NUMERICAL METHODS FOR FORWARD-BACKWARD
STOCHASTIC DIFFERENTIAL EQUATIONS

by

Jim Douglas, Jr., Jin Ma and Philip Protter
Purdue University

Technical Report #95-21

Department of Statistics
Purdue University

May 1995



NUMERICAL METHODS FOR FORWARD-BACKWARD
STOCHASTIC DIFFERENTIAL EQUATIONS

Jim Douglas, Jr.,! Jin Ma,? and Philip Protter®

Abstract. In this paper we study numerical methods to approximate the adapted solu-
tions to a class of forward-backward stochastic differential equations (FBSDEs for short).
The almost sure uniform convergence as well as the weak convergence of the scheme are
proved; and the rate of convergence is proved to be as good as the approximation for the
corresponding forward SDE. The idea of the approximation is based on the Four Step
Scheme for solving such an FBSDE, developed by Ma, Protter and Yong in [12]. For the
PDE part, the combined characteristics and finite difference method is used; while for the

forward SDE part, we use the first order Euler scheme.
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§1. Introduction.

Let (Q,F, P;{Fi}:>0) be a filtered probability space satisfying the usual conditions.

Assume that a standard d-dimensional Brownian motion {W}¢>0 is defined on this space.
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We consider the following forward-backward stochastic differential equations:

t

t
tha:-}—/ b(s,Xs,Ys,Zs)ds+/ o(s,Xs,Ys,Z5)dWs;
0 0

(1.1) t e [0, T,

T T
Yt=g(XT)+/ b(s,Xs,Ys,Zs)ds-i—/ o(s,Xs,Ys,Zs)dWs,
t t

where (X, Y, Z) takes values in R” x R™ x R™*¢ and b,z, 0,0 and g are smooth functions
with appropriate dimensions; T' > 0 is an arbitrarily prescribed number which stands
for the time duration. By an “L?-adapted solution” we mean a triple (X,Y, Z) which is
{F:}-adapted, square integrable, such that the equations (1.1) are satisfied on [0, T], P-
almost surely. Such a stochastic differential equation has been found useful in applications,
including stochastic control theory and mathematical finance (cf. [2}, [7] [8]). In previous
work Ma, Protter & Yong (1994) [12] studied the solvability of the adapted solution to the
FBSDE; in particular, they designed a direct scheme, called the Four Step Scheme (see §2
for a brief review), to solve the FBSDE explicitly.

We note that in some applications the FBSDE (1.1) can be slightly simplified. That
is, we may consider the FBSDE of the following type:

t ¢
Xi==z +/ b(s,Xs,Y,)ds —l—/ o(s,Xs,Ys)dWs;
0 0

t €[0,T].
ft}.

Applying the usual technique using a martingale representation theorem, it is easily seen

that (1.2) is equivalent to the FBSDE

(1.2)

T
Q:E{g(XT)—i—/ b(s, Xs,Ys)ds
¢

t t
Xe=z +/ b(s, Xs,Ys)ds -l—/ o(s,X,,Ys)dWs;
(1.3) 0 0

T T
Y: = g(X7T) +/ b(s,Xs,Y,)ds +/ Z4dWs.
t ¢

which is obviously a special form of (1.1). A first theoretical treatment of (1.2) can be found

in Antonelli [1]. As a special case of (1.1), a more general treatment for (1.3) is contained
in [12]. We note that the FBSDEs (1.2) and (1.3) have been found useful in the theory

of mathematical finance. For instance, in the framework of stochastic recursive utility,
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the process X represents the “discounted weight process”, or “wealth process”, while the
process Y defines a recursive differential utility (¢f. [6] or [7] for more details). Also, in
a model of Term-Structure of Interest Rates, Duffie, Ma & Yong (1994) [8] considered a
FBSDE of a form similar to (1.2), in which the process X is the short rate, while ¥ is
the “consol rate” (or long term rate). Therefore, a satisfactory simulation result for the
FBSDE (1.2) will have interest in its own right. In what follows we shall call (1.3) the
“special case” and (1.1) the “general case”.

For standard forward SDEs, there are two types of approximations typically consid-
ered: a pathwise convergence that typically converges at a rate (’)(71;), and weak conver-
gence to the terminal value E{f(X7)}, where X is the true solution and f is an arbitrary
smooth function. In the latter case, one approximates E{f(Xr)} using a Monte Carlo
technique once the law of X7 is known; thus it is the approximation of X7 that is needed,
and since the Monte Carlo rate is slow, one is content to use a a simple Euler scheme. We
consider here both types of approximations for the forward-backward SDEs. Our tech-
nique allows the weak convergence to be a simple consequence of the pathwise convergence
(which is not true in the usual forward case; note that its rate is faster!). We obtain the
same convergence rates as in the forward only case, an a priori surprising result.

It was shown in [12] that the solution, say 6, of a parabolic PDE plays a key role
in solving FBSDEs: one uses 6 to deduce a standard (forward) SDE which gives the
component X. One then uses § and X to obtain Y and Z. We have used this idea to
construct a numerical scheme which first approximates 6 using PDE numerical techniques,
and then approximates X using SDE techniques. The two approximations have to mesh
correctly, and the approximate solutions for 6 have to have a certain regularity (e.g.,
Lipschitz property) so that the subsequent approximation for the forward SDE is feasible.
It turns out that this can be done if the spacial mesh size h and the time mesh size At
are essentially linearly related, with the condition h > CAt, where C' > 0 is a constant
obtained from the coefficients, being fulfilled.

For the PDE approximations we shall use a method combining the finite difference
method and the method of characteristics; it was introduced earlier by Douglas and Russell
[4] (see also Douglas [5]). This method allows us to treat the PDE in a more natural

time-like variable and thus eliminate the first order term, which then facilitates an error
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analysis based on a maximum principle argument for the difference equations arising from
the approximations. In practice, if the drift terms dominate the diffusion terms (i.e., in the
so-called convection-dominated case), then this method will lead not to faster asymptotic
rates but to smaller constants in the error estimate (cf. e.g., [4]), which can be just as (or
more) important.

Since the special FBSDE (1.2) and (1.3) are of independent interest, and the tech-
niques of proofs and ideas are fundamental but more easily seen, we treat it separately
in §4. We wish to point out that our techniques allow not only the approximation of
(X,Y) but also that of the “extra” process Z that one needs to solve the FBSDEs in any
sort of reasonable generality. This is significant because- in some finance applications (for
example), the process Z represents a hedging strategy, and thus we can give pathwise ap-
proximations of Z as well as weak (faster) approximations of E{f(Xr,Zr)}. Again, these
approximations are of the orders (’)(%) and O( %), respectively, which are best possible
for Euler schemes.

This paper is organized as follows. In §2 we formulate the problem and briefly review
our Four Step Scheme. In §3 we study the approximation for the quasilinear PDE arising
in the special case (1.2) and (1.3). In §4 we give our main result for the special case. In

§5 we extend the results to the general case and give our final result.

§2. Formulation of the Problem.

