 6—¢41) — O(k—s) = 6*; see Bechhofer
(1954). Clearly, this indifference zone approach is formulated on the basis of designing an

experiment.

Recently, retrospective analyses regarding the PCS; have been studied by several
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authors. Anderson, Bishop and Dudewicz (1977) and Lam (1989) have, respectively, given
lower confidence bounds on the PCS; for normal distribution models. Kim (1986) has
presented a lower confidence bound on the PC'S; for the location-parameter models where
the underlying density functions have the monotone likelihood ratio property. Gupta,
Leu and Liang (1990) have constructed a lower confidence bound for the PCS; in the
truncated location-parameter models following Kim’s approach. Gupta and Liang (1991)
have derived a lower confidence bound for PC'S 1 for the general location-parameter models.
Recently, Gupta, Liao, Qiu and Wang (GLQW) (1994) have proposed a new method for
constructing a lower confidence bound for the PCS; under the case considered by Kim
(1986). The lower confidence bound of GLQW is better than that of Kim in the sense that
for the same confidence probability, the value of the lower confidence bound of GLQW is
larger than that of Kim.

Note that in the previously referenced works, the investigations are made only for

= 1 case. Recently, Jeong, Kim and Jeon (1989) have developed a lower confidence

bound on the PCS, for a fixed t,1 <t < k — 1, for the location-parameter models having

the monotone likelihood ratio property. Also, the reader is referred to Olkin, Sobel and

Tong (1976, 1982), Bofinger (1985) and Gutmann and Maymin (1987) for certain related
problems regarding the PC'S;. .

In this paper, we are concerned with the problem of deriving simultaneous lower
confidence bounds for the PCS;, t = 1,..., k—1, for the general location-parameter models.
The result is then applied to the selection of the ¢ best means of normal populations. An

example is provided to illustrate the implementation of the procedure.

2. SIMULTANEOUS LOWER CONFIDENCE BOUNDS FOR PCS;

From (1.1a), the PCS¢(d) can be written as:

. |
PCS{(8)= Y, Py9) (2.1)

Jj=k—t+1

where foreach j =k —t+1,...,k,

k—t Jj—1 k
Pi®) = [T[F6+26:) TI P+ 8um@) ] Fu+Aa@)Fw), (22

m=k—t+1 =341



and Agi(l) =0y — 0 2 0for 1 < < k-1t < 73 Ajm(2) = 8y — O(m) = 0 for
E—t+1<m<j,and Ayi(8) = 0j) — 0 < Ofor k—t+1<j <!l < k. Here,
[I: = 1ift < s. Note that for each j,(k —t+ 1 < j < k), P;;(d) is increasing in
Ay;i(1), and decreasing in A¢jm(2) and Ag;i(3), respectively. Thus if simultaneous lower
confidence bounds for A4ji(1),1 < ¢ < k—t, and upper confidence bounds for Asjm(2) and
Aji(3),k—t+1<m<j<I<km#j,l#jforallt=1,2,..,k—1, can be obtained,
then simultaneous lower confidence bounds for PCSy(8), for all t = 1,...,k — 1, can also

be established.

Also, note that, from (1.1b) the PCS;(8) can be expressed as

k—t
PCS(f) =) Qu(®), (2.3)

where foreach i = 1, ...,k — ¢,

i—1 k—t k
Qu(d) = / [1 Fz+ 8m(V)) T] FGz+68a(2) [I Flz+66;3)dF(z) (24)
m=1 I=it+1 j=k—t+1
and 6tim(l) = Oy —Omy) = 0 for 1 < m <1 <k — t;611(2) = 0y — 0qy < 0 for
1<i<l<k—t;and 6(3) = 6y —0) <O0for: < k—1t<j <k Notethat for
each ¢ = 1,...,k — t,Q¢(6) is increasing in 6, (1) and 6:1(2) and decreasing in 6;;(3),
respectively. Thus if simultaneous lower confidence bounds for 8:im(1) and 64:1(2), 1 <
m<i<1<k—t,m#1i,l#1, and upper confidence bounds for 6;:4(3),: <k—-t<j <k,
can be obtained, then based on (2.3)-(2.4), simultaneous lower confidence bounds for the

PCSy(8), for all t =1,...,k — 1, can also be established.

