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Abstract

In Politis and Romano (1992, 1993, 1995) a general subsampling
methodology has been put forth for the construction of large-sample
confidence regions for a general unknown parameter 6 associated with
the probability distribution generating the stationary sequence
X1, ..., Xn. The subsampling methodology hinges on approximating
the large-sample distribution of a statistic T, = T5,(X1, ..., X») that is
consistent for & at some known rate 7,.

Although subsampling has been shown to yield confidence regions
for @ of asymptotically correct coverage under very weak assumptions,
the applicability of the methodology as it has been presented so far
is limited if the rate of convergence 7, happens to be unknown or
intractable in a particular setting. In this report we show how it is
possible to circumvent this limitation by (a) using the subsampling
methodology to derive a consistent estimator of the rate 7, and (b)
employing the estimated rate to construct asymptotically correct con-
fidence regions for # based on subsampling.
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1 Introduction

Let X, = (Xi,...,X,) be an observed stretch of a (strictly) stationary,
strong mixing sequence of random variables {X;,t € Z} taking values in
an arbitrary sample space S; the probability measure generating the ob-
servations is denoted by P. The strong mixing condition essentially means
that the sequence ax(k) = sup, 5 |P(AN B) — P(A)P(B)| tends to zero as
k tends to infinity, where A and B are events in the o-algebras generated
by {X;,t < 0} and {X,,t > k} respectively; the case where Xj, ..., X, are
independent, identically distributed (i.i.d.) is an important special case of
the general scenario.

In Politis and Romano (1992, 1993, 1995) a general subsampling method-
ology has been put forth for the construction of large-sample confidence
regions for a general unknown parameter § = #(P) under very minimal con-
ditions; see also Bickel, Goetze and van Zwet (1994), Bertail (1994). The
subsampling methodology hinges on approximating the sampling distribu-
tion (under P) of a statistic T,, = T,(X,,) that is consistent for § at some
known rate 7,,. Under the assumption that there is a nondegenerate asymp-
totic distribution for the centered ‘dilated’ statistic 7,,(T,, — 6), i.e., if there
is a K(z, P), continuous in z, such that

K.(z,P) =Prp{r.(T, - 0) < 2} — K(z,P) (1)

for any real number z, then the subsampling methodology was shown to
‘work’provided that

b, 00 (2)
and 5
7 o - (3)

As a matter of fact, the additional assumption T—T": = 0 must be satisfied as
well, but this is trivially satisfied in the case where 7,, = n® for some o > 0,
or even if 7, = n®L(n) where L is a normalized slowly varying function; see
Section 2.2 for a definition of the notion of slowly varying function. In other
words, subsampling yields confidence regions for 8 of asymptotically correct
coverage under the very weak assumption (1), provided care is taken so that
(2) and (3) are satisfied as well.

In the case of i.i.d. data, subsampling may be seen as a delete-d (with
d = n —b,) jackknife (cf. Shao and Wu (1989) and Wu (1990)), but also
as resampling (bootstrap) without replacement with a resampling size b,



smaller than the original sample size n; since the difference between sampling
with replacement, i.e., Efron’s (1979) classical bootstrap with resample size
b,, and sampling without replacement, i.e., subsampling with subsample
size by, is negligible if b2/n = op(1), the general validity of subsampling
implies general validity of the bootstrap with appropriately small resample
size (cf. Politis and Romano (1992, 1993)) even in situations where the
usual bootstrap (with resample size n) fails. In the case of stationary data
(time series or random fields), subsampling is closely related to the blocking
methods introduced by Carlstein (1986), Kiinsch (1989), and Liu and Singh
(1992); see also Sherman and Carlstein (1994).

Although existence of an asymptotic distribution is almost a sine que
non condition for the purposes of approximating the large-sample sampling
distribution of the statistic T,,, and some form of weak dependence condition
(e.g., mixing) is required for consistency of estimation as the sample size
increases, it may be possible that the convergence rate 7. (as a function of
n) is unknown (or impossible to calculate), in which case it is difficult to
see how subsampling could be used for construction of confidence regions;
however, subsampling would readily give some information on the shape
of K(z,P) -as a function of z- which can be a helpful diagnostic tool (cf.
Sherman (1992)).

The aim of this article is to actually show that it is possible to drop
the hypothesis concerning the explicit knowledge of the convergence rate
in order to use subsampling for the construction of nonparametric confi-
dence regions. In particular, we will first use the subsampling methodology
to derive a consistent estimator of the rate 7, and we will then use the
estimated rate to get asymptotically correct confidence regions based on
subsampling. The underlying idea is that it is possible to construct the
subsampling distribution of 7,, itself (rather than that of 7,,T,,); the speed
by which it degenerates to a Dirac measure as n — oo is closely related to
73,. Constructing several subsampling distributions for different choices of
b, gives valuable information on the shape of 7,, as a function of n.

The following examples illustrate why it may be interesting to estimate
the convergence rate before subsampling.

