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Abstract

We study a sequence of empirical Bayes tests for the two-action problem in a discrete
exponential family with dependent observations {X;,7 = 1,2,...}, which is assumed to be
a stationary process. Three cases of dependence are considered: (1) {X;,i =1,2,...} ism-
dependent; (2) {X;,7 = 1,2,...} is a strictly stationary o-mixing process; and (3) {X;,: =
1,2,...} is a strictly stationary a-mixing process. In each case, the asymptotic optimality
of the empirical Bayes tests is investigated and the corresponding rate of convergence of
the regret risks is established. The rates of convergence have orders of exponential type
of the form O(exp(—ci¥i(n))), where ¢; > 0, ¥;(n) > 0 and li_{rgo ¥i(n) = oo, depending
on cases of dependence, and n is the number of past data atn hand for a current testing
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1. Introduction

Let X denote a random variable arising from a discrete exponential family with prob-

ability function
f(z]0) = a(2)p(0)6°, £=0,1,2,...; 0<8< @y (1.1)

where a(z) > 0 for all ¢ = 0,1,..., and @ may be finite or infinite, and is unknown.
Consider the problem of testing Ho: 6 > 6y versus Hy: 6 < 6y with respect to a control
6y, a known positive constant. Let i, ¢ = 0,1, denote an action deciding in favor of H;.

For the parameter 6 and action i, the loss function is defined to be:

L(8,5) = (1= i)(60 — 0)I(0,0,)(6) + (8 — 0)(6,,00(6), (12)

where I, is the indicator function of the set A. It is assumed that the parameter 6 is a

realization of a random variable © having an unknown prior distribution G over (0, Q).

Let X be the sample space of X. A test d is defined to be a mapping from X into
[0,1], such that d(z) is the probability of taking action 0 when X = z is observed. That
is, d(z) = P{accepting Ho|X = z}. Let r(G,d) denote the Bayes risk associated with the
test d. Then,

r(G,d) = ) [0 — 7a(@)ld(z)fo(z) +C, (1.3)
z=0
where
7¢(z) = E[O|X = 2] = Zl—(—;—z(:—)l): the posterior mean of © given X =z,

Q
fe(z) = / f(z|6)dG(0) = a(z)h(z): the marginal probability function of X,
0

Q Q
h(z) = /0 5(8)6°dG(6), and C = /0 (8 — 6,)dG(H).

We consider only those priors G such that fOQ 6dG(8) < oo to insure that the Bayes risk
is always finite, and hence the test problem is meaningful. This assumption always holds
when Q is finite. For example, in a negative binomial distribution, f(z|8) = ("+271)6=(1-

6)", 0 < 8 <1 and r is a positive integer. In such a case, @ < 1.
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From (1.3), a Bayes test, say dg, is clearly given by

da(z) = {1 if 7a(z) > 6o, (1.4)

0 otherwise.

The minimum of Bayes risks among the class of all tests is:

)

r(G) =1r(G,dg) = Y [0 — ma(2)lda(z)fa(z) + C. (1.5)

z=0

When the prior distribution G is unknown, the two-action problem has been studied by
Johns and Van Ryzin (1971) and Liang (1988), respectively, along the line of standard
empirical Bayes approach of Robbins (1956, 1964). The standard empirical Bayes statis-
tical framework for the concerned two-action problem is given as follows. Let (X;, ©;),
i=1,2,..., beiid with (X, ©), where X;, : = 1,2,..., are observable, but ©;,:=1,2,...,
are not observable. At time n +1, X, = (X1,...,X,) denotes the past data, X,4+1 de-
notes the present random observation, and one is interested in testing Ho: 0,41 > 6 ver-
sus Hy:0,41 < 6y, with the loss (1.2), where 6,41 is a realization of the random variable
On41. A test d,, called as an empirical Bayes test, is a function of the present observation
Xn41 = z and the past data X,, such that d.(z; X,) = du(z) is the probability of ac-
cepting Hy. Let r(G,d,|X,) be the Bayes risk of the empirical Bayes test d,, conditioning
on the past data X,. Also, let r(G,dn) = E,r(G,dn|X ) denote the overall Bayes risk
of the empirical Bayes test d,, where the expectation E, is taken with respect to the
probability measure generated by X ,. A sequence of empirical Bayes tests {d, } o, is said
to be asymptotically optimal relative to the prior distribution G, with rate of convergence
of order O(ay,) if the regret risk r(G,d,) — r(G) is such that r(G,d,) — r(G) = O(an),