In the following, a result of Lam (1986) is used to construct simultaneous lower con-
fidence bounds for all A¢ji(1), 8im (1), 6+:1(2) and upper confidence bounds for all
Atjm(2), Ag1(3) and 6iit(3) forallt =1,...,k— 1.

For each ,0 < a < 1, let ¢(k,n,a) be the value such that

Po{ max (Y: — 6:) — min (¥; — 6;) < o(k,m, d}=1-a (2.5)
Note that since Y; has a distribution function F(y — 6;),: = 1,...,k, the value of ¢ =

c(k,n,a) is independent of the parameter §. Let
- . _ 8. — i . _0.) <
E={max (Vi - 0;) - min (¥; 0;) < c}

E, ={(Y - Y}; - )t <6y — 0y < Y —Yj+e forall 1<j<i<k}
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and
E2 = {Yi‘] ——-Yiﬂ —cga(,-)-—G(j) S(Y[,]—Y[]]+c)_ fora.ll 1 SZ(] Sk}

where y* = maz(0,y) and y~ = min(0,y).

Lemma 2.1

(a) E C Ey N E,, and therefore

(b) PQ{El NE;} > PQ{E} =1~ a for all §.

Proof: By Theorem 4 of Lam (1986) and noting that 6(;)—6(;) > 0 as j < ¢ and 8;)—8(;) <0
for i < j, we have that E C Ey and E C E;. Therefore E C Ey N E,.

Now, part (b) follows immediately from part (a) and (2.5). O

Foreacht=1,...,k—1,and j=k—t+1,.,k,let

Atji(].) =Y — Y — )t forl<i<k-—t;
Ajm(2) =Y = Vimp+c  fork—t+1<m<j; (2.6)
Ai(3)= (Y - Yy +e)- forj<I<k. :

Also, foreacht=1,..,k—land:=1,..,k — ¢, let

Stim(l) = (Yi — Yim] — o)t forl<m<i—1;
biar(2) =Yy — Yy —c fori+1<I<k—t (2.7)
$6j(3)= (Y — Y +¢)~ fork—t+1<j<k.

The following lemma is a direct result of Lemma 2.1.
Lemma 2.2 With probability at least 1—a, the following (S1) and (S2) hold simultaneously.
(S1) Foreacht=1,..,k—1landeach j =k -t +1,...,k,
Asji(1) > Agji(1) forall §=1,....k —t;
Atjm(2) < Agjm(2) forall k—t+1<m < j;
Ai1i(3) < Agji(3) for allj < I < k.
(S§2) Foreacht=1,..,k—1,and each i =1,...,k — 1.
Stim(1) > 8tim(1) forall 1<m<i—1;
6i(2) > 8ar(2) forall i +1<I<k—t
61ii(3) < 8445(3) forall k—t+1<j<k.
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Now, foreacht=1,..,k—1and each j =k ~t+1,...,k, define

/ HF(y+Ath(1)) T Fu+don@) I Fo+ba@)ire) ©9)

m=k—t+1 =541

and for each t = 1,...,k — 1, define

k
Y By (2.9)

j=k—t+1

Also, for eacht = 1,...,k— 1 and each i = 1, ...,k — ¢, define

/ H F(z + btim(1)) H F(z + 8ua(2)) H F(z+64;(3))dF(z)  (2.10)

=i+1 j=k—t+1
and
k=t
Qi=) Qu (2.11)
=1
Define
P = maz(P;, Q). (2.12)

We propose Py, as an estimator of a lower confidence bound of the PCS,(§) for each

t=1,...,k — 1. We have the following theorem.
Theorem 2.1 Py{PCSy(d) > Py forallt=1,....k ~ 1} >1—afor all 4.

Proof: Note that Pyj(8) is increasing in Aji(1) and decreasing in A¢jm(2) and Agji(3).
Also, @Q:i(8) is increasing in 64im(1) and 641(2) and decreasing in 64;;(3). Then by (2.2)
and (2.8), and (2.4) and (2.10), and Lemma 2.2, we have

P;;(8) > B; forallj=k—t+1,..,k
(i A forallt=1,k—1¢ >1-a. (2.13)
Q:i(9) > Qui foralli=1,...,k—t;
Then by (2.1), (2.9), (2.3), (2.11) and (2.13), we have
1—a < P{PCS(8) > P;,,PCS(8) > Q; forall t=1,...,k—1}
= P{PCSy0) > Py, forall t=1,..,k—1}.