Example 1: Nonnormal limit distribution. Consider the func-
tional 8(P) = (EpX)? and its empirical counterpart T, = (™! "0, X;)?,
where the X;’s are i.i.d. with variance 0. If EpX # 0 then we have
n*/*(T, — 6(P)) o N(0,40?) and the usual bootstrap works. If EpX =0



then we have n(T, — 6(P)) — o?x? and the usual bootstrap fails; see, for

example, Datta (1995) where a modified bootstrap is proposed to remedy the
situation. Note that subsampling (or bootstraping with smaller resampling
size) would work in this case here as well provided the rate of convergence
is known, i.e., provided it is known whether or not EpX = 0.

Example 2: The extreme of n i.i.d. observations. Another inter-
esting example is the case of the extreme order statistic. It is well known that
the convergence rate of the extreme depends on the domain of attraction
of the underlying distribution and that the usual bootstrap fails because of
a certain lack of uniformity (Bickel and Freedman (1981)). Moreover since
the underlying distribution is in general unknown, the convergence rate is
unknown, and we can not construct the subsampling distribution unless we
have some extra information on P.

Example 3: The sample mean of a time series with moder-
ate dependence. Let X, = n~'3 7, X; be the sample mean, and
0 = EX, be the mean. Suppose that, although the sequence {X;} is
strong mixing, the mixing coefficients decrease to zero slowly enough so
that 3°5o, |Cov(X1, X)| = oo; then the variance of X, is not of order n?.
Suppose that actually 3 ;_; Cov(Xy, X;) ~ n?, and therefore Var(X,) ~
02 n?-1 for some 0 < B < 1/2, and o2 > 0. Assuming E|X,|** < oo,
for some § > 0, it follows from Rosenblatt (1984) that n3~#(X, — 8) has
an asymptotic normal N (0,02 ) distribution. To use either the normal limit
distribution or its subsampling approximation, the exponent § must be es-
timated from the data; see, e.g., Kiinsch (1989).

Example 4: Nonparametric regression. Suppose bivariate data
(Y;,X5),¢ = 1,...,n, are available and we are interested in estimating the
conditional expectation E(Y|X = z), for some z, using some nonparametric
regression technique. Many such smoothing methods are currently available,
e.g., lowess, AVAS, and ACE, and are included as ready-to-use functions
in statistical software such as S+; see, e.g., Becker, Chambers, and Wilks
(1988). One can employ the classical bootstrap with resample size n to get a
measure of accuracy of the estimated E(Y|X = z); as a matter of fact, it is
hard to avoid using the bootstrap in this case (Efron (1994)). Nevertheless,
for robustness purposes, one might want to use subsampling (or bootstrap
with resample size b, < n) instead; to do this, it is unavoidable that the



rate of convergence of the estimated E(Y|X = z) to its true value should
be calculated or estimated.

The structure of the remainder of the paper is as follows: Section 2
presents the basic idea of rate estimation using subsampling, and the pro-
posed estimators are shown to be asymptotically consistent at an appropri-
ate rate. Section 3 shows how the estimated rate can be employed in the
construction of asymptotically correct confidence regions based on another
round of subsampling. A small finite-sample experiment is conducted and
its outcomes are presented in Section 4. Finally, Section 5 contains the
technical proofs of our results.

2 Estimation of the rate

2.1 Some heuristic ideas

Until otherwise stated, let us make the simplifying assumption that 7, and
6 are real-valued, and that K(z,P) is continuous in z on the whole real
line. Although the case of i.i.d. data is a special case of the strong mixing
case, the construction of the subsampling distribution can take advantage of
the i.i.d. structure, when such a structure exists; of course, if one is unsure
regarding the independence assumption, it is safer (and more robust) to
operate under the general strong mixing assumption.

¢ General case (strong mixing data). Define ¥; to be the subse-
quence (X;, Xit1y.00y Xigp,—1), for i = 1,...,q,and ¢ = n — b, + 1; note
that Y; consists of b, consecutive observations from the Xi,..., X,
sequence, and the order of the observations is preserved.

e Special case (i.i.d. data). Let Y3,...,Y, be equal to the ¢ = (;')
subsets of size b, chosen from {X},...,X,}, and then ordered in any
fashion; here the subsets Y; consist of unordered observations.

In either case, let Tj, ; be the value of the statistic T} applied to the
subsample Y;. The subsampling distribution of the root =,(T,, — ), based
on a subsample size b,, is defined by

K. (z]|X,,7)=q" Zq: Hn, (Tp, i — Tp) < z}. (4)

i=1



In both the strong mixing and i.i.d. cases, Politis and Romano (1992,
1995) showed that if (1), (2), (3) hold, then

sup |Ks, (2 | X,7) ~ K(2, P)| = or(1) (5)

as n tends to infinity.

Denote by K, (z | X,,) = K, (¢ | X,,1) the subsampling distribution
of the root (T, — 6). Let V;_ be the variance of a random variable with
distribution K, (z | X,); in other words, V;, is the subsampling estimator
of the variance of T3, . Under strong enough moment and mixing conditions
(cf. Carlstein (1986), Kiinsch (1989), Liu and Singh (1992), Politis and
Romano (1992, 1995)), the subsampling variance estimator is consistent,
i.e., (i) there is a positive constant V' such that 72Var(T,) — V, and (ii)
sz,.‘A/bn — V in probability, as n tends to infinity.