Let (2,F,P) be a probability space carrying a standard d-dimensional Brownian
motion W = {W, : t > 0}, and let {F;} be the o-field generated by W (i.e., Fy = o {W, :
0 < s < t}). We make the usual P-augmentation to each F; so that F; contains all the
P-null sets of 7. Then {F;} is right continuous and {F;} satisfies the usual hypotheses.

Let us consider the following forward-backward SDE:

4

t
Xt=:1:+/ b(s,Xs,Ys,Zs)ds+/ o(s, Xo,Ys)dW,,
(2.1) - 0 T t € [0, 7).
Ytzg(XT)+/ b(s,Xs,I’s,Zs)ds+/ 5(s, Xs,Ye, Zo)dWs.
t

i
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Here, the processes X, ¥ and Z take values in R”, R™ and R™*¢, respectively; and the
functions b, b, o, & and ¢ take values in R"*, R™, R™*¢ R™*? and R™, respectively. For
the sake of simplicity, in what follows we will consider only the case in which n = m = d =
1, o(¢,z,y,2) = z. The higher dimensional extension will be discussed in the last section
of the paper.

We first give the precise definition of an L?-adapted solution to (2.1).

Definition 2.1. A triple of processes (X,Y, Z) : [0,T] x @ — R® is called an L?-adapted
solution of the forward-backward SDE (2.1) if it is {F;}-adapted and square-integrable

and is such that it satisfies (2.1) almost surely.

Let us recall a standard Hélder space notation . For any bounded or unbounded region
GCR,T >0anda € (0,1), we define C1*+3:2+%([0, T] x G) to be the space of all functions
¢(t,z) which are differentiable in ¢ and twice differentiable in z with vt and @z, being
a/2- and a-Hélder continuous in (¢,z) € [0,T] x G. The norm in C1+%.24+([0,T] x @) is
defined by '

”(70||1,2,0;T,G = ”(IDHCT,G + ”‘Pt”C'T,G + HSDIJHCT.G + HSD?JQCHCT,G
lpe(t, @) — oot 2")| + lpea(t, @) — @ou(t, o)

+ sup I ;
(t,2)(¢,2) (lz —2'|? + |t = #'])%
where || - |[cr,¢ is the usual “sup”-norm on the closure of [0,7] x G. When G = R, we
set C1+%:242([0, T] x R) = C1+%:2+@ apd |- h2,e7R = || - l1,2,a- For functions of

the type ¢ = ¢(z), we define the space C***(G) and C**+* = C*+*(RR) analogously, for
k=1,2,.-

We will make use of the following standing assumptions thoughout the paper.

Standing Assumptions:

(Al) The functions b, b and o are continuously differentiable in ¢ and twice con-
tinuously differentiable in z,y,z. Moreover, if we denote any one of these functions
generically by 3, then there exists a constant o € (0,1), such that for fixed y and =z,

¥(-,-,y,2) € C1T3:2+2 Furthermore, for some L > 0,

”¢(7 '1yaz)”1,2,a < L, V(y, Z) c IR,Q,
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(A2) The function o satisfies
(2.2) p<o(tz,y) <C,  Y(tzy) €[0,T] x R?,

where 0 < u < C are two constants.

(A3) The function g belongs boundedly to C*** for some a € (0,1) (one may assume
that « is the same as that in (Al)).

Remark 2.2 We should note here that the standing assumptions above are actually much
stronger than those in [12] where the FBSDE was shown to be solvable and thus may not

be optimal.

We now briefly review our Four Step Scheme (see [12] for complete details).

The Four Step Scheme:

Step 1. Define a function z : [0,7] x R® — IR by
(2.3) #(t,2,y,p) = —po(t,z,y),  V(t,z,y,p).

Step 2. Using the function z above, solve the following quasilinear parabolic equation
for 6(¢, z):

0: + -;—a(t, z,0)20,, + b(t,z,0, 2(t,x,0,0,))0,
(2.4) +8(t,x,0,2(t,%,0,0,)) =0, (t,z) € (0,T) xR,
(T, z) = g(z), z € R.

Step 3. Using 0 and z, solve the following forward SDE:
¢ t
(2.5) X,=z+ / B(s, X,)ds + / 5(s, X3)dW,,
0 0
where b(t, ) = b(t, z, 8(t, ), 2(t, ¢, 8(t, ), 0, (¢, 2))) and 5(¢,z) = o(t, , 6(t, z)).
Step 4. Set

Ytt = G(t, Xt),
26) {

Zt = Z(t,Xt, G(t,Xt), Gl(t,Xt))
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Then, if this scheme is realizable, (X¢, Y}, Z;) will give an adapted solution of (2.1). In fact,
in [12] it was proved that under reasonable conditions the Four Step Scheme is feasible. We
summarize the results there in the following theorem, with modifications made to suit our

future discussion. Since the arguments are standard, we give only a sketch of the proof.

Theorem 2.3. Suppose that the standing assumptions (A1)-(A3) hold. Then, the Four
Step Scheme defined above is applicable and any adapted solution to the FBSDE (2.1) must
be the same as the one constructed from the Four Step Scheme. Consequently, FBSDE
(2.1) possesses a unique adapted solution.

Furthermore, the unique classical solution § to the quasilinear PDE (2.4) belongs to
the space C?*24%  and all the partial derivatives of § up to the second order in t and

fourth order in z are bounded by a constant K > (.

Sketch of the Proof. The first assertion is a direct consequence of the results in [12].
To see the second assertion, note that by the result in [12] we know that the PDE (2.4)
has a unique classical solution § € C1*%:2+< for some o € (0,1). If we apply standard
techniques (cf. [9] or [11]) using parabolic Schauder interior estimates to the difference
quotients repeatedly, it is not hard to show that under our regularity and boundedness
assumptions on the coeffients b, o, b and g, one can improve the regularity of the solution

to the desired order. 0O

3. Approximation of the PDE (2.4)—Special Case.

In this section we study the numerical approximation scheme and its convergence
analysis for the quasilinear parabolic PDE (2.4) corresponding to the special FBSDE (1.2),
or equivalently, (1.3). We shall be interested in finding a strong approximation scheme

which produces an approximate solution (X (™), ¥(®)) such that

E{ sup |X(™ — X2} + E{ sup [V —¥i|*} — 0
0<t<T 0<t<T

and in determining its rate of convergence. Note that in this case the coefficients b, band o

are independent of Z and only the (X,Y") part of the adapted solution need be considered;
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thus, the difficulty of the problem is reduced considerably. More precisely, in this case the
corresponding PDE (2.4) now takes the following simpler form:

1 ~
3.1) 6 + §a(t,:v, )20, + b(t,z,0)8, + b(t,z,8) =0, (t,z) € (0,T) xR,
(T, z) = g(z), z € R.

We shall follow an idea of Douglas and Russell [4] and Douglas [5] that combines the
method of characteristics with a finite difference procedure to design the approximation
scheme. We discussed the advantages this brings to bear in the introduction.