where {a,} is a sequence of positive numbers satisfying lim a, = 0.
n—oo

The empirical Bayes tests of Johns and Van Ryzin (1971) and Liang (1988) are along
the line of the standard empirical Bayes approach. Extensions of the preceedingly described
empirical Bayes statistical framework have been studied by several authors. O’Bryan
(1976) studies an empirical Bayes estimation problem in which X, X3, ..., are assumed
to be mutually independent, but may not be identically distributed. Karunamuni (1988)
investigates some empirical Bayes sequential decision rules in which the number of obser-

vations taken at each stage is random and is determined according to a stopping rule.
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In this paper, we study a sequence of empirical Bayes tests for the two-action problem
based on dependent data {X;,7 = 1,2,...} which is assumed to be a stationary process.
Three cases of dependence are considered: (1) {(X;,0;);:=1,2,...} is m-dependent; (2)
{(X;,©;); i = 1,2,...} is a strictly stationary ¢-mixing process; and (3) {(X;,0;); ¢ =
1,2,...} is a strictly stationary a-mixing process. In each case, the asymptotic optimality
of the empirical Bayes tests is investigated and the rate of convergence of the associated
regret risks is established. The rates of convergence of the regret risks have orders of
exponential type of the form O(exp(—c;¥i(n))), where ¢; > 0, ¢i(n) > 0 and nlergo Yi(n) =

0o, depending on cases of independence.

At the end of this section, we briefly introduce the definitions of the two mixing
processes.
(a) The process {(X;,©;); i = 1,2,...,} is a strictly stationary ¢-mixing (uniformly

strongly mixing) process if there exists a nonincreasing sequence of positive numbers

n); n > 1}, with lim ¢(n) = 0, such that for any positive integers n and t,
12
|P(AN B) — P(A)P(B)| < p(n)P(A), A€ M{, Be M,

where M? is the o-field generated by the random vectors {(X;, ©;); v <7 < v}.

(b) The process {(X;,0;); i =1,2,...,} is an a-mixing process if there exists a nonin-
creasing sequence of positive numbers {a(n); n > 1}, with lim a(n) = 0, such that
n—o0

for any positive integers n and ¢,

|P(AN B) — P(A)P(B)| < a(n), A € Mt, B MZ,..

2. Construction of Empirical Bayes Test

Before we go further to construct an empirical Bayes test, we recall some property
related to this decision problem. Since the class of the probability function {f(z]0)|0 <
6 < @} has the monotone likelihood ratio, for the loss function (1.2), the class of monotone
tests is essentially complete. Hence, it is desirable that the proposed empirical Bayes test

be monotone.



We now examine the monotone behavior of the Bayes test dg. Let
A = {z|rg(z) > 6o} = {xz|H(z) > 0},
B = {z|rg(z) < 6o} = {z|H(z) < 0},
where H(z) = h(z + 1) — 6oh(z). Define
o {ian if Ao,

00 if A=¢;
b = supB if B # ¢,
-1 if B = ¢.

Since Tg(x) is increasing in z, b* < a*. Also, y > a* iff 7g(y) > 6o; = < b* iff 76(z) < bo.
Therefore, the Bayes test dg can be written as:
1 ifz>a*
do(2) = { 2 a 2.1
6(@) 0 otherwise. (2.1)

By mimicking the form (2.1) of the Bayes test dg, an empirical Bayes test is con-

structed as follows.