From (ii) above it follows that

logVy, =logV — 2logm, + op(1). (6)

Thus, if we construct several (at least two) subsampling distributions for
different sizes b,, we may be able to estimate the convergence rate. So let
by n # by n; then we have

1 - 1 - Thy .
5 log Vs, , — -2-longlm = log(TZ =) 4+ op(1).

2,n

Therefore, having constructed two subsampling distributions, it is possible
to estimate the shape of function 7 up to some slowly varying function in
Karamata’s sense (see for instance Bingham, Goldie and Teugels (1987)).
To see this, assume that 7, is of the form 7, = n* where a is an unknown
positive constant; then we have

1 l,n \— Y ) 1,7 \—

5loa(22)7" (log Vs,,, ~ logVs,,.) =  + op(log(22)™).  (7)
In other words, if we ensure that log(:—"i) 2 00 which can be done by
letting b; , = n®, where 1 > 3; > 3, > 0 are some constants, equation (7)
suggests using %log(:‘—'")“l (log ng,,. —log V(,m) as a consistent estimator
of a. )

In general, we could construct I subsampling distributions based on
subsample sizes b; ., ¢ = 1,..,1, and we would then have the corresponding



variance estimators Vb.-,,,, ¢t = 1,..,1. Still under the assumption that 7, =
n*, equation (6) yields the system of equations
~logV
Yi = 2

+ az; + U (8)

fori =1,..,I, where y; = —log Vb.-,n/z, z; = logb; ,, and u; = op(1). Note
that (8) can be interpreted as a straight line regression of the y;’s on the
z;’s, where the slope of the fitted straight line is given by Ordinary Least
Squares to be

Yoiz1(¥i — 7)(log(b; ») — Iog)
> i=1(log(b; ») — Tog)?
where § = I"'S3/_, 4, and Iog = I-1 327, log(b; ). It is easy to see that a,

is just the estimator suggested by (7).

The following theorem asymptotically validates the use of the estimator
«ar as an estimator of a.

ar =

(9)

Theorem 1 Let b;, = n%, 1 > By > -+- > B; > 0, and assume that for
some T, = n®
(i) there is a positive constant V such that 72Var(T,) — V, and

n—0o0

(it) sz.-,,,vbi,n — V, in probability, fori=1,...,1.
Then, ar = a + op((logn)™1).

Remark 1a Note that, although (5) is valid in great generality (cf. Politis
and Romano (1992, 1993, 1995)), conditions (%) and (%) of Theorem 1 may
easily fail to be satisfied. Since the spirit of the present paper is to obtain
valid results under the weakest assumptions possible, having to assume con-
ditions (i) and (ii) is somewhat unsatisfactory; for example, it might be the
case that T, does not even possess a finite 2nd moment. A way out is pro-
posed in the following section, where it is seen that a consistent estimator
of o can be constructed without assuming conditions (i) and (ii) by looking
at quantiles.

Remark 1b Note that in the regression equation (8), the ‘errors’ u; are
neither of mean zero, nor are they uncorrelated. The reason Ordinary Least
Squares (OLS) works asymptotically is that the u;’s become asymptotically
negligible as n increases. In special cases, e.g., the sample mean of a strong
mixing sequence, the asymptotic order of the bias of log Vb,—,,, as an estimator

of log V', as well as the asymptotic covariance between log Vb.-,,. and log V; im

7



can be calculated, and thus could be taken into account in order to conduct
a Generalized Least Squares (GLS) regression; nevertheless, the OLS will
be asymptotically equally as efficient as the GLS, so the extra complications
can be avoided.

Remark 1c Choosing the f;’s properly is another important consideration.
Note that to reduce the magnitude of the error in estimating a by «;, the
B;’s should be taken to be spread out over the interval (0, 1), far apart from
one another; see equation (7). In the i.i.d. case, this choice of spread-out
B;’s should cause no problem; however, in the strong mixing case, we gen-
erally have a bias-variance trade-off: if b; , is small, log me is quite biased
but is not very variable, whereas if b; ,, is large, log Vb,-,,. has small bias but is
quite variable. In the particular case of the sample mean of a strong mixing
sequence, to minimize the Mean Squared Error of log Vb.-,,. as an estimator
of log V' we would need to take b; , proportional to n'/3; see, for example,
Kiinsch (1989) or Politis and Romano (1994). Thus, in order to render the
‘errors’ u; asymptotically negligible as fast as possible, the f3;’s should only
be taken to span the interval (1/3—6,1/3+ 6), for some appropriate §. Alas,
it is not possible to prescribe an optimal choice of the §;’s in the general
set-up considered in this paper; the difficult problem of choosing the 5;’s
requires more work on a case-by-case basis.