Let us first standardize the PDE (3.1). Define u(t,z) = 6(T — ¢, z), and

o(t,z,y) = o(T - t,z, y);
b(t,z,y) = b(T —t,z,y);
Z\(t, z,y) = /I;(T —t,z,9).

Then u satisfies the PDE

1 _ =
Ut — 562(1‘},37,’11,)“11 - b(t7$)u)u$ - b(t,m,u) = 0’

u(0,z) = g(z).

(3.2)

To simplify notation we replace &, b and b by o, b and b themselves in the rest of
this section. Following [4], we should first determine the characteristics of the first order

nonlinear PDE
(3.3) uy — b(t, 2, u)u, = 0.

After transforming (3.3) into a first order system, it is not hard to show that the charac-

teristic of (3.3) is given by the following equation:
(3.4) det|a,-jt'(3) — 6ij9:'(s)| =0,

where s is the parameter of the characteristic and (a;;) is the matrix

0 0 0
(3.5) 0 —b(t,z,u) O
0 -1 0

8



Therefore, (3.4) leads to
(3.6) t'(s)b(t,z,u) — 2'(s) =0,

where (t,z,u) is evaluated along the characteristic curve C : ((-),z(-)). We replace the

parameter of C by ¢ and denote the arclength along C by 7. Then,

(8.7) dr = [1+0%(t, 2, u(t, z))] %dt;
along C,

9 1¢0 0

5 = yla )
where
(3.8) P(t,z) = [1+ (¢, z,u(t, z))] )
Thus, the equation (3.3) can be simplified to

ou 1, ~ .
(3.9) { ¢E =50 (t,z, u)ugs + b(t, z,u);
u(0,2) = g(z).

We shall design our numerical scheme based on (3.9).

Numerical Schemae.

Let h > 0 and At > 0 be fixed numbers. Let z; = ¢h, 1 = 0,41, -, and t*F = kA¢,
k=0,1,---,N, where t¥ = T. For a function f(t,z), let fF = f(t*, 2;) denote the grid
value of the function f. Define for each k the approximate solution w* by the following

recursive steps:

Step 0: Set w? = g(z;), ¢ =---,—1,0,1,--+; use linear interpolation to obtain a function

w%(z) defined on z € R.
Suppose that w¥~1(¢,z) is defined and let
b¥ = b(t*, zi,wk ), of = o(t*, 2wk, Ef :,I;(tk,wi,wf_l);
(3.10) ZF = x; — bFAL, wF! = wFH(Eh);

82 (w)f = h—z[wik+1 —2wf +wF ]
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Step k: Obtain the grid values for the k-th step approximate solution, denoted by

{wF}, via the following difference equation:
wf — zT)f -1
At
It is clear that, under the assumptions that o be bounded below positively and that b be

(3.11) = SR+ B —eo<i<o,

bounded, there exists a unique solution of (3.11) as soon as an evaluation is specified for
wk=1(z).
Finally, use linear interpolation to extend the grid values of {wf}®___toall z € R

to obtain the k-th step approximate solution w*(-).

To analyze the convergence of the approximation, we need to derive an error equation

for the procedure. First, note that along the characteristic curve C,
Ou u(t®, z) — u(tbF1, 7)
¢57: ~Y AT

u(th, z) —u(tF-1,z
~ () ( _) 2 ( 2 .1_)

[(z — 2)* + (At)?]
_u(th,2) —u(th, 7)
B At ’

where Z is the location of the characteristic starting from (t¥,2) at ¢ = t*~!. Therefore,

the solution of (3.9) satisfies a difference equation of the following form:
k —k—1
. — . 1 ., . -~ . . .
(3.12) Ez—A‘:z— = 5 (e@}PE ! + bW +ef, —co<i<oo, k=1,-,N,

k=1 — u*=1(z}) and z¥ is the computed approximation of z (see the definition

where @; "~

following (3.17) below); Z(U)f and o(u)¥ correspond to /l;f and of defined in (3.10), except

that the values {wF™'} are replaced by {uf~!}; ek

. 1s the error term to be estimated.

In order to estimate the error terms {ef}, we first observe that at each grid point
(tkami)

.\ Ou . . ~ K :
(3.13) gb(tk,:z:,-)é; o EGQ(tk,xi,uf)um N b(t*, zi,uk).
Therefore,

k_ k=1
b Jui—ag ok (Ou
¢ = { At vl ’m’)ar (tk,x.-)}
o I O O

(3.14) 27 VTR gy 2 :

+ {Z(tk,mi,u{?)_Z(u)gﬁ}
:I,L;l’k-I-Iz?)k—*-If’k, '—OO<Z<OO,]{:=]_,,N
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We have the following lemma.

Lemma 3.1. Let C = ||b||co. Assume that h > CAt. Then, there exists a constant C; > 0,
depending only on b, ’b\, o, u and T, such that for all k =0,---,N and —oco < i < 00,

le¥| < Ci(h + A).

Proof. We shall estimate Iil’k, Iiz’k and If’k separately. Note that, by Theorem 2.3,
the partial derivatives us, uz, uzy and ug,, are uniformly bounded. Hence, it is easy to

see from the uniform Lipschitz conditions on b that

IPF| = [b(*, @i, uf) = Bt @i, uf )|

(3'15) N k k—1 1,1
< |[bulloolu(t®, @) — u(t™™F, 2:)| < CH1AL,
where C1 := |[by Jloo||tt]|oo < co. Similarly,
[~ ' 1 . .. - S i
11241 < {103ty ub) — 3 1, b a8, 22)
k k k
. - . U — 2uF Fur
R X' )

1
< 5 {2lollcolloullooluzallootrt + 112 l1taaallooh}
< CH¥(h + Ab),

where C1? := max{2]|0|co||ou||col|Uzz |lcos || % || ¥zzs]|co} < 0. Thus, it remains to esti-

mate Iz-l’k. For each k and 7, set
(3.17) xF = 2; — b(t*, 2, ub )AL,
and @f ™! := u(t*"1,%%). Let Z be the z-coordinate of the characteristic starting from
(t*, z;) evaluated at t = ¢t*~1:
tk
T =ux;— / b(t, z(t), u(t, z(t)))dt.
th—1

Since max{|xXF — z;|,|Z — z;|} < ||b]leoAt < & by assumption,

£
K —al < [ b a ) - 6 a(e), (s ()
tk—1

S Allbelloo At + [|bzflool + [[bulloo(flutll At + [luz[looh)} At
< CY3(h + At)AL.
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where C1»* depends only on ||bt]|co, Hb lloos [16u]lcos [z]|eo- Thus,

u(t*1,7) —u(t*, < Mellool® =XF] _ 10
. Xl < CY4(h + At
(318) - B %l < oragh 4 a),
where C1* = |[u|C1®. Now by integrating along the characteristic from (t*=1, %) to
(t*, z;), we see that
u(th,z;) — u(tF1,3) 1 /t" d
= — —u(t, z(t))dt
At At S, @ B20)
1
= [k_l(ut — b(t, z,u)uy )(¢, z(t))dt
tk
(3.19) =1 / Ou,
o T
= tk iy
v,z ’)BT (t*,2:)

