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Abstract

One can not typically use standard noninformative priors for Bayesian model selec-
tion or for testing hypotheses of different dimensions, since such priors are only defined
up to arbitrary constants which affect values of Bayes factors. A recently proposed
model selection criterion, the Intrinsic Bayes Factor (IBF), overcomes this problem
and performs well for a variety of situations involving sequences of IID data. The
present paper suggests a modification of IBFs for model selection with dependent data
structures, autoregressive models, in particular. Numerical problems arising in direct
computations of the IBFs are presented and their possible solutions are discussed.
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1 Introduction

Suppose that we wish to choose a model M; out of the the set of models My,..., M, for
the data Y . Let the data have the density f;(y|0;) under model M;, and = (6;) be the prior
distribution of the parameter vector ;. The Bayes factor of M; to M; (BF) is a quantity

defined by
m;(y) _ Jo, fi(y10;)m;(0;) b, 0
mi(y) — Jo, fi(yl0:)mi(8:) d6;
where m; is called the marginal density of Y under M;. If one uses noninformative priors
7 (6;), (1) becomes
BN _ my' (W) _ Je, fi(yl6;)7 Y (8;) db; @)
Pom(y)  Je, fiyl8:)mlY(8:) db;
N

Noninformative priors w;' are typically improper, and are thus defined only up to arbitrary
constants. Hence the resultant.- Bayes factor, Bﬁ , is indeterminate. One way to overcome
this difficulty is to consider part of the data, y(!), as a so-called training sample, compute its

Bji =
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marginal, m"(y(l)), with respect to the noninformative prior, and posterior #¥( 6;|y(()).
One can then compute the Bayes factors with the remainder of the data, y(—I), using
N ( 8;ly(1)) as priors:

o, Fiy(=D10;,y())xY (8,1y(1) 46,
= Tou S (=016 s ()TN Gy (D) 4B;

We can obviously do this only if the training sample marginal, m® ({), is proper. We will call
a training sample y(I) minimal (MTS) if its marginal is proper, and no subset of y(/) results
in a proper marginal.

These considerations led Berger and Pericchi (1993) to introduce the Intrinsic Bayes
factor (IBF), one of the versions of which is given by
Definition 1. The (Arithmetic) Intrinsic Bayes factor is

B’.*.(l)

J

3)

1 &
sz = Z;le(l) ’ (4)

where L is the number of all possible minimal training samples. Other versions of the IBF
are defined by using different types of averages. In this paper we will, however, concentrate

on the arithmetic average version defined above. B]-IZ- can be shown to be equal to Bﬁ-’ .
-5 mis

T ¥ BY (y(1) “ B;; -_B—i?ts, where BYY (y(1)) &of ml (y(1))/m¥ (y(1)). We will refer to B;;
as the Correction factor (CF) of the M; to M; comparison.

Numerous examples considered by Berger and Pericchi (1993) showed that the proposed
model selection tool works as an ”Ockham’s Razor” in ¢id situations, that is, it selects the
simpler model out of a set of models that describe the data equally well. A natural extension
is to study the behavior of the IBF in dependent data situations. Here we consider the case
of autoregressive models.

2 The Setup

Suppose that the data Yj,...,Y, comes from a stationary autoregressive process of order p
(p < n) with a Gaussian white noise sequence:

Y —xiB8 — ¢1(Yeer — x;:-—l:B) — o= p(Yip — prﬂ) =G, (5)

where the ¢; are iid N(0,0?) variables, x, = (zl,...,2F), and B8 = (B1,...,B%). The
parameters ¢, =(¢1,...,9,), B,and o are considered unknown, while the x;’s are known.
The goal is to select the correct order of the autoregressive model, i.e. to select from the
sequence of models:

M, : 8(B)(Y; - x,,,8) = &

(6)



My : 9'(B)(Yi —x,8) = & ,

where B is the backshift operator: B™Y; = Y;_,, , and ®™(z) is a polynomial defined by
®™(2) =1—¢12— ... — ¢m2z™ . The second subscript in the regression design vectors X} ;
reflects dependence on a particular model.

The Data Density Function. Writing down the design matrix for the regression com-
ponent under model M, as

g m »m
m __ _ .
Xr = =
1 k ’
wn,m xn,m mn,m
we can write the density of Y3,...,Y, under M,,:
1

Ly (Vi Ya) = (5==5)" | M7 ['/2 exp{~ 1( Y -XU8Y MY -X28))  (7)

2mo?
where X7 = o?(M™)™! is the covariance matrix of the stationary AR(m) process, and the
entries of M, do not depend on o.