2.2 Rate estimation: scalar parameter case

Given a distribution G on the real line and a number ¢ € (0,1), we will let
G~(t) denote the quantile transformation, i.e., G7'(t) = inf {z : G(z) >
t}, which reduces to the regular inverse of the function G if G happens to
be invertible. Note that we have

Ky, (z 1) | X,) = Ko, (2| X, 7) (10)

ans thus it is easy to see that

K (| X,,m) =7, K (1] X,)- (11)
The following lemma (see for instance de Haan (1970)) will be useful to us
later on.
Lemma 1 Let ky = sup{z : K(z,P) = 0} and k, = inf{z : K(z, P) = 1},
and assume that K(z, P) is continuous and strictly increasing on (ko, k1) as
a function of z. If (5) is true as n tends to infinity, then

KMt | Xo,7) = K71, P) + 0p(1)



for any t € (0,1).
As a consequence of Lemma 1 and equation (11) we have that
7. K5 (1] X,) = K~'(¢, P) + op(1)
or equivalently
K\t X,) =1 K'(t, P) + op(751). (12)

It is observed that K; '(t| X,,) is approximately proportional to 7 '; thus,

as before, if we construct several (at least two) subsampling distributions

for different sizes b,,, we may be able to estimate the convergence rate.
More precisely, for any point ¢ > K(0, P) we have

log (K,'(t | X,,)) = log (K~'(t, P)) —log(,) + 0p(1). (13)

It follows that if we choose by, # b ,, then we have

log (K2 (| X)) —log (KL (t] X)) = log(~

=) + op(1);

2,

Ty
as before, it follows that with two subsampling distributions, it is possible

to estimate the shape of function 7 up to some slowly varying function. If
T is of the form 7, = n* where « is an unknown constant, then

log(:2)™ (log (K7!, (¢] X,.)) ~log (K51, (21 X)) = atop(log(*2)™).
" (19)

It is easy to see that the mean over several points t;, j = 1,..., B of the
left hand side of (14) is a consistent estimator of e, provided that we choose
b, , and b, , such that log(ﬁ'—’i) 2 0 for instance take b; , = nfi, where
1> 8> B, >0 are some’::onstants. More generally, we can construct

I subsampling distributions based on subsample sizes b;,, ¢ = 1,..,I; then
equation (13) evaluated at some points ¢; > K(0, P), j = 1,..,J, yields

Yi; = IOg (K;,ln(tj Iln)) =a; — alog(b,-,n) + Us; 5 (15)

where a; = log (K~'(¢;,P))and w; ; = 0op(1),¢=1,..,Jand j = 1,..,J. The
above equation may be interpreted as an ANOVA (analysis of variance) set-
up, in which case the following estimator of o suggests itself, namely

oy = _Ef:l(ili,. " ':i])(log(b,-,l)—— @) (16)
> i=1(10g(b;,n) — log)?

9



where i, = J=1 ) gy = TV log (K5l (41 X)) 5 7= (D) S, Sy

and Tog = I"'Y°/_, log(b; ,,). Notice that for I = 2 and J = 1, then
— buny-1 -1 _ -1
az = log(22)"" (log (G (¢ X.) — log (K3, (¢ ] X.,)))

is the estimator suggested by (14).
The following theorem asymptotically validates the use of the estimator
o,y as an estimator of o.

Theorem 2 Assume that (1) holds for some 1, = n®, and some K(z, P)
continuous and strictly increasing on (ko, k1) as a function of z, where ky =
sup{z : K(z,P) = 0} and k, = inf{z : K(z,P) = 1}. Let b;, = nP,
1> B, >---> pB; >0, and consider some points t; > K(0,P), j = 1,...J.
Then ar; = o+ op((logn)~1).

Remark 2a In thei.i.d. case, it may be the case that the classical bootstrap
with resample size equal to b,, provides an asymptotically consistent estima-
tor of the distribution K under conditions (2) and (3); this can be checked
(cf. Bickel et al. (1994)), or enforced by letting 0.5 > 8, > --- > 6y > 0
in Theorem 2 (cf. Politis and Romano (1992, 1993)). In such a case, this
bootstrap distribution estimator could equally be used in place of the sub-
sampling distribution estimator K, for the purposes of rate estimation;
however, there does not seem to be an advantage in doing this.

Remark 2b TUnder stronger conditions, the rate of convergence of ar
to a may be faster than (logn)~!. For example, it may be assumed not only
that (1) holds, but that the convergence to the limit law K(z, P) occurs at
some rate, e.g., K,(z, P) = K(z,P)+ Op(n~'/?), or some other asymptotic
expansion; see, for example, Bertail (1994), or Barbe and Bertail (1995).

Remark 2¢ If 7, is a more complicated function, equation (13) suggests
to estimate the shape of h(n) = log(7,), under the constraint that A(.) is an
increasing function equal to +00 at 400, using some nonparametric tech-
nique. In many interesting situations, 7, is a regular varying function of
index o, say 7, = n*L(n) where L is a normalized slowly varying function
that is is such that L(1) = 0 and for any A > 0, lim,_, %(%2 = 1 (see
Bingham, Goldie, and Teugels (1987)). By the Karamata representation
theorem, there exists €(.), €(u) 2 0 such that L(n) = exp I ute(u)du,

10



and (13) may be written

log (K; (¢ | X,,)) = log (K~'(t, P)) — alog(b,) + /lbn u” e(u)du + o(1)

which may be seen for a fixed ¢, as a partial spline regression model (see
Engle et al. (1986)). However, in that case we necessarily need more than
two subsamplin% distributions to estimate the slowly varying function part,
here h(b,) = [;"u~'e(u)du. Since we only want to obtain a convergent
estimator of the convergence rate, we only need a convergent estimator of
h(.) and an estimator & such that & = a + op((logn)~'). This may be
achieved, for instance, by constructing I = log(n) subsampling distibutions
with b;, = nfi,i = 1,...,I,, where 8, < ... < B; . However, it is likely that
a huge sample size is needed to obtain an accurate estimator of the slowly
varying function; therefore, we focus on the more feasible task of estimating
a under the assumption of 7, = n* from now on.