For each z = 0,1,2,.. ., and each positive integer n, define h,(z) = -7—171%;5 > I (X;).
i=1
Note that h,(z) is an unbiased and consistent estimator of h(z). Let Hp(z) = hp(z+1)—
Gohn(z). Set
A, = {z|H,(z) > 0}
and define

__[infA, A4,
"7 ) oo if A, = ¢.

We then propose an empirical Bayes test d};, which is defined as:

dy(Xnpr) = {7 1wt 2 an, (2.2)

0 otherwise.

Note that d¥ is a monotone test. The overall Bayes risk of the test dJ, is

oo

r(G,d%) =) [0 — 76(2)) Enta[ds(Xnt1) (2} (Xnt1)] + C. (2.3)

z=0

Since r(G) is the minimum Bayes risk, r(G, d},) —r(G) > 0 for all n. This nonnegative

régret risk (G, d},) — r(G) is used as a measure of the performance of the empirical Bayes
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test dX. We will investigate the asymptotic optimality of d};. The results are presented in

the next section.

3. Asymptotic Optimality
Our main results regarding the asymptotic optimality of the empirical Bayes test dy,
are stated in Theorems 3.1-3.3 given below.
Theorem 3.1 Assume that
(a) {(X;,0:);1=1,2,...} is m-dependent;
(b) fi? 8dG(8) < oo; and
(c) b* < 0.

Then, r(G,d}) — r(G) = O(exp(—c1n)) for some ¢; > 0.

Theorem 3.2 Assume that

(a) {(X:,0;);7=1,2,...}is astrictly stationary p-mixing process with mixing coefficients
{o(1);i 2 1}

(b) §0 76(z)[fa(z)]M? < oo for some ¢t > 1; and
£=

(c) * <

Then,

(1) r(G,d%)—r(G) = O(exp(—czn/€(n))) for some c; > 0, where £(n) is a positive integer
such that £(n) < n and lim 4(n) = oco.

(2) If one chooses £(n) = [logn|, where [z] denotes the largest integer not exceeding z,
then, r(G,d}) — r(G) = O(exp(—can/logn)).
Theorem 3.3 Assume that

(a) {(X:,0;),1 =1,2,...}is astrictly stationary a-mixing process with mixing coefficients
{a(z),l =12,.. '};

(b) io: r6(x)[fa(x)]}/t < oo for some ¢t > 1; and
z=0
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(c) b* < o0.
Then,

(1) r(G,d%) — r(G) < ks[8exp(—kin/p(n)) + k2a(p(n))n/p(n)]*/*, where ki, ks, ks are
positive values and p(n) is a positive integer such that 1 < p(n) < n/2.

(2) If a(i) < ap’ wherea > 0, 0 < p < 1,7 > 1, by choosing p(n) = [y/n], then
r(G,d:) — r(G) = O(exp(—c3+/n)) for some ¢z > 0.

(3) If a() < & where a >0, b > 0 and ¢ > 1, by choosing § such that 1 < § <1+ b, and
letting p(n) = [n%/(+D)], then r(G, d3) — r(G) = O(n(=9/%),

Remark: Note that

Q oo
/0 64G(6) = E[0] = BIE[B|X]] = Elra(X)] = 3 r6(2)fa(2).

o0
Since 0 < fg(x) < 1, the condition that ¥ 7g(z)[f(2)]*/* < oo for some ¢ > 1 implies

z=0

that f,° 8dG(6) < oo.

In the following, we provide examples in each of which the Theorems may be applied.

Example 1 (The negative binomial distribution) Suppose that
f(z|8) = (T o= 1)9”(1 -0, 0<8<1,
T

where r is a positive integer, and the prior distribution is a beta distribution with the
probability density function ¢g(6) = %ﬁ%aa-l(l —6)#71,0 < < 1, where a > 0, and
B > 0. Then,

_ (a4 B)I(r + ) I'(z + a) r+z—1 _ T+ a
falz) = I'(a)L'(B) xI‘(w+a+r+ﬂ)x( ) and r6(z) = t+a+r+p

Since 7g(z) - 1 as & — oo, for 0 < 6y < 1, A = {z|rg(z) > 6o} # ¢. Therefore,
b* < a* =inf A < oo.