1 [t & s Ou
Y / (o281, 2(6)) - p(t*, R N

Applying Theorem 2.3 and using the boundedness of the function b, one can easily deduce

that

1 % [ ou du
2 {— —(t, (¢ 5z, dt| < CY5(h + At),
620) |5 [ {#5reae) vt s 3E| Y < 010+ an
where C1® depends on uniform bounds of g:; along the characteristics (hence it depends

on the bounds of uy, u¢; and vz, and b). Combining (3.17)—(3.20), we have

u(t’” z) __uk 1
(t*,z;) At

~

Ou < CH3(h + At),

or

1,k
'Ii | =

where C1:3 = C'13 4 14 +CY3 Ifweset Cp = CV 4+ CL2 4 61’3, we have proven the

lemma. O

We now study the consistency of our numerical scheme; namely, we shall prove that
the approximate solution obtained from the difference equation (3.11) converges to the

true solution, in a certain sense. To do this, let us first construct the approzimate solution

defined on [0,7] x IR as follows. For given i > 0 and At > 0, set

N
Zwk(m)l(tk—l,tk](t), t € (0,T];
k=1

wd(a:), t=0,

(3.21) whB(t, z) =

12



where w*(-), k = 1,---, N are the functions extended from the solutions of the difference
equations (3.11) by linear interpolations. In other words, for each k and i, w®2!(t*, z;) =
w¥, where {w*} is the solution to (3.11).

Let us now define a function ((t,z) = u(t,z) — w*?%(t,z) for (t,2) € [0,T] x R; as

before, let (¥ = ((t¥,z;) = u¥ — wf. We first prove a theorem analogous to one in [3].

Theorem 3.3. Assume (Al)—(A3) and that h > CAt, where the constant C is defined

in Lemma 3.1. Then,

SI?P ICF] = O(h + Ab).

Proof. First, by subtracting (3.11) from (3.12), we see that {¢*} satisfies the difference

equation
k_ (ghk=1 _ gkt R R
(3.22) i At %) %{(a(u) )65 (w); —(05)262(10)5'} + [o(u)¥ —BF] + €F;
¢ =0.
Note that
,a-:_c—-l__u-J [u(th 1 L u(t’” 1 )]—l—[u(t" -1 —k) k_l(ff)]

=G [u( T RE) — u(t* T 2

where (F~1 = u(tF=1, zF) — wF=1(z%). Also,

(0('u)§”')253,-(u)f—(Uz-k)zﬁ(lv)ic (0)262(0)8 + 0™ (¢, iy ui ™) — 02 (¢, @i, wf )65 (w)f.

We can rewrite (3.22) as

CE—CF ' 1 i ko k
(3.23) N 5(01') 6:(C)i + I + ¢,
(=0,
where
o _ulttEh) — u(e, o)
t T At
: 1 ’ . . 1 ~ o~
+ 5[02(tk,wz’,U?_1) — (", 2, w62 (w)f + [b(u)F — ).

13



Now, using an argument similar to those used in Lemma 3.1 and Theorem 2.3, we find

constants Cy and Cs > 0, independent of k and 7, such that
(3.24) I < Col¢E M + Ca(h + Ab),
Note that it follows from (3.23) that

k= SR8 + T+t

so that,if we set ||¢¥|| = max; |¢}], 2 maximum principle argument, together with Lemma

3.1 and (3.24), shows that

ICH I < masc|CF 2|+ maxc { X + |ef] b e

(3.25) .
< max |GF7H + Co[ICFTHIAE + (C + Ca)(h + At)AL,

where C) is the constant in Lemma 3.1 and C3 is that in (3.24). In order to estimate

max; IEZ‘ "ll,. we adopt the argument in [4]. Namely, if I; (u)(t*,-) denotes the linear inter-

polate of the grid values {uf” 2 oo and wk(-) the linear interpolate of {wz’” ooy then
(3.26) max |C 7 < max |(F 7 + max [u(t*1, &F) — L (u)(¢*1, 3.
i B :

Apply the Peano Kernel Theorem (cf. [3] or [4]) to show that
max Ju(t*71, 2F) — [ (w)(t*71, 25| < Cuh*h,

where h* = O(At) and Cy4 > 0 is independent of k and i. This, together with (3.26),

amounts to saying that (3.25) can be rewritten as

(327 ICEIE < HCRH I + Coll¢H (| At + Cs(h + At)At,
3.2
= I¢*HI(1 + C2At) + Cs(h + At)AL,

where Cs < 2(C3 + Cs5 + C4) is independent of k. It then follows from the Gronwall lemma
and the bound on ||¢?|| that

ISl <= O(h + Av),
which proves the theorem. O
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Our next goal is to construct for each n an approximate solution u{™ that converges
to the true solution u in the FSDE (2.5) in a satisfactory way as n tends to infinity. To
this end, let n € IN be given. Let At = T'/n, and h = 2C At, where C' is the constant given
in Lemma 3.1. It is then obvious that the requirement A > CAt is fulfilled. Now let us

choose
uV(t,2) =w 5 (te),  (4o) €[0T xR,
where w®A? is defined by (3.21). Our main theorem of this section is the following.

Theorem 3.4. Suppose that (A1)—(A3) hold. Then, the sequence {u(™(., )} enjoys the
following properties:

(1) for fixed z € R, u{™(-, ) is left continuous;

(2) for fixed t € [0,T), ut™(t,-) is Lipschitz, uniformly in t and n (i.e., the Lipschitz
constant is independent of t and n);

(8) sup, , [u™ (¢, z) — u(t,z)| = O(3).
Proof. The property (1) is obvious by definition (3.21). To see (3), we note that
N
ul™(t,2) — u(t, z) = [w°(2) — w(0,2)] 110y () + D [w"(2) ~ ult, )|1 (1,041 (2)-
k=1

Since for each fixed t € (t*=1,t*], k > 0 or t = 0, we have u(™)(¢,2) = w*(z) for & > 0 or
k=0if t =0. Thus,

sup [w*(2) — u(t, 2)| < ¥ +sup |L(u)(t*, @) — u(th,2)| + sup u(t*, z) — u(t, )|
: 1
SIS+ ofh + At) + fludllcoAt = O(h + At) = o),

by virtue of Theorem 3.3 and the definitions of 2 and At. This proves (3).

To show (2), let n and ¢ be fixed, and assume that ¢ € (¢*,¢**1]. Then, u("(t,2) =
w¥(z) is obviously Lipschitz in z. So it remains to determine the Lipschitz constant of
every w®. Let z' and z? be given. We may assume that z' € [z;,z;41) and 22 € [z}, 2j41),

with ¢ < j. For i < £ < j — 1, Theorem 3.3 implies that
wh(ze) = wH(zer1)] < [wP(ze) — u(th, ze)| + [u(t®, ze) — u(t*, zer1)|
(3.28) + [u(t*, zeg1) — wH(era)]
< 2/ICHN + Huslloolze = @e41| S Kh = K(ze41 — ze),
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where K is a constant independent of k, £ and n. Further, for 2! € [z;,zit1),

wk(zip1) — wF(z;
(@is) = 04@) s,

k(AN o k(o
wi(z") = wi(Tit1) + Py

i+1)-

Hence,

lwF(z!) — wF(zip1)] = wh(@ig1) — wh(z:)

|2t — zi41] < Ko — 2444],
ZTit1 — Ty

where K is the same as that in (3.28). Similarly,
lw*(2?) = w'(2;)| < Kla® - o5].