Note that K, (0| X,,7) = K;,(0| X,,) = K(0,P)+o0p(1),i.e., K(0,P)
may be estimated without knowing the rate 7,,; thus, choosing the #; in order
to apply Theorem 2 will not be a problem in practice. Nevertheless, the
requirement ¢; > K(0, P) seems a bit cumbersome. We now show that, by
looking at differences of quantiles, this requirement could be circumvented.

So let 55, for j = 1,...,J, be some points in (0.5,1), and let ¢5;_,, for
Jj =1,...,J, be some points in (0, 0.5); as before, let b;,, be some different
subsample sizes, for ¢ = 1, ..., I. From equation (12) it follows that

v = log (Ki7k (b | X,.) — K}l (tay | X,.)) = a; — alog(bin) +ui; (17)

where a; = log(K'l(tzj,P) '—K_l(tgj__l,P)) and Ui; = Op(].), 1= 1,..,I
and j = 1,..,J. Here as well we can use the estimator a;; as defined in
(16), where now

J J
g, =J " Zyi,j =J! Zlog (Kb_,-,l,‘(tzj | X,) - Kz;:,l,,(t2j-1 lln)) )
i=1 j=1

y= (IJ)_I 22{:1 Z}'I=1 Y:,; and E =1 21{:1 log(b; )
The following theorem asymptotically validates the use of the new esti-
mator o,y as an estimator of a.

Theorem 3 Assume that (1) holds for some 7, = n*, and some K(z, P)
continuous and strictly increasing on (ko, k1) as a function of ©, where ky =

11



sup{z : K(z,P) = 0} and k; = inf{z : K(z,P) = 1}. Let b;, = nf,
1> B > > p; >0, and consider some points t5; € (0.5,1), and
ty;—1 €(0,0.5), for j =1,...J. Then a;; = @+ op((logn)~1).

For example, suppose that J = 1 and that ¢, = 0.25 and t, = 0.75;
then y; ; as given in (17) is the inter-quartile range of the subsampling dis-
tribution K, (z| X,), and a; as given in (17) is the inter-quantile range
of the limit distribution K(z, P). Obviously, the inter-quantile range is a
more robust estimate of scale as compared to the variance which was used
in Theorem 1; so it is not surprising that Theorem 3 is true in greater gen-
erality. Nevertheless, it is recommended to take J > 1, i.e., to look at many
differences of quantiles, in order that a;; becomes more accurate.

In the following section, a different way to side-step the cumbersome
requirement ¢; > K(0,P) of Theorem 2 is proposed in the more general
setting of a vector valued parameter 6.

2.3 Rate estimation: vector parameter case

Now assume that 0 takes values in a normed linear space © with norm ||-||,
and that T,, = T,(X,) is an estimator consistent for § at rate r, = n°,
where a may be unknown. A confidence region for 6 can be constructed if
an approximation to the sampling distribution of 7, ||T}, — 6| is available; for
example, ©® might be a function space, and || - || might be the sup-norm in
which case the confidence region has the form of a uniform confidence band
for the unknown function @ (cf. Politis, Romano, and You (1993)).
Consequently, let us denote

K, (z,P) = Prp(r||Tn — || < ) (18)
and we will assume as before that
K.(z,P) — K(z,P) (19)
holds for some K(z, P) continuous in .
The subsample values T}, ; are defined in a fashion identical to the con-

struction leading to equation (4), and the subsampling distribution of the
root 7,||T,, — 0| is given by

q
K (2| Xo,7) = ¢ ) UYn,|IT,i - Toll < 2} (20)

i=1

12



Politis, Romano, and You (1993) showed that if (19), (2), (3) hold, then

sup | Ko, (¢ | X,,7.) — K(z, P)| = 0p(1) (21)
as n tends to infinity. The following analog of Lemma 1 will be useful here.

Lemma 2 Let I::o~= sup{z : K(z¢,P) = 0} and k; = inf{z : I?(:z:,f) =1},
and assume that K (z, P) is continuous and strictly increasing on (ko, k;) as
a function of z. If (21) is true as n tends to infinity, then

Kt X,,7) = K7'(t, P) + 0p(1)
for any t € (0,1).
So as before, denote by K, (z | X,,) = K, (z | X,,,1) , but let
v =log (K57 (4 | X)) = a; — alog(bin) + ui; (22)

where a; = log (K‘l(tj,P)) and u;; = op(1),4 =1,..,Jand j = 1,..,J.
Now we can use ay j exactly as given in definition (16) —but now using the
¥:,jS as given above in (22)- to get a consistent estimator of a.

Theorem 4 Assume that (19) holds for some 7, = n®, and some K(z, P)
continuous and strictly increasing on (l?:o, 791) as a function of z, where ko =
sup{z : K(z,P) = 0} and k;, = inf{z : K(z,P) = 1}. Let b;, = n%,
1>p1>---> Br >0, and consider some points t; > 0, j = 1,..J. Then
arj = a+ op((logn)~1).