Hence the proof of the theorem is complete. O



Remark 2.1. In the literature, the problem of finding lower confidence bounds for the
PCSy(0) for a fixed t has been studied by several authors, including Anderson, Bishop
and Dudewicz (1977), Kim (1986), Lam (1989), Gupta, Liu and Liang (1990), Gupta and
Liang (1991), Jeong, Kim and Jeon (1989) and GLQW (1994). Except Jeong, Kim and
Jeon (1989), all other authors only considered the case t = 1. For t = 1, the P, proposed
in the present paper is essentially the same as the Pp, an estimator of a lower bound of
PCS1(8), proposed by Gupta and Liang(1991). Thus, Theorem 2.2 of Gupta and Liang
(1991) can be viewed as a Corollary of Theorem 2.1 of this paper. One can see that without
any loss in the guaranteed probability of confidence, say, 1 — a, the result of Theorem 2.1

is much stronger than that of Gupta and Liang (1991).

3. SELECTION FOR NORMAL POPULATIONS IN TERMS OF MEANS

Let X;j,7 = 1,...,n, be a sample of size n arising from a normal population with mean

2

6; and variance 02,7 = 1,...,k, where the common variance ¢? may be either known or

unknown. For each i, let ¥; = Y(Xi1, ..., Xin) = 1 2;-;1 Xi;. Then, based on the statistics
Yi1,..., Yy, by applying the natural selection rule, for each ¢t = 1,...,k — 1, the associated
PCS; is:

k
PCS(8)= ), Py(9)

j=k—t+1

k—t
= Z Q:(9) (3.1)

where

Ps®) = [ ﬁ@(w‘f‘“”“))m_gm 8 +‘“‘“”’(2))1111<1>< y+ Y00,
(3.2)

0u(d) = /:ﬁlé(y +fat,m(1))llz—£l¢( +\/_6m(2))] pmq,( +\r6t,,(3))dq,()
(3.3)

and ®(-) is the standard normal distribution function and ®(-) = 1 — ®(-). We consider

2

two situations according to whether the common variance o is either known or unknown.
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3.1 SIMULTANEOUS CONFIDENCE BOUNDS FOR PCS; : ¢? KNOWN
CASE

For each a,0 < a < 1, let ¢ = ¢(k,n,a) = —\}'—;q,‘:,oo where q,‘;',oo is the 100(1 — a) — th
percentile of Tukey’s studentized range statistics with parameter (k, 00). The value of 4k oo

is available from Harter (1969). Then, by the definition of gi .,

- —0:) — mi 0 V<l =1 ~— .
PQ{lrg?Sxk(K 6;) 1?]121:(},1 0;)<c}=1-a forall

Foreacht=1,..,k—1,andeach j=k—t+1,...,k, let

k—t o j=1 A k A
b= [Iow+ Vil 11 e+ Vnim(2), 11 s+ V246 )
(3.4)

and foreacht =1,....,k—1,and eachz =1,...., k — ¢, let

= By N nhti u = nhti'
Qu= [ ] o+ Y7 T g+ Y20 T gy + Y250,
m=1 I=i+1 j=k—t+1
(3.5)

where Atj,-(l), Atjm(2), and At]’l(3) are defined as (2.6) and Stim(l), 3ti1(2) and Stij(?’) are
defined in (2.7), with ¢ = c(k,n,a) = J=q§ -

Foreacht=1,....,k — 1, let

k
j=k—t+1
) k—t
Qt=) Qu (3.7)
i=1

Then by Theorem 2.1, we can conclude the following:

Theorem 3.1. Pg{PCSy(4) > maz(P,,Q;) forallt =1,...,k —1} > 1 — a for all 4.