Combining the above gives

j—-1
jwF(2') — w*(2?)] < [w(z') — wh(zir1)| + ) [wk(ze) — w*(zes)|
=1
+ [k (z;) — wh(2?)]
j—1
S I{{(SEH_l - 1171) + Z(me_H — .’L'e) + (.’1?2 — 117j+1)} = I{I:Lz — IEII.
=1
Since the constant K is independent of ¢ and n, the theorem is proved. O

4. Approximation of the FSDE (2.5)—Special Case.

We now use the approximate solution derived in the previous section to construct an
approximation of the FSDE (2.5). First, we recall that the FSDE to be approximated has

the following form:
t t
(4.0) X = :c—l—/ b(s,Xs)ds+/ o (s, Xs)dWs,
0 0

where B(t,z) = b(t,z,6(¢, z)), and 5(¢,z) = o(t,z,0(t,z)), (t,z) € [0,T] x R. In order
to define the approximate SDEs, we first define some quantities. For each n € N, set

Atn, = T/n and t™* = kAt,, k=0,1,2,---,n. Also, let

n—1

(4.1) n"(t) = Ztn’kl[tn,k,tn,k+1)(t)’ t€[0,T);
) k=0
n™(T) =T.

16



Next, we set
0™ (t,z) = ™ (T - t,z);
(4.2) (¢, z) = b(t,z, 6" (¢, ));
o"(t,z) = o(t,z,0" (¢, z)).

By Theorem 3.4, 6™ is left continuous in ¢ and uniformly Lipschitz in 2, with the Lipschitz
constant being independent of ¢ and n; thus, so also are the functions ™ and ™. We

henceforth assume that there exists a constant K such that, for all ¢ and n,
(4.3) B¢, @) = B*(t, &')| + ["(t, 2) — 5"(t,2")| < K|z — 2|, z,2' €R.
Also, from Theorem 3.4,
(4.4) sup [B7(2,2) — B(t, 2)| + sup [7"(1,2) - 5(1,2)] = O(-).
t,z t,z 7
We now introduce two SDEs: the first one is a discretized SDE given by
(4.5) X7 =»’C+/ b”(-,X.”)nn(s)der/ 7" (5, X )pn () AW,
0 0
where n" is defined by (4.1). The other is an intermediate approzimate SDE given by
¢ t
(4.6) Xi ==z +/ b”(s,X;‘)ds-i—/ g™ (s, X )dWs,.
0 0

It is clear from the standing assumptions (A1)—(A3) and Theorem 3.4 that both b and
o are left continuous in ¢ and uniformly Lipschitz in «; hence, both SDEs (4.5) and (4.6)
above possess unique strong solutions.

Our first result of this section is the following Lemma. The proof of the lemma is
more or less standard in the context of first order Euler approximations but contains some
special considerations due to the structure of the approximate solution to the PDE (2.4).

We provide details for completeness.

Lemma 4.1. Assume (A1)—(A3). Then,

— 1
E{ sup |XP—XP12L = O(=).
{0§t£T| t ¢ } (n)
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Proof. To simplify notation, we shall suppress the sign “~” for the coefficients in the

sequel. We first rewrite (4.5) as follows:

t

t
(4.7) XPr=Xo+ul+ / b(s,X)ds +/ o(s, XM)dW,,
0 0
where
t _ _ t _ N
@8) = [ B CE 0 =1 XM+ [ 076X 0 — oo XN

Applying Doob’s maximal quadratic inequality, Jensen’s inequality and the Lipschitz prop-

erty (4.3) of the coefficients, we have

t
E{ sup|x7 - X7} < 3B{ sup |ul?} + 31(%/ B{|xr - X7[*}ds
s<t s<t 0

(4.9) t
+ 121{2/ E{|xr - X2|*}ds.
0

Now, set an(t) = E{ sup,<¢ | Xg — X7|?}. Then, from (4.9),
t
an(t) < 3E{sup|ul|®*} + 3K*(T + 4)/ an(s)ds,
s<t 0
and Gronwall’s inequality leads to
(4.10) E{ sup [ X7 — X7*} < 363K2(T+4)E{ sup |ug|2}
s<t <t

Consequently, we turn our attention to E{sup,<, [uy|*}. Note that if s € [t™F, ¢m +1),
for some 1 < k < n, then n"(s) = kAt, (whence T — n™(s) = (n — k)At,, as T = nAt,)
and (n —k —1)At, < T —s < (n —k)At,. Thus, by definitions (3.23) and (4.1), for every
z€eR

0" (1"(s), 2) = u(T = (s, 2) = u(kAta, 2) = u(T = 5,2) = 67(s, ).
More generally,

(4.11) b"(s,z) = b(s,z,0"(s,z)) = b(s,z,0"(n"(s), z)), V(s,z) € [0,T] x R.

18



Using this fact, it is easily seen that
t
’/ b (s X )na(s) = B"(s, X )ds
/ lb(ﬁn(s) Xn (a)aen(nn(s) Xn (s))) b(SaX.;zaon(saX:))‘ds

4.12 t
(412) < /0 { (1™ (), Ko (315 6" (5, X)) — b5, X 7', 67(5, X e (3)))’

+ Ib(s,X;‘,é’”(s Xn (s))) b(s,X?,an(s,X;"))’}ds

=1 + L.

Using the boundedness of the functions b¢, b, and b,, we see that
¢

B < [ {ileol™(9) = o1+ Iballea] K3y = X7

and
t —
B < Kbl [ 1K~ X2ds.
Thus,
¢ B gt _

(413) | / b"(c, X)) — b"(s, X2)ds| < / {I7(s) = sl + | By — X7 s,

where K depends only on K, 16¢]|cos |10z]joo and ||by}jco- Since

z_: At,)? =
k=0

L+1 At

[ |n"<s>—s|ds—§[ (s —1*)

LN

l\D|P—'

/ bn( An)n n(g) — b"’(s Xn)ds

)

. _ T4
2 71 |2
<ok {T/O E|XD. ., — XD ds+F}

Using the same reasoning for o with Doob’s inequality, we can see that

sup

(4.14) ust

t 2
E{sup / (4, X)) — 0™(5, X)W, }
u<t 0
(4.15) §8I\’2{/ E|X] o — Xflzds—l—/ (s—n”(s))zdS}
0

gsf(’z{/ E|X Dy — X702 ds+3—T—}
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Combining (4.14) and (4.15), we get
k|2 72 ! o n rr|? 2 16, 1
(4.16) E{sup |u§|’} < K*(4T +16) | E]| n(s)—A3| ds + K*T(T + —)—.
<t 0 K 3 'n?
Thus, by (4.10),

t
E{ sup | X2 — X7’} < 3eaK2<T+4>{K2(4T + 16)/ E| Xl — X;}|2ds
(4.17) s<t 0

~ 16 1
+ R*T(T + ?)p}.
Finally, noting that | _’1’;,,(3) - X7 < |X’;‘n(3) — X+ |X® — X™| and that