The Choice of Priors. The autoregressive process (5) is called causal or future-independent
if Z; = Y;—x{B can be expressed in terms of the present and past errors, i.e. if Z; = X326 ;.
Since prediction is our main goal here, towards which choosing the order of the process is
the first step, we will be concerned only with values of ¢, that make the process causal.
These regions (often called stationarity regions) can be shown (see, for example, Brockwell
and Davis, 1991) to be: ®,, = {¢,, : ®™(2) =0 = |z|> 1}. For model M,,, we will put
noninformative uniform prior on the stationarity region ®,, Priors for B and o are standard
noninformative choices: uniform on the whole real line, a,nd +1, respectively, where the
choice of ¢ = 0 in the latter would correspond to a reference pI‘lOI‘ on o and ¢ = k to Jeffreys.

Thus, under model M,,,, 7™(8,0,¢,,) = Volw:e(q,m) - —11 13,,(9,,) - The constant We(@m)

does not affect the value of BJIi We have chosen to use it here, because then the expression

for B} ** (see Section 4) is simplified.

3 Modification of the Correction Term

In the time series setup it seems natural to preserve the time structure for the minimal
training samples. So instead of considering all possible subsets of the data that make the
marginals proper, we will consider only successive observations with this property. Let k be

the MTS size, Z*(1) = (Z,..., Zipr1), and Tf = Z5ZE & gk(Z¥(1)) . Then the CF for

the M; to M; comparison becomes:

pre- L N mZ0) S (8)
“ n—k+1 o mi(Z*1) k +1 =



An additional advantage of this modification is that the terms in the CF sum (under the
stationarity assumption on the series) become identically distributed, and the strong law of
large numbers holds. More precisely, the following is true:

Theorem 3.1 Suppose Yi,...,Y, arises from one of the models M, in (6), Z; =Y; —x; 83,

g* : R* — R is measurable, and that E—E;—g—t%% exists (under M;) . Then the Correction
Factor F{;ts converges a.s. and in L' to E% (under M) .

Proof. Since the Z;’s come from a Gaussian AR process, the sequence {Z,} is ergodic
(Hannan, 1970). Since it is also, by assumption, stationary, the sequence {T}} is ergodic
and stationary (Durrett, 1991). Thus we can apply Birkhoff’s Ergodic Theorem for the T}’s,
which gives the desired result.

MTS size. A segment of data consisting of consecutive observations constitutes an MTS,
if it is of length k& + 1 and the corresponding submatrix of the design matrix is of full rank.
The first part of the statement follows from the fact that the prior on the autoregressive
parameters is a finite measure and hence, the MTS size for the problem is equal to that for
a regression problem with regression vector 3, normally distributed errors, and unknown o
(considered by Berger and Pericchi, 1993). If the submatrix of the design matrix is not of
full rank, as we will see in the next section, the marginal is improper.

Example. Assume that the data Yj,...,Y, comes from an AR(m) with ®™(Y; — u1) = &
for t=1,2,...,10 and ®™(Y; — u3) = ¢ for ¢t =11,...,n, where the ¢; are iid N(0,c?).
Then the MTS size is 3, and the only MTS’s are: (Y, Yio, Y11), and (Y10, Y11, Yi2).

4  Expressions for Bayes Factors

Since each of the terms in the CF is by itself a Bayes factor, the derivation below applies for
both the uncorrected BF (2) and a BF from the Correction factor term. Let Y = (Y3,...,Y;)
be the data from a stationary AR(m) of type (5). Let ¥ be the corresponding r x r
covariance matrix, M™ = ¢ - (™)1, and let X™ be the corresponding r X k design matrix
(k is the dimension of the regression vector 3). Also let Bl = (X! MPXm) " H(X™YM™Y
R =(Y — Xm @A"Y M™(Y —X™B) . The integration over 8= (B1,...,0:) and ¢ can be
carried out analytically, yielding

det(M;)1/2 —_
mi _ S sy - () g o)
mi [ det(M])!/2 (L Yekta2 g,

3 det((X7)'MPX]7)1/2 R}

Suppressing the subscripts m and r above, let PyY=X(X'X)"1X'Y be the projection
of Y onto the space spanned by the columns of X, and let (X,Y) be the r x (k + 1) matrix,
whose first k& columns are the columns of X and the last column is Y.