3.2. SIMULTANEOUS LOWER CONFIDENCE BOUNDS FOR PCS; : ¢*
UNKNOWN CASE

2

When the value of the common variance o* is unknown, Theorem 2.1 can not be

applied directly. In the following, it is assumed that the original selection goal of the
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experimenter is to select the best normal population (that is, ¢ = 1), and the two-stage
sampling scheme of Bechhofer, Dunnett and Sobel (1954) is adopted. For completeness,

the two-stage sampling scheme is described as follows.

Take a first sample of ng(ne > 2) observations from each of the £ normal populations.
Compute X; = ;- 322, Xij,i =1,...,k, and S? = Wﬁ:—_l) Ef___l i (X — X;)?. Define
N = maz(no, [ST?%z—]), where [y] denotes the smallest integer not less than y and b is a

positive value such that
oo} o0
/ / [®(z 4+ wh)]*1d®(z)dFw(w) = P*
0 —00

where k™! < P* < 1, and Fw(w) is the distribution function of the nonnegative random
variable W with k(no — 1)W? following a x?(k(no — 1)) distribution. Then, take addi-
tional N — ng observations from each populations. Compute the overall means Xi(N) =

N .
L D=1 Xiji =1,k

It should be noted that in the preceding two-stage sampling scheme, the values of

P*. 6* and no should be assigned before the selection is made.

Let X(;)(N) denote the random variable associated with the ranked parameter 6i)-
Also, let Xj(N) < -+ < Xz (N) be the ordered statistics of X1(N), ..., Xk(N). Accord-
ing to the natural selection rule, for each t = 1,...,k — 1, the populations which yield
Xig(N), <oy X[k—t+1)(NV) are selected as the ¢ best populations. For eacht=1,..,k—1,
let A = {(3,j)|k—t+1<i<k1<j<k-t}. Then, the corresponding PCS(9) is:

PCS(8)
=PQ{X(,-)(N) > X(j)(N) for all (i,j)eAt}
VN XH(V) —6) | VN(» —bi) §  VNEXHWN) —

6.
() for all (z,7)eAs}

=Fat - o

ZPQ{\/N(Xi(iV) —%) h(9(i)6—* 6(7)) g . \/N(X(j)gN) Z00) g al (i, )edd)
=Py{Z: + Ly ;*a(,-))w > Z; for all (i,5)eAd}

_ /0 ” Py{Zi+ Lt ;*a(j))w > Z; for all (i,7)eAs }dFw(w)

= [ Pt w)Fw (), (38)



where Z; ~ N(0,1),¢ = 1,....,k,k(ng — 1)W? ~ x%(k(no — 1)) and Z,...,Zx and W are
mutually independent. Note that in (3.8), the inequality is obtained based on the fact that
N> [TT] and 6(;) — ;) > 0 for all (¢, j)eA;.

Analogous to (2.1)-(2.2) and (2.3)-(2.4), respectively, P;(§,w) can be expressed as:

k

Pi(8,w) = Z Pyi(8,w)
=k—
= ZQt,(ﬂ w) (3.9)

where for each j =k —t+1,...,k,

Py6,w) = / H@( R )

6*
m=k—t+1
hwA¢;i(3
H By + — "’( hwlii3)y 19(y), (3.10)
I=j+1
and foreach:=1,...,k—1t,

Qulf.w) = / I'I By + hw5tzm(1)) H By + hw&,z(z))

I=i+1

k
= h 6 ij(3
I &w+— ’( hwéii(3): g y). (3.11)
j=k—t+1
Combining (3.8)-(3.11) yields that for each ¢t =1,...,k — 1,

k oo
PCS(®) > ). Py;(8, w)dFuw(w) (3.12)

j=k—t41 Y w=0

and

k—t 00
PCS(0) 2y / Qui(8, w)dFw (w). (3.13)
i=1

Let ¢* = ng,k(no_l)/\/ﬁ, where g§ ;.. _1) is the 100(1 — &) — th percentile of Tukey’s
studentized range statistics with parameter (k, k(ng — 1)). Then,

P{ max (%(N) - 00— min, (K;(V) ;) S} =1-a, (3.14)
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see Gupta and Liang (1991). Also, a result similar to that of Lemma 2.1 can be obtained

as follows.
Let

{E* = {(X[,](N) X[]](N) — c*)+ < 9(,) — 9(]) < X[,](N) X[J](N) +c* forl S] < Z < k}
E; = {X[,](N) X[J](N) —c* <Oy — 0 < (X[,](N) X[]](N) +c¢*)” for1<j<i<k}