Although Theorem 4 is quite similar to Theorem 2, note that the cum-
bersome condition ¢; > K(0,P) has been replaced by the more natural
condition ¢; > 0; the reason is that K(0,P) = 0 because of the continu-
ity of K(z,P). Theorem 4 might of course be used even for real-valued
parameters; see also Theorem 6 in what follows.

3 Subsampling with estimated rate of convergence

Having shown that it is possible to consistently estimate the rate of conver-
gence 7. in general situations, we will now focus on our original goal, namely
the construction of confidence regions for the unknown parameter 6.
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The obvious strategy in order to use subsampling in the case of un-
known rate of convergence 7 is to estimate 7, and used the estimated 7
in constructing the subsampling distribution. As Theorems 5 and 6 below
demonstrate, this plug-in strategy gives valid results, i.e., subsampling with
an estimated rate of convergence yields confidence regions for 8 of asymp-
totically correct coverage.

The following theorem establishes the asymptotic validity of subsampling
with an estimated rate of convergence in the case of real-valued 7,, and 6.

Theorem 5 Assume that (1) holds for some 1, = n*, and some K(z, P)
continuous and strictly increasing on (ko, k1) as a function of z, where ko =
sup{z : K(z,P) = 0} and k; = inf{z : K(z, P) = 1}; also assume (2) and
(3). Let & = a + op((logn)~'), and put 7, = n%. Then

sup| K, (2 | X,,, 7)) - K(a, P)| = op(1). (23)

Let t € (0,1), and let c,(t) = K;'(t | X,.,7) be the t** quantile of the
subsampling distribution K, (x| X, ,T). Then

Prp{7a(Tn — 0) < ca(t)} — 1. (24)

Thus the asymptotic coverage probability of the interval [T,, — () tcn(t), 00)
is the nominal level t.

Note that the estimator & in Theorem 5 can be obtained by any method
(and from the same dataset X,), as long as @ = a + op((logn)~?); for
example, any of the rate estimation methods discussed so far in Theorems
2, 3, or 4 could be used.

If a particular model can be assumed, then it might be more effective to
use a model-specific estimator of the convergence rate. The model-specific
rate estimators should be more accurate (if the model assumed is indeed
true), and thus the subsampling distribution with estimated rate will be
more accurate as a result; however, it is reassuring to know that there are
many model-free estimators (given by our Theorems 2, 3, and 4) that are
accurate enough to be used in conjunction with confidence intervals based
on subsampling. For instance in our Example 3, we only need to estimate
B which is linked to the strong mixing coefficients of the model; see, for
example, Beran (1994) regarding estimation of the ‘long-memory’ parameter

3.
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The next theorem establishes the asymptotic validity of subsampling
with an estimated rate of convergence in the general case where § (and
therefore T, as well) takes values in a normed linear space ® with norm
[{ +||. In the case O is the real line, Theorem 6 allows for the construction
of symmetric confidence intervals for 6.

Theorem 6 Assume that (19) holds for some 7, = n®, and some K (z P)
continuous and strictly increasing on (ko, kl) as a function of z, where ko =
sup{z : K(z,P) = 0} and k1 = inf{z : K(z,P) = 1}. Let &@ = a +
op((logn)~1), and put 7, = n®. Then

sup Ky (2 | X, 7)) — K(2, P)| = 0p(1). (25)

Let t € (0,1), and let c,(t) = K;'(t | X,,,7) be the t** quantile of the
subsampling distribution K, (z | X,,7). Then

Pr p{#||T — 8]| < cn(2)} — t. (26)

Thus the asymptotic coverage probability of the confidence region {8 : 7, ||T,—
8|| < cn(%)} is the nominal level t.

Theorems 5 and 6 show that the construction of large-sample confidence
regions based on subsampling can be performed in a fairly automatic and to-
tally model-free fashion, in the sense that we do not have to adapt the resam-
pling methodology to the model as it is usually the case for the bootstrap.
Nonetheless, the subsampling methodology may yield poor approximations
of the true distribution for finite sample sizes. Some ways of improving the
accuracy of the subsampling distributions (for instance through linear com-
binations of subsampling distribution) are proposed in Bertail (1994) and
Bickel et al. (1994). In the following section the subsampling methodol-
ogy with estimated rate is put to the test by considering some finite-sample
simulation results.

4 Some simulation results

In the previous subsections it was demonstrated that subsampling with an
estimated convergence rate gives asymptotically valid results. However, due
to the potentially very slow rate of convergence of & to a, it may well be
the case that a very large sample size n is required for the methodology
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to be applicable in practice. To see how subsampling with an estimated
convergence rate performs in finite samples, a small simulation experiment
was performed. We give some empirical evidence on the performance of
the estimators of the convergence rate and provide some indications on the
choice of the estimator.