—’77]11;(8) — X;L = bn(-,}_{.n).,]n(s)(s — 7]”(8)) + U(-,X.n),]n(s)(Ws — I/Vn"(s))»

we see as before that

t ¢
| 1% - XrPas <2 [ {106 - 07O + lolls - (o) s
212, T 1 0 1
< 2000t | 2 L
<M 1 poper - 2
Therefore, (4.17) becomes

_ 1 1 ! 5
(4.18) E{sup|X;‘—X§|2} <Ci— +Cz—9+03/ E{sup|Xf—Xf‘2}ds,
s<t n n* 0 r<s

where Ci, Cy and C3 are constants depending only on the coefficients b, ¢ and K and

can be calculated explicitly from (4.17). Now, we conclude from (4.18) and Gronwall’s

inequality that

len(t) < ﬂneCTa Vi e [O)T]’

where B, = Cin™! 4+ Con~? and Cr = C3T. In particular, by slightly changing the

constants, we have

- C Co 1
— o oyn2l < ~1 2 _ -
@9 a®=B{ g 15700 < O T =0,

proving the lemma.

Our main result of the section is the following theorem.
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Theorem 4.2. Assume (A1)—(A3) hold. Let X™ be the solution of the discretized SDE
(4.5), and define Y™ by Y;* = (¢, X[), t € [0,T), where 6™ is given by (4.2). Then,

- — 1
n_ v TN — -
(4.20) E{O;ggTIXt At|}+E{0§;£Tnt vil} = o T

where (X,Y") is the adapted solution to the FBSDE (2.1).

Moreover, if f is any uniformly Lipschitz C? function, then for n large enough,
" | ‘s K
(4.21) |[BUF R} - B{A(XD)| < 2
where K is a constant depending only on f, o, b, b and g.

Proof. Recall that at the beginning of the proof of Lemma 4.1, we have suppressed

the sign “7” for band G to simplify notation. Set

e"(t) = { sup [b"(t,2) = b(t, ) + sup o™ (t,2) — o(t, )"},

where b, b", o and o™ are defined by (4.0) and (4.2). Then, from (4.4) we know that
sup, [e™(t)] = O(Z5). Now, applying Lemma 4.1, we have
E{ sup | X — Xs|2} < 2E{ sup | X2 — X;’|2} + 2E{ sup | X7 — Xs|2}
s<t <t s<t
(4.21) )
= O(=)+ 2E{ sup | X — XSP}.
n s<t

Further, observe that

E{ sup | X — X3|2}
s<t

t t
ng/ E|b"(s,X}})—b(s,X3)|2d3+8/ E|o™(s, XT) — o(s, X,)[*ds
0 0
1 t
§4T/ E|b”(s,Xf)—b"(s,Xs)|2ds+16/ E|o™(s,X7) = o™(s, X,)[ ds
0 0

+4(T +4) /t en(s)ds

t
<4(T + 4)K? / E{ sup | X" — X,.|2}ds +4(T + 4)/ en(s)ds.

0 r<s 0
Applying Gronwall’s inequality, we get

C
n2

’
n

t
(4.22) E{ sup | X — X3|2} < 4T + 4)/ €n(s)ds - HTHHI? <
s<t 0
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where C is a constant depending only on K and 7. Now, note that the functions 6 and 6"
are both uniformly Lipschitz in x. So, if we denote their Lipschitz constants by the same

L, then

B{ sup ¥~ ¥} < 2E{0sup 6t X0) - 66, X))

+2B{ sup |6°(,X7") - 6(2, 7)1 }
0<t<T

{ sup |X: th|2}+2sup 16(t, z) — 8°(¢, 2)[?
0<t<T (t,z)

= 0(;),
by Theorem 3.4 and (4.22). The estimate (4.20) then follows from an easy application of
Cauchy-Schwarz inequality. To prove (4.21), let us begin by assuming from, Theorem 3.4,
without loss of generality (e.g., by taking n large enough) that sup, ,) [6*(t,z) — 6(¢,z)| <
Cn~!. We modify X as defined by (4.5) by fixing n and approximating the solution X"
of (4.6) by a standard Euler scheme indexed by k:

Xt =24 /t b(-, XYk syds + /t o (-, X™F) k(o) dWs.
It is then standard [10, p.460]0that 0
(4.23) B} - Bty < &
On the other hand, we have

(424)  BUXD) = BUXDH < KB(Xr —X3) < B{ sup 13X, — X/} < &

for Lipschitzian f, by (4.22). Therefore, noting that X? as defined by (4.5) is just xprr,
the triangle inequality, (4.23) and (4.24) lead to (4.21). O

5. The General Case.

In this section we generalize the results in the previous sections to the general case.

Namely, we shall consider the FBSDE

t t
Xt=$+/ b(t,Xt, /t,Zt)dt-F/ O'(t,Xt,K)dI’Vt,
1] 0 .
(51) T _ T
Y, = g(Xr) + / Bt, X, Vi, Z2)dt + / Z,dW,,
1
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and we shall design a numerical scheme that approximates not only the processes (X,Y)
but also the process Z, which in some applications is the most interesting part. For
example, in an option pricing model (see, e.g., [2]), the process Z represents a hedging
strategy and therefore schemes approximating Z are of intrinsic interest.

Using the Four Step Scheme described in §2, one can easily deduce that in this case

the function z(¢,z,y,p) in Step 1 is given by
2(t,2,y,p) = —o(t, 2, y)p.
Therefore, the PDE (2.4) becomes
0=6, + %UZ(t,m,e)em T bt 2,8, —o(t, 7, 0)8, )6s + B(t, ¢, 0, —(t, 2, 6)6, );

(T, z) = g(z).

Define by and ’b\o by

(5.2)

bO(ta T, Y, Z) = b(ta LY, —-O'(t, Ty y)z);
(5.3) -~ ~
bo(t,z,y,2) = b(t,z,y,—o(t,z,y)z).

One can check that, if o, b and b satisfy (A1)—(A3), then so do the functions o, by and
bo. Further, if we again set u(t,z) = (T —t,z), V(¢,z), then (5.2) becomes

1 - =
Uy = 5&2(t,a:,u)um + bo(t,, u,ug)uz + bo(t, &, u, ug);

u(0,2) = ().

“W—"n

(5.4)

We will again drop the sign in the sequel. Note that Theorem 2.3 holds for the general
case; hence, the solution to (5.4) will be bounded in C2+%:4+2 for some a € (0,1).