Lemma 4.1
det(X, Y(X, Y)I2 = det(X'X)"/% |(I - Py)Y |,

where |a| denotes the Fuclidian length of the vector a.

4



Proof. Noting that det[(X,Y)'(X,Y)]'/? is nothing but the volume of a hyperparallelepiped
built on the columns of X and the vector Y, and that det(X’'X)/? is the volume built on
the columns of X only (Shilov, 1961), the lemma is simply saying that the volume of the
hyperparallelepiped equals the product of the volume of its base and the height to the base.

Theorem 4.1 The marginal of Y equals

0.0 ¢ (r—k+q-1)/2
1 1 / det(X'E1X) do. .
o}

Volume(®,,) det[(X,Y) (X, Y)](r=k+a)/2 det(D-1)(r—k+a-1)/2

Proof. The residual sum of squares, R, can be written as:
R =272y —312X(X'S1X) X' E7Y |2 = | (I — Pgo12)5"Y2Y |2 . Use of
Lemma 4.1 yields

det(X7Y?) . det[(X,Y) (X, V)]V? = det[(Z7V2X,5"2Y) (572X, n1/2Y)]/?
| det(X'S1X)Y?. RV,

Combining the above and substituting into the expression for the marginal in (9), we get
the result.

Corollary 4.1 For the reference prior on o, the correction factor is equal to

Hmts det(Xi, Y)
i de(X9,Y) (10)

If, in addition, the design matrices are equal, the CF equals 1.

Proof: For a minimal training sample r = k + 1, and hence the matrix (X,Y) becomes
quadratic, so det[(X,Y)(X,Y)]*/? = det(X,Y). Use of Theorem 4.1 with ¢ = 0 and r = k+1
gives the result.

5 Computational Aspects

5.1 Integration over &,

It was shown by Monahan (1984) that ¢,, € ®,, <= r,, € D{-5Y where ry = (r1,...,7p) is
the set of partial autocorrelations and D{~1') is the hypercube: (—1,1)™. The transformation
rm — @, is given recursively by y(l) =r y(k) = y-(k_l) - Ty (k1) (t=1,...,k—
m m 1 ) i i ’ ’
1), y,(ck) =71, (k=2,...,m), and ¢,, = (d1,...,Pm) = (y%m), ..,y{™). The Jacobian of
the transformation is J(ry) = M (1 — rx)¥/2(1 4 7 )[(5=1/2 ([z] denoting the integer part
of z). It was also noticed (Jones, 1987) that J(r,) is nothing but a product of Beta ([(k +
1)/2],[k/2] +1) densities on (-1,1) and thus, if we are secking to evaluate integrals in (9) by
generating uniform random variables on ®,,, we can generate independent B(-1,1) instead.
Using this idea, indeed, proved to be efficient for evaluating the marginals for minimal
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training samples for ¢ # 0, since if the MTS size is small, the integrand tends to be fairly
spread out over the region of stationarity, and generating uniformly from it gives a quickly
converging sum. However, when dealing with the whole sample, the integrand is likely to
be concentrated around the MLE q?)m, and thus alternative methods such as importance
sampling, should be used for the evaluation. It is worth noting that if ¢ = 0, the calculation
of the correction factor does not require any numerical computation (Corollary 4.1), which
makes the use of the reference prior very appealing.

5.2 Computation of the Integrand

The entries m,, of the matrix M™ in (6) for r > m can be explicitly expressed in terms of
the autoregressive coefficients (é1, @3, ..., dn) (Galbraith and Galbraith, 1974), so that the
costly inversion of the covariance matrix X7 can be avoided. (Recall that the matrix M™ has
to be computed for every point ¢,, that is sampled). Forr >m (1 Su < v <r), my, =
X6 0Biitv—u—Siey’ @i @i4v—u, wherec=min{u—1,m+u—v,r—v},d = max{u—1,7r—v}:
For r < m one cannot bypass the inversion: M = A;A (H’A Y(M™ + H'H)~ (H’A ),
where the (4,7) elements of A, and H are —¢;; (¢ > j) and —@4i—;, respectively, with
#o = —1 and the elements equal zero for (z < j).
Computation of the determinant can also be reduced for » > m, since for an AR(m)
process det(M™) = det(M).