We mainly consider the example of the square of the mean of i.i.d. data,
ie., T, = (n"' Y0, X;)?, where the X;’s are i.i.d. with mean EpX, and
variance o2. Note that this should be regarded as a toy-example since there
are other (and better) methods for dealing with this particular problem; see
the discussion regarding Example 1 of the Introduction. Nonetheless, this
example will serve us well for the purposes of evaluating the finite-sample
performance and the reliability of the proposed ideas. In what follows the
X/s are i.i.d. generated according to a N(EpX,1) law; other distributions,
e.g., exponential and chi-square with different degrees of freedom were also
considered but the results were qualitatively the same. Each subsampling
distribution is approximated by a stochastic approximation Monte-Carlo
procedure, with a B = 3000. In other words, since the number ¢ = (;’) of
subsets of size b, can be huge, a random selection of B of those subsets is
sufficient for the construction of subsampling distributions; see Politis and
Romano (1992, 1995) for more details. All calculations were performed on
a Sun-workstation with the software Gauss.

We first begin with the less expensive —in terms of computer time-
method based on only two subsampling distributions.

The following Table 1 presents various estimations of a, under the as-
sumption that 7, = n®. The estimators o, 1(#;) based on quantiles (referred
to as the ‘quantile method’ in the tables) were constructed using Theorem
2, for a single fixed point ¢; (see equation (14)); here t;,15,%3 were chosen
to be 99%, 95% and 90% respectively. The estimators as15([75%,95%)),
a3,30([75%, 95%)]) and o 600([75%,95%)]) (also based on Theorem 2) were
constructed using 15, 30 and 600 points respectively which were chosen
to be between 75% and 95%. The estimators oy 1(t; — ?2), based on dif-
ference of quantiles (referred to as the ‘range method’), were built using
Theorem 3 (see equation (17) with I = 2 and J = 1). The estimators
ar,1([1%,25%)] — [99%, 75%)]), with I = 2 and J = 10 or 600 were also based
on the ‘range method’ of Theorem 3. Here J points are taken in the interval
[99%,75%], and J in the interval [1%,25%]; their differences defined the
ranges to be considered.

The sample sizes used were n = 100, 1000 and 5000. In Table 1, the two
subsampling distributions have been built respectively with b; , = 0.9%n and
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byn = 0.4xn. We give the mean and the standard error over 100 repetitions
of the procedure. Note that, as mentioned in the Introduction, & = 1/2,
if EpX # 0, whereas @ = 1, if EpX = 0. The simulations show that the
estimators perform relatively differently according to the value of a.
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EPX=2

ary n =100 n = 1000 n = 5000
Quantile method Mean | S.E. | Mean | S.E. | Mean | S.E.
021(99%) 0.531 | 0.071 | 0.508 | 0.063 | 0.5000 | 0.0302
03,1(95%) 0.530 | 0.072 | 0.498 | 0.056 | 0.5039 | 0.0251
0:2,1(90%) 0.536 | 0.077 | 0.496 | 0.072 | 0.5045 | 0.0255
5.15([75%, 95%)) 0.535 | 0.069 | 0.496 | 0.066 | 0.5041 | 0.0400
s.30([75%, 95%) ) 0.522 | 0.067 | 0.504 | 0.051 | 0.505 | 0.0252
03,600([75%, 95%) ) 0.514 | 0.043 | 0.502 | 0.031 | 0.500 | 0.0246
Range method

a31(1% — 99%) 0.506 | 0.048 | 0.497 | 0.037 | 0.4978 | 0.0241
a3.1(5% — 95%) 0.513 | 0.046 | 0.495 | 0.033 | 0.4999 | 0.0181
05.1(25% — 75%) 0.488 | 0.046 | 0.494 | 0.034 | 0.5006 | 0.0201
3.10((1%, 25%] — [99%, 75%)]) | 0.509 | 0.040 | 0.498 | 0.030 | 0.4999 | 0.0149
3 500([1%, 26%] — [99%, 75%)]) | 0.506 | 0.037 | 0.496 | 0.028 | 0.5003 | 0.0152

Table 1: Comparison of the estimators build with two subsampling
distributions, for different sample sizes; case @« = 1/2 and EpX = 2.

EpX =0

ary n = 100 n = 1000 n = 5000
Quantile method Mean | S.E. | Mean | S.E. | Mean | S.E.
a2,1(99%) 0.843 | 0.134 | 0.872 | 0.124 | 0.893 | 0.120
a1(95%) 0.837 | 0.128 | 0.871 | 0.122 | 0.896 | 0.115
a21(90%) 0.843 | 0.135 | 0.858 | 0.137 | 0.874 | 0.124
as 15([75%, 95%)) 0.842 | 0.129 | 0.872 | 0.125 | 0.892 | 0.121
a2, 30([75%, 95%)] ) 0.844 | 0.127 | 0.872 | 0.122 | 0.886 | 0.114
a2.600([75%, 95%)]) 0.865 | 0.119 | 0.891 | 0.112 | 0.897 | 0.109
Range method

az1(1% — 99%) 0.753 | 0.174 | 0.814 | 0.161 | 0.852 | 0.151
az1(5% — 95%) 0.723 | 0.200 | 0.812 | 0.167 | 0.839 | 0.151
a2,1(25% — 75%) 0.771 | 0.221 | 0.798 | 0.201 | 0.844 | 0.150
as10([1%,25%] — [99%, 75%]) | 0.787 | 0.183 | 0.813 | 0.183 | 0.845 | 0.149
a3 600([1%, 25%) — [99%, 75%]) | 0.785 | 0.176 | 0.811 | 0.185 | 0.836 | 0.152