A way to approximate the process Z is to have a numerical scheme that approximates
8., or equivalently, u,. To do this, let us define the function v(¢,z) = u,(t,2); then using

the technique mentioned in the proof of Theorem 2.3, one can first “differentiate” equation

(5.4) and then show that (u,v) satisfies a parabolic system:

1 ~
Uy = 562(t,a:,u)um + bo(t, z,u,v)ug + bo(t, z,u,v);
1 ~
(5.5) vy = 562(t,m,u)vm + Bo(t,z,u,v)v, + Bo(t,z,u,v);
u(0,2) = g(z), v(0,2)=g'(2),
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where

Bo(t,z,y,2) = o(t,z,y)[o(t, z,y) + oy (t,z,y)2] + b(t, z,y,2) + b.(t,z,y, 2)
(5.6) +3z(t,m,y, z);

Bo(t,z,y,2) = [bs(t, 2,9, 2) + by(t, 2,9, 2)2]z + B(t, 2,9, 2)7 + o (t, 2,9, 2).
Remark 5.1. Since u and v are uniformly bounded by Theorem 2.3, the functions
Bo(t,z,u(t,z),v(t,z)) and Eo(t,m,u(t,m),v(t,x)) are uniformly bounded for all (¢,z).
Also, By and B, are Lipschitz in z, y and z, uniformly in ¢ and z and locally uniformly in

y and z.

We shall introduce a numerical scheme based on (5.6) which produces a sequence of

approximate solutions {U(™, V(™}2  such that

sup{|U™(t,2) - u(t, )] + [V(t,2) — w(t,2)]} = O(~).

Following the idea presented in §3, we first determine the characteristics of the first order

system
{ ug — bo(t, z,u,v)uy = 0;
vy — Bo(t, z,u,v)v, = 0.

It is easy to check that the two characteristic curves C; : (¢,2;(t)), ¢ = 1,2, are determined

by the ODEs
{ dz1(t) = bo(t, z1(t), u(t, z1(2)), v(t, z1(2)))dt;
d:l)z(t) = Bo (t, T2 (t), u(t, Itz(t)), ’U(t, T2 (t)))dt

Let 71 and 73 be the arc-lengths along C; and C;, respectively. Then,

(5.7) dr = 1(t, @1 (t))dt; dry = o (t, z2(2))dt,

where

{ Pi(t, ) = [1+B3(t, z, u(t, 2), v(t, 2))]*/?;
(5.8)

ha(t, o) = [1+ BE(¢, 2, u(t, z),v(t, 2))]*/?.
Thus, along C; and Cs, respectively,
a a g 0 g )
“om e hab e ={a Bl
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and (5.5) can be simplified to

a 1 -~
1’&1% = 502(ta$au)uz:v + bo(t,:v,u,v);

ov 1

(5.9) )
¢20_T2 = 502(ta$au)vzx + Bo(t,w,u,v).

Numerical Scheme.

For any n € IN, let At = T/n. Let h > 0 be given. Let t* = kAt, k =0,1,2,---, and
z; =th,t=---,—-1,0,1,---, as before.

Step 0: Set U? = g(z:), V¥ = ¢'(z;), Vi, and extend U° and V? to all z € R by linear
interpolation.

Next, suppose that U¥~1, V*~1 are defined such that U¥~!(z;) = UF™!, VF1(z;) =
VA1 and let

2
(bo)¥ = Bo(t*,2:, UF 1, V™YY, (Bo)k = Bo(t*, 2., UF Y, V),
(5.10) of = o(t* 2, UFY);
:Ef =z; + bo(tk,xi, Uz-k_l,Vik_l)At; if =z; + Bo(tk, x;, Uz-k_l,Vik_l)At,
and UF~1 = UF-1(z}), VF-1 = vh-1(zh),

Step k: Determine the k-th step grid values (U*, V*) by the system of difference equations

Uk — (71.’““1 1, . Nk

o = (PP + (B
(5.11) VE_pkl o

~t— = S (e EPEW)E + (Bo)f.

We then extend the grid values {U}} and {V;*} to the functions U*(z) and V*(z), z € R,

by linear interpolation.

We shall follow the argument in §3 to prove convergence. We point out that, unlike
in the previous case, the functions By and By (see definition (5.6)) are neither uniformly
bounded nor uniformly Lipschitz. The arguments are thus more delicate. It turns out
that this difficulty can be overcome if one can show that the solutions {UF} and {V}}

to the difference equation (5.11) are uniformly bounded for all £ and 7 and the bound

25



is independent of n. Indeed, if this is the case, then because the true solutions u and
v = u, are uniformly bounded, we can restrict ourselves to the set Qar := {(¢,2,y,2) €
[0,T] x R®: |y| € M,|2] < M}, where M depends on the bounds of (u,v) and {U* V),
and all previous estimates will go through with constants now depending possibly on
uniform bounds of By and Eo and their partial derivatives over Qar. To justify this

argument, let us first prove a lemma that has intrinsic interest.
Lemma 5.2. Suppose that {ar: k =1,---,n} is a finite sequence such that ar > 0, V&,
and ag < a. Also, assume that the following recursive relation holds:

% 2
(5.13) ar < ax—1 +—7;(1—|—ak_1), k=1,---,n,
where C' > 0 is a constant independent of k and n. Then, there exists a constant M > 0
depending only on C and a, such that sup, supg<r<, ok < M.

Proof. Let A(-) be the solution to the following ODE:

dA(t) C 9
—— = —(14 A*(1)),
(5.14) dt n( ) 0<t<n.
A(0) = a,
Since —‘% > 0, A is increasing. Thus, for each k = 1,---,n, it holds that

(5.15) A(k)= Ak —1)+ g— /kk (14 A%(r))dr > A(k—1) + %(1 + A%k —1)).

Noting that A(0) = @ > ag, a simple induction using (5.13) and (5.15) then shows that
A(k) > ag, k = 1,---n. It suffices to determine the bound for A(t), 0 < ¢ < n. But by
solving (5.14) we have

dA
C= / T fg)(t = arctan A(n) — arctan A(0) = arctan A(n) — arctan o,

hence

sup A(k) = A(n) = tan(C + arctana) := M < oo.
0<k<n

Consequently, we obtain that

sup sup aj <sup sup A(k)= M,
n 0<k<n n 0<k<n
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proving the lemma. 0
We now give a crucial result of this section.