5.3 Variance Reduction for the Correction Factor
Computations

An estimate of the CF for comparing My, to My, (k1 < k2) is

= g, (1
Bkl,kg = f : Z ( ) ’ (11)

where riu, (1) = (1/m1) - S fia (Y (DI6F)) g, (1) = (1/ma) ©74 fi, (Y (D)) , Y (1) is
an MTS, fx, and fk2 are the dens1ty functions under My, and Mj,, integrated over the B’s
and o, and 0;; (0 0 ) and '175c (ngl), ,n,(c)) are the points sampled from @y,
and Py, , respectively, at the zth iteration.

Variance reduction for each ratio in the sum (12) can be achieved if we make the nu-
merator and denominator positively correlated, i.e. if we, for example, let 05-) = 77](2), J =
1.0, k.

Additional variance reduction can be achieved if we monitor convergence of the entire

sum (12), instead of the convergence of each of the individual terms ::1 Eg Also, since for
2

each of the points sampled, we have to compute the inverse of the autocovariance matrix
and its determinant, one should use the same sample of points for all M'T'Ss.



6 Example

In the example below we have evaluated the IBFs under reference and Jeffreys priors for the
100 Wolfer Sunspot Numbers (Brockwell and Davis, 1991). Twelve models were considered:
AR(1) through AR(4), each with a constant mean, a linear drift and a quadratic trend. The
AR(4) model with quadratic trend is a natural "encompassing” model for the rest of the
models, and thus we can use the encompassing model approach (Berger, Pericchi, 1993) to
compare the models. The idea of this approach is to choose a model My, within which the
rest of the models are contained. Compute BZ; using definition (1) for the rest of the models.
Then the encompassing IBF of M; to M; is defined as BY; = B,/ B{; = B;; - (F{;‘“/Eﬁ“).
Minimal training samples have to be defined relative to all models, and thus consist here

of 4 observations. The design matrices for the constant, linear, and quadratic versions are
1 1 1 1 1 1

Xi=|: |, Xe=|: |, Xg=

1 1 100 1 100 1002

For the Jeffreys prior the computational approach described in Sections 5.1-5.3 was used.
One thousand iterations were performed to evaluate the marginals. For reference priors no
elaborate computations for MTSs were needed, since the CFs in this case depend only on
the design matrices (Corollary 4.1).

Prior probabilities were assigned to the models according to the following scheme. The
models were considered to belong to 3 classes: constant (1), linear ( 2), and quadratic (3).
The prior probability pf =¢~1/X3_,j~' ,i=1,2,3 was assigned to each class. Then within
each class (i), a model AR(s) was assigned p, = pf * s71/Z4_ r71.

The posterior probabilities of the models were then computed as

P(MIY) = (S5 B) (12)

The table below contains the values of the prior and posterior probabilities for all the
models. For comparison, the values of the standard Bayesian and non-Bayesian model selec-
tion criteria, the BIC and the AICC, a bias corrected version of the AIC (Hurvich and Tsai,
1989), are also presented. The star sign indicates the two best models chosen according to
each criterion.

The AICC performs very poorly, selecting the most complex model. The BIC does
significantly better, selecting an autoregressive model of order 4 with a constant trend, but
still worse than the "IBF” criterion. According to the latter, we see that for both priors the
AR(3) model with the constant mean has the highest posterior probability, the AR(2) model
with the constant mean is the next best, while the probabilities for the rest of the models are
smaller by at least a factor of 10. Diagnostic plots of residuals and autocorrelation function
for these two models (not shown) indicate that both models provide a good fit, and hence
the simpler should be preffered, in a complete accordance with the Ockham’s razor principle.



Model Prior | “IBF Posterior” BIC | AICC
Reference | Jeffreys
AR(1), constant | .262 | ~ 1071 |~ 1071 | 773.7 | 890.8
AR(2), constant | .131 .298* 221 | 753.9* | 816.2
AR(3), constant | .087 .620* 673* | 755.5 | 806.6
AR(4), constant | .065 .047 052 | 752.0* | 798.0
AR(1), linear A31 | = 1078 [~ 1071 | 789.7 | 892.5
AR(2), linear .065 .007 ~ 10713 | 783.0 | 818.4
AR(3), linear | .044 | .027 050 | 785.3 | 808.1
AR(4), linear 033 | ~10° | ~ 107 | 784.2 | 800.3
AR(1),quadratic | .087 | ~107'" |~ 107'¢| 830.4 | 894.5
AR(2),quadratic | .044 | ~10™° | ~10~* | 816.6 | 814.6
AR(3),quadratic | .029 | =~ 10~* 002 | 814.3 | 807.5
AR(4),quadratic | .022 ~10~° ~ 10~* | 807.8 | 795.6*
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