Note that fg(z) « z~(+P) for sufficiently large z. Hence, for 1 < ¢t < 1 + 6,
Y 76(2)[fa(@)]! < oo

z=0



Example 2 (The Poisson distribution) Let f(z|0) = e=%6%/z!, z = 0,1,...; 6 > 0, and
let the prior density be g(8) = f*8*"1e~#%/T(a), where & > 0, 8 > 0. Then,

I'(z + a) o B z+a
oINa) [T+ fere 47

Since 7g(z) — oo as ¢ — oo, for finite 6, b* < oo.

and 7¢(z) =

fa(z) =

Note that f(:v) o (z+aai_);)';fa(z+l) for sufficiently large z. Hence Y. 7a(z)[fa(z)]'/t
z=0

< oo for every t > 1.

4. Proof

According to (2.1), the minimum Bayes risk r(G) can be written as:

(@) = Y [ra(z) - bo]fa(z) + C
2=at (4.1)

- Z [TG(‘T) - eo]E[I{z}(Xn+1)] +C.

z=a"*

From (4.1), (2.3) and the definition of 4* and a*, we obtain
0 S T(G, dtz) - T(G)

-
= Z[eo - TG(:E)]E”'I'I[dZ(x)I{z}(Xn+1)]
+ 3" [r6(y) = 60] Enta[(1 = () () (Xnt1)]

"
<Y (60 — 76(2)) Bnt1[dh (6*) 1) (Xnt1)]

z=0 (42)
+ E [76(y) — 60] En41[(1 ~ dy(a®)) (43 (Xn+1)]
-
= 3o~ ra(@P{ (%) = 1, Xors =3}
+ > [r6(y) — 60]P{d}(a*) = 0, Xns1 =y}

The inequality in (4.2) is obtained by the fact that dj, is monotone and therefore
di(z) < di(b*) for all z < b*, and 1 — d};(y) < 1 —d;,(a*) for all y > a™.
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By the definitions of d¥ and a,, d5(b*) = 1 iff b* > a, iff Hn(2) > 0 for some

0 < z < b*. Hence,
. b*
{d5(t*) =1, Xng1 =g} = | J{Ha(2) >0, Xnt1 =2z}
z=0
Also,
di(a*) =0 a* <a, = Hy(a*) 0.
Combining (4.2)- (4.4) yields that

0 < r(G,d%) — r(G)

b* b*
< Y160 = 26(2)] | Y P{Hn(2) > 0, Xn41 =z}

+ 3 [r(y) — lP{Ha(a") < 0, Xuta = y}.

y=a*

Proof of Theorem 3.1 (m-Dependence Case)

For each z = 0,1,..., let

Vi) = e ) = 510 X0,

W;j(z) = Vj(z) — H(2).

Then, Hu(:) = 1 % Vi(2)+1 > V(o)
=1

j=n—m+1
Note that for each 0 < z < b*, H(2) < 0. Therefore, for 0 < z < b*,

{Hn(z) > 0, Xn+1 = (17}

= {Hun(2) = H(z) > —H(z), Xnt1 =2}
m+1

C U Cin(2),

where for each 3 =1,...,m,
1 m(n)
Cin(z) = {; Z Wim+i(z) > —H(z)/(m + 1), Xp41 =z},
k=0

(4.3)

(4.4)

(4.5)

(4.6)



and

1 n
Cm+1,n(2) = {; Z W](z) > —H(z)/(m + 1), Xn+1 = $}7
- [m(n)+1)m+1

m(n) = [% - 2] .