Theorem 5.4. Suppose that (A1)—(A3) hold. Then, the solutions {UF,V¥} to the
system of difference equations (5.11) are uniformly bounded in k and i, and the bound is
independent of n. More precisely, there exists a constant My > 0, depending only on b, o,

b and T, such that

(5.16) supsup{]Uik| + |V} < My,

Proof. Let us rewrite (5.11) as

o 1, Lk
U = UF + (5052650} + (Bo)f)

. ok 1 4 . =~ &
VE=TF 4 (GloERE)! + (Bo)t) ot

Since |UF™!| < max; |UF=Y = ||[U*|| and V=1 < JIVF1||, a maximum principle argu-

ment shows that

(5.17) T NTEH )+ 1o )l At < [T*=] + Ji(Bo)* (| AL;

IVEI < I7E7H 4+ (Bo) [l At < V5] + 1I(Bo)* | At.
Since by is uniformly bounded, it is easy to check by iteration that sup, sup; |U*|| < oo.
It remains to show that the same is true for V¥ as well. To this end, we first observe from
the definition (5.6) that B, is of quadratic growth in z, uniformly in (t,z,y). Namely,
there exists a constant K > 0, depending only on the bounds of b, &, b and their first order

partial derivatives, such that |§0(t, z,y,z)| < K(1+ 2?). Therefore,
(Bo)t| = 1Bo(t*,2:, US T VD < K+ V),

and the second inequality in (5.17) leads to

TK

n

(5.18) IVEN < IVE+ EQ+ VR P)AL = VA + =@ + V),

since At = T'/n. Hence, the result follows from Lemma 5.3. O
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We can now follow the arguments in §3 line by line. What follows is essentially a
somewhat detailed sketch of the proof of Theorem 5.6 below. First, we evaluate the first

equation in (5.9) along C; and the second one along C; to get an analogue of (3.12):

k ~k—1 1

B Lot + B o)t + (o)
vk —pF1 1 B
A = S(o(h)8HwE + Bo(w,)f + (e,

where uf = u(tF,z;), vf = v(t¥,z;) (vecall that (u,v) = (u,u,) is the true solution of

(5.6)), and @F ! = w(t*~1, %), OF = v(t*71, %)), with

=~k k k-1 _ k-1 <k k k-1 k-1
7 =z + bo(t%, @i, u; T, v )AL X; =i+ Bo(t", zi,u; ", v; 7 )AL,

i ;
Also, o(u)F, ’b\o(u,v):-c and Bo(u,v)¥ are analogous to o¥, (bo)¥ and (Bo)¥, except that
k—1 k—1 k—1 k—1
U7 and V; are replaced by u; " and v;” .
Next, we estimate the error {(e;)¥} and {(e2)¥} in the same fashion as in Lemma 3.1
to see that
(5.19) S;lp{l(ﬁ)fl +|(e2)f]} < O(h + A),
i
provided h > CAt, where C is a constant depending on the bounds of the coeflicients and

the true solution v.

Remark 5.5. In Lemma 3.1 we required the relation h > CAt, where C = ||b||co. The
analogue for (5.19) is that C = max{||Bo||co, ||0]|cc }. In theory, the definition (5.6) implies
that || Bo|leo is always computable using the bounds of the coefficients (i.e., b, b, o), their
partial derivatives, and the bound on v = u,. But in practice, the a prior: estimate of
lv]|co is not easy to obtain. However, in a computational process one could always replace

|v]|oo by the a priori bound of the approximate solution {V;*} derived in Theorem 5.4.

We now define as we did in (3.21) the approximate solutions U (n) and V(™ by

4

> UM@)l wenr sny(8),  t€(0,T];
UM, z) = =1 T

(5.20) LU (@), t=0

( n
> V@) nr wry(t), 1€ (0,T];
V(n)(t,fﬂ) — < E—1 n Ly

| Vo(a), t=0.
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Let &(t,z) = u(t,z) — U™(¢,z) and ((¢,z) = v(t,z) — V"™(t,z). We can derive the analogue
of (3.23):

ék _— E:k_l 1 k k k k
H ol = (oS + (1) + (e)fs
G =87 L0k 1 (1) + ()t
Aot = (B0 + () + (e,
where
E _u(tk—l,fc\i —u(tt1,zF)
(Il)z - At

1

+ 51026, aeub ™) = 0 (28, 20, UF ]S ()E + Bo(, )% — (o)t

(Iz)k — __v(tk—l’if) B U(tk—l’if
¢ At

1 A o D) 8 . a L 3 g .
+ §[Jz(tkaxivvk Y- ad(tk>$i7Vik 1)]63(7))? + [Bo(u,v)f - (BO)H,

2

Using the uniform Lipschitz property of Do in y and z, one shows that
(5.21) (1] < Co{leF T+ I} + Ca(h + AY), Vi

On the other hand, note that the true solution (u,v) is uniformly bounded and that {UF}
and {V;*} are also uniformly bounded by Lemma 5.1. We can use the locally uniform

boundedness and local Lipschitz property of the function By (in y and z) to get
|Bo(u, ) = (Bo){| < Culleh M1+ 1571, Vs,

where Cy depends only on the bounds of u, v, {UF}, {Vi¥}, and that of &, b, b and their

partial derivatives. Consequently,
(5.22) (R)i| < Co{leF |+ 16T + Co(h + A1), Vi,

Use of the maximum principle and the estimates (5.19), (5.21) and (5.22) leads to
I < NERHI + CalllE 1+ NICETH DAL + Cs(h + At)AL;
ICEIE< NCH= 1+ Co(llERH I+ IS DAL + Cy (b + At)AL,

Add the two inequalities above and apply Gronwall’s lemma; we see that
Sip(llﬁkll +1I¢5I) = Ok + At).
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Arguments similar to those in Theorem 3.4 complete the proof of the following theorem.

Theorem 5.6. Suppose that (A1)-(A3) hold. Then,

sup{|U(,2) — u(t, )] + [V (t2) — wa(t, 2)]} = o(%).

(t,z

Moreover, for each fixed x € R, U™(-,2) and V™(-,z) are left-continuous; for fixed
t €10,T), UM(¢,.) and V(™M (t,) are uniformly Lipschitz, with the same Lipschitz constant
that is independent of n.

Using Theorem 5.6, we can now approximate the SDE (2.5) as before without any

extra work. In fact, if we set
(5.24) o"(t,z) =U™(T —t,z), 6T —t,2) = V(¢ a2),
and
B(t,2) = bo(t, 2,07 (t,2), 05 (t,2);  G7(t2) = o(t,2,0m(t,2)),

then, it follows from Theorem 5.6 that

sup{[i(t, 2) — B(1,2)] +15(t,2) ~ 51, 2]} = O(3)

(t,z)

and that, for fixed t € [0, 77, z"(t, -) and o™(¢, ) are uniform Lipschitz, with the Lipschitz
constant independent of n. Thus, if we again let X™ denote the solution to the discretized

SDE,
it t

(5.25) X=z +/ b (-, X )yn(5)ds +/ ™, X ™)y () AW,
0 0

where 1™ is defined by (4.1), then one can easily show the following final result of the

paper, which is the analogous to Theorem 4.2.

Theorem 5.7. Suppose that the standing assumptions (A1)—(A3) hold. Then, the
adapted solution (X,Y,Z) to the FBSDE (2.1) can be approximated by a sequence of
adapted processes (X™, Y™ Z™), where X" is the solution to the discretized SDE (5.25)
and, for t € [0, 7],

Y =07 (t, X7 Zl = —o(t, X, 0" (t, XM)6™ (¢, X1,
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with 8™ and 87 being defined by (5.24) and U™ and V(™ by (5.20). Furthermore,

v . . 1
E{ sup |X—Xi|+ sup [P/ =Y+ sup |77 = Zi} = O(—=).
0<t<T 0<t<T 0<t<T Vn

If f is C? and uniformly Lipschitz, then, for n large enough,

for a constant K.

B, 28) - B (e, 200} <
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