(3.15)
Then,
PQ{E;‘ NE;} >1—a forall 6. (3.16)
Now, foreach j =k —t+1,...,k, let
. = A1), o - tht,,,,(z)
Pfj(w) = H y+——2) ]I v+ ——F57)
= m=k—t+1
A .
y H By + ™ “’(3))d<1>( ), (3.17)

I=j5+1

where Ai(1), A¢jm(2) and A¢;1(3) are defined as (2.6) with Y};) being replaced by Xp(N)
and c=c* = Sq,‘:’k(no_l)/\/]v. Also, foreach i = 1,...,k — ¢, let

Q:,(w)=/ I_‘[ (P(y_l_ hwstzm(l)) H @( hw‘stzl(z))

l=i41

K
I 8w+ 2@ (3.18)

j=k—t+1

where byim (1), 4:1(2) and b4;;(3) are defined in (2.7) with ¢ = ¢* and Y{;) being replaced by
X(N).

Let
Z / Py (w)dFw (w), (3.19)
—t+1
and
k—t oo
Q=Y [ Quw)drww) (3.20)

From (3.16)-(3.18), we see that for each w > 0,
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Pyj(0,w) > Pgi(w) and Qui(f, w) = Qf;(w) _
{for all (7,6) € Aq, forall t=1,...,k — 1 2l-a (3.21)

for all 4.

Combining (3.17)-(3.21), we conclude the following Theorem.
Theorem 8.2 PQ{PCSt(Q) > maz(PF,Q}) forallt=1,...k -1} > 1— o for all 4.
4. AN ILLUSTRATIVE EXAMPLE |

In the following example, the data is taken from Problem 3.1, page 97, of Gibbons,
Olkin and Sobel (1977) with some modification.

The experimenter wants to compare dry shear strength of k¥ = 6 different resin glues
for bonding yellow birch plywood. Assume that the distribution of the strength for each
glue are normal with common variance 6% = 400. From each kind of glue, a sample of size
10 is taken. The data is given in Table 1. The observations (readings) are taken to measure

the strength of the glue. Thus, large values are more desirable in their application.

Table 1. Shear Strength of Six Types of Glue

1 2 3 4 5 6
102 70 100 120 151 220
o8 83 102 125* 156 243
45 78 80 182 192 189
79 93 119 130 162 176
68 98 99 130* 166 176
63 66 99 143 158 181
117 92 100 113 173 206
94 79 109 140 157 233
99 134 117* 123 233 162
63 131 100* 132 238 179

*Indicates that the entry has been changed and is different
from the one in Gibbons, Olkin and Sobel (1972).

We have the sample mean values: X; = 78.8, X, = 92.4,X; = 98.5, X, = 133.8, X5 =
178.6, and X = 196.5. Note that X; < Xo < X3 < X4 < X5 < X¢. Hence, according to
the natural selection rule, for each t = 1,...,5, Glue j's,6 —t + 1 < j < 6, are selected as

12



the t best glues. For ¢ = 1, Glue 6 which yields the largest sample mean value, is selected
as the best. However, it is possible that the selected one may not be the best. Hence,
a reasonable question is: What kind of confidence statement can be made regarding the
PCS1?7 A more common question may be: How many populations should be selected

according to the data? The result of Theorem 3.1 may shed some light on this aspect.

Based on the data, for a = 0.1, P, and Qt,t = 1,.....,k — 1, are computed and the

result is as follows.

¢ 1 2 3 4 5
B 0.5000 0.4785 0.7231 0.1969 0.2211
0, 0.4785 0.7231 0.1974 0.2211  0.2662
maz(P;, Q¢) 0.5000 0.7231 ~0.7231 0.2211 0.2662

Therefore, we can state, with at least 90% confidence, that simultaneously PCS;(6) >
0.5000, PCS>(9) > 0.7231, PCS3(8) > 0.7231, PCS4(§) > 0.2211, PCSs5(8) > 0.2662.

Hence one may like to select the two best instead of the best.

13
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