Note that — — H(2) < Wj(z) < a(z+1) — H(2). So, Wj(2), j =1,...,n, are bounded,
identically dlstrxbuted random variables. Since m is a fixed integer, 1 > W;(2)
[m(n)+1]m+1

tends to zero as n tends to infinity. Since —H(z)/(m + 1) is a fixed positive value, the set

Cint1,n(2) will become into an empty set when n is sufficiently large.
Recall that {X;, j = 1,2,...} is m-dependent. Hence, for each : = 1,...,m,
| ™

Z Wim+i(2) and Xn41 are independent. Also, for each i, Wim+i(2), k =0,...,m(n),

k=0
are mutually independent and identically distributed.

Combining the preceding discussions and from (4.6), for n being sufficiently large so

that Cm+1,n(2) to be an empty set, one has,

P{Hu(2) > 0, Xp11 = z}

m m(n)
<P { U { ! > Wimti(2) > —H(2)/(m + 1), Xnt1 = a:} }

k=0

m(n)
% > Wimti(z) > —H(2)/(m +1), Xn41 = ‘”} (4.7)

I
i

Y9
e ey ! s,
i
£ 3
iz T

Wim+i(z) > —H(z)/(m + 1)} fa(z)

= 2n? 7
Szexp{~(m+1)2[m(n)+1] | ta] }f""(“’)'

In (4.7), the last inequality is obtained by an application of Theorem 2 of Hoeﬁding (1963)
by noting that Wim+i(2), k£ = 0,1,...,m(n), are iid, with mean 0 and — —H(z) £

W;(2) < ooy — H(2)-

Next, for z = a*, H(a*) > 0. Following an argument analogous to the previous
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discussion, for n being sufficiently large, we have

P{Hn(a*) S 0, Xn+1 = y}

2n? 2 1 6 177 (4.8)
S mexp {_(m + 1)2[m(n) + l]H (a%) [a(a* +1) + a(a*)] }fG(y)'

-2

Let ¢ = min{H?2(z) [Tl—(zl-i-—l) + ﬁ;—)} |z =0,1,...,6* or 2 = a*}. Then ¢ > 0. Let
b* 00
by = Y [0 — 16(z)]fa(z) and by = ) [ra(y) — bo]fc(y). Note that, 0 < b;,b; < oo by
z=0 y=a*
the definitions of *, a* and the assumption that fOQ 0dG(0) < oo.

Then, substituting (4.7) and (4.8) into (4.5), we obtain: for sufficiently large n,
T(G’ d:;) - T(G)

b a 2n2c
< 2t 7o) {Eme"p S oE }} fela)

# 3 rel) = e { (s o
) 2n?
= (" + Dl + bl ()

< [(d* 4+ 1)by + by]mexp(—cin)
= O(exp(—c1n),
where ¢; = 2m(m+1)~% > 0 and the last inequality is obtained by noting that T 2 ™

Hence, the proof of Theorem 3.1 is completed. . O

To investigate the asymptotic optimality of the empirical Bayes tests for mixing pro-

cesses, the following lemmas are introduced.

Lemma 4.1 (Bérnstein inequality for p-mizing process)

Let {U;} be a sequence of p-mixing random variables with ¢-mixing coefficients
{¢(?), i = 1,2,...}, satisfying EU; = 0, |U;| < d, E|U;| < 6, and E(U?) < D. Denote
£
@) = Y ¢(3) for each £ =1,2,.... Then, for ¢ > 0,
i=1
P{]> Ui > €} < 2exp(—Ae + 3v/enp(£)/£ + 6n\*(D + 46Dg(£))),

i=1
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where A and £ are, respectively, a positive real number and a positive integer less than or

equal to n satisfying Md < 1.

Lemma 4.1 is due to Collomb (1984) which gives a sharper bound than a similar result
obtained by Bosq (1975).

Lemma 4.2 (Bosg (1993)) Let {U;} be a sequence of a-mixing process with a-mixing
coefficients {a(:); ¢ = 1,2,...}, satisfying EU; = 0. Consider the following assumptions.

A1. There exist positive constants L; and Ls such that

0<pLy <||Ut+1+ ...+ Utsplloo L pLy for all t and p > 1.

A2. There exist positive constants L; and L, such that

(a) 0< Ly < EU? < L, < oo for all ¢.

(b) E|U|* < LE2RIEU? forall k> 3,t=1,2,... .

(1) If Al is satisfied, and 1 < p(n) < %, then for every € > 0

- g? n Ly n
P{| ZU,-I > ne} 5 8exp <—§m X m) + 18—\/—z.—l_ama(p(n))

Li=1

(2) If A2 is satisfied and 1 < p(n) < %, then for every ¢ > 0 and v > 2,

e? n

EBEOL

¥ o1+ )P nla(p(m)P,

P {| Z Uil > nz—:} <(2p(n) +1+ flz-)exp(—sz

=1

where fy = 7L< and ¢, = 11(Lg7_1)/7(7!)1/'7%(1 + )P

i)
27+1 5vL1

Lemma 4.3 For s, t > 0 such that 1 + 1 =1, we have
(a) For each z =0,1,...,b%,

P{Ha(2) > 0, Xn41 =z} < [P{Hu(2) > 0}]'/*[fa(=)]'";

12



(b) P{Ha(a*) <0, Xpn41 =y} < [P{Hn(a*) < 0O}]'/*[fa(y)]'/*.

Proof: These are results of an application of Holder inequality. O

Now from (4.5) and Lemma 4.3,
r(G,dy) —r(G)

b* b*
< Yl — ra(@llfo(@)* {Z[P{Hn(z) > o)t/ }

z=0

+ 3 Ire(y) - bollfa@) P{Ha(a") < 0}]/°

y=a* (4.9)
b* b* n
= 16— re (@@ Y P Y Wiz) > —H ()]
+ Y [ra(w) — Bllfa@I PSS Wia) < —H (@)}

Proof of Theorem 3.2 (p-mizing case)

Recall that {X;, j = 1,2,...} is a @-mixing process. Hence, {W;(2), j =12,...,}
is also a (-mixing process with the same ¢-mixing coefficients {¢(:),: = 1,2,...}. Also,
Wj(z), j = 1,2,... are identically distributed with E[W;(z)] = 0, n1(2) < Wj(z) <
n2(z) where n1(2) = _% — H(z) < 0, m2(2) = m — H(z) > 0. Let n(z) =
max([n1(2)], n2(2)). Then, E(|W;(2)]) < n(2) and E(|W;(2)]?) < n%(2). Then, by

Lemma 4.1, for each 2 =0,1,...,b%,

PLE Y Wiz) > ~H(:)

< 2exp{—nA(=H(2)) + 3venp(£)/£ + n6X°[*(2) + 4n*(2)3(O)]} (4.10)
= 2exp{—n[—AH(z) — 3v/ep(£)/L — 6)%[n*(2) + 4n°(2)E(O)]]},
and o
1 * _ a*
P Wi) S -H W) an

< 2exp{—n[AH(a*) — 3vep(£)/€ — 6)*[n°(a") + 4n*(a*)@(E)]]}

where X > 0 and £, a positive integer, are chosen so that Mn(z) < .

13



We choose £ = £(n) so that {(n) < n, {(n) — oo and £(£) — 0 as n — oo. Let
A= An,z) = 7—“—5 For such chosen £(n) and A(n, z),

n(z)e(n

AH (z)I — 3Vep(£)/L — 6)* [nz(z) + 4n3(z)¢(£)]
IH (z)l B 3 L 4n(2)¢(E(n)) (4.12)

Note that ¢(¢(n)) — 0, %) — 0 and "p(;&(n';)) — 0 as n — oo. Hence, for sufficiently

large n, we can obtain
_HE

B ()’ (4.13)

MNH(2)| = 3Vep(8)/£— 6X*[n*(2) + 4n°(2)3(0)} 2 g

Let ¢2 = min{%—%(%llz =0,1,...,b0* or z = @*}. Then ¢ > 0. Also, let £ = (b* +

12/ 3 o—ra(@fa@P/ 21 3 ra(y)~Gullfa(w)]". By assumption (b), k < co.

z=0 y=a
Now, plugging (4.10), (4.11) and (4.13) into (4.9), we obtain:

(G, d*) — (@)
n_ |H(z)|

< Zwo ~ro@ls @) 22”3 oy son)”
+ 3 Froty) = 6ollfa) 2 exp( s )
N
< Yoo = ra@lfo(@] (0 + 12/ exp(~ %) (4-14)
+ Y Ira(w) =~ Gollf(w)]'/*2° exp(—%
=k exp( ec(zn))
= O(exp(—can/£(n))).
Hence, the proof of Theorem 3.2 is completed. O

Remark: In (4.14), the requirements for the choice of the integer £(n) are: £(n) < n
and £(n) — oo as n — oo. Hence, we may choose these {(n) which tend to infinity in

a very slow speed. For example, let (n) = [log n]. Then, we have r(G,d},) — r(G) =

14



O(exp(—czn/log n)). This rate of convergence is faster than that of O(exp(—can!~¢)) for
every £ > 0. In the iid case, the rate of convergence of Liang (1988) is of O(exp(—cn)) for

some ¢ > 0.

Proof of Theorem 3.3 (a-mizing case)

Recall that {X;,j = 1,2,...} is an a-mixing process. So, {W;(2),j = 1,2,...} is
also an a-mixing process with the same a-mixing coefficients {a(i); ¢ = 1,2,...}. Also,
W;(z), j = 1,2,... are identically distributed with EW;(z) = 0, m(z) < W;(2) < n2(2).
Hence, |[Wep1(2) 4+ . .+ Wit p(2)lloo = pn(2) where 1(2) = max(|n1(2)|, n2(2)), forall £ > 1

and all positive integers p. Hence the assumption Al is satisfied.

Similarly, for each j = 1,2,..., 0 < E[W]z(z)] < n%(2) and for each integer k > 3,
E[|W;(2)|F] < n*F2(2)E[W}(2)] < n*~2(2)k!E[W}(z)]. Hence the assumption A2 is also
satisfied. Therefore, either part of Lemma 4.2 can be applied. In the following, we apply
the result of Lemma 4.2 (1) only.

By Lemma 4.2 (1), for each 2 =0,1,...,b%,

P {-71; Z Wi(z) > —H(Z)} < 8exp(— [i;z()j) X pgl))
5=1 (4.15)
=) n o
18 TG oy PO
and n )
P{% Z Wj(a*) < —H(a")} < 8exp{—%n((z—*))£n—)}
j=1 (4.16)
n(a*) n_ oo
+ 184 50y o) (p(n))

where p(n) is an integer such that 1 < p(n) < 3.

Let
H*(2)

{2
ko = max{18v/n(z)/|H(2)||z = 0,1,...b" or z = a*}.

We see that 0 < kq, k2 < o0.

lz=0,1,...,b" orz=a*} and
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Plugging (4.15) and (4.16) into (4.9), we obtain

r(G,d;) —r(G)
-

"
<Y 160 — re(@)[fa(@)]/* | D [Bexp(—ki

z=0 z=0

M) + kzm

— aln(n)Y?®

a(p(n))]"/ ]

i (4.17)
+ 3 Ire(y) - bo][fa ()] /¥[8 exp(—F1

y=a*
n

= k3[8 exp(-—k1p(—n5) + kza(p(n))n/p(n)]lls,

where k3 = (b* + 1) %:‘:0[90 — TG(:L')][fG(IL')]l/t + yi‘[TG(y) - 90][fG(y)]1/t-

The results of parts (2) and (3) of Theorem 3.3 can be obtained by replacing «(z) and
p(n) by the corresponding forms and following a straightforward computation. The detail
is omitted. : g
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