Table 2: Comparison of the estimators build with two subsampling
distributions, for different sample sizes; case « = 1 and EpX = 0.
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The variance of the estimators is found to be relatively large for & = 1, in
comparison to the case o = 1/2; in the latter case, very accurate estimation
of the convergence rate is possible even for very small sample sizes (n = 30
gives similar results!). Also, the variance seems to decrease very slowly with
increasing n, probably due to the slow log(n) convergence rate obtained
in Theorems 2, 3, and 4); this is particularly evident in the o = 1 case.
However, the estimates give the right order for the true « even for a relatively
small sample size, and using them it is easy to discriminate between the /n
and the 7 case. In some situations the convergence rate (for instance for U
or V statistics) is typically of the form n?/#° where S, is known and fixed
and § is integer : in that case we may use [[8r,; * Bo]]/Bo, where [[.]] denotes
the nearest integer, as a better estimator for & = /8. The simulations
suggest that we can get the right convergence rate and obtain accurate
approximations in that case.

Note that the estimations based one one ¢-point are relatively stable
whatever the choice of the points. Clearly the estimator based on all the
points beetween [0.75, 0.95] allowed by the Monte-Carlo approximation gives
the better results. The estimator seems to be biased downward in the & = 1
case (and probably biased upward in the case & = 1/2, although the bias is
smaller in the latter case).

We can also attempt a comparison between the ‘quantile’ and the ‘range’
methods of estimating a. As the entries of Tables 1 and 2 indicate, the
‘range’ method is better (both in terms of bias, as well as variance) than
the ‘quantile’ method in the case a = 1/2, while the ‘quantile’ method is
better in the case @ = 1. This phenomenon was to be expected since the
case a = 1/2 yields a symmetric (normal) distribution whose variability is
well-captured by a single number, be it an inter-quartile range, a standard
deviation, etc. On the other hand, the case a = 1 yields a skewed (x?) distri-
bution whose variability is best described by means of individual quantiles,
and not ranges.

Consider now the case where we base our estimator on more than 2
subsampling distributions. Of course this may be more computer-time ex-
pensive but may be justified if more accurate results are obtainable this way.
The following simulations strongly support the fact that by using a large I
we gain in precision over the case I = 2. Moreover, it may be interesting to
build several subsampling distribution and consider a linear extrapolation
of these distributions as done in Bertail(1994) and Bickel et al. (1994) to
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obtain better approximations.

Tables 3 and 4 are constructed in the same fashion as Tables 1 and 2,
although now we choose to build I = 20 subsampling distributions with
b;n=nx1/21,i=1,...,20.
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EpX =2

org n = 100 n = 1000 n = 5000
Quantile method Mean | S.E. Mean | S.E. Mean | S.E.
a20,1(99%) 0.5525 | 0.0185 | 0.5186 | 0.0122 | 0.5084 | 0.0066
0i90,1(95%) 0.5386 | 0.0167 | 0.5137 | 0.0096 | 0.5057 | 0.0056
020,1(90%) 0.5323 | 0.0189 | 0.5114 | 0.0103 | 0.5044 | 0.0064
Q20,1(75%) 0.5249 | 0.0344 | 0.5054 | 0.0167 | 0.5026 | 0.0096
a29,600([75%, 95%)]) 0.5302 | 0.0228 | 0.5093 | 0.0113 | 0.5037 | 0.0065
Range method
a201(1% — 99%) 0.4984 | 0.0084 | 0.4996 | 0.0076 | 0.5000 | 0.0045
a20.1(5% — 95%) 0.4992 | 0.0058 | 0.5000 | 0.0052 | 0.5002 | 0.0035
Q20,1(25% — 75%) 0.5015 | 0.0081 | 0.5004 | 0.0069 | 0.5006 | 0.0045
a20,10([1%, 25%] — [99%, 75%]) | 0.5003 | 0.0052 | 0.5003 | 0.0047 | 0.5003 | 0.0031
@20,600([1%, 25%] — [99%, 75%]) | 0.5009 | 0.0054 | 0.5004 | 0.0048 | 0.5003 | 0.0033
Table 3: Comparison of the estimators build with I = 20 subsampling

distributions, for different sample sizes; case & = 1/2 and EpX = 2.

EPX =0

Qg g n=100 n=1000 n=>5000
Quantile method Mean | S.E. Mean | S.E. Mean | S.E.
@20,1(99%) 0.9006 | 0.0761 | 0.9086 | 0.0779 | 0.9204 | 0.0758
0i20,1(95%) 0.9146 | 0.0854 | 0.9012 | 0.0892 | 0.9098 | 0.0884
0i20,1{90%) 0.8941 | 0.0923 | 0.8986 | 0.0934 | 0.9071 | 0.0956
020,1(75%) 0.9128 | 0.0987 | 0.9143 | 0.0996 | 0.9248 | 0.1002
@20,600([75%, 95%)]) 0.8991 | 0.0940 | 0.9025 | 0.0960 | 0.9121 | 0.0977
Range method

as0,1(1% — 99%) 0.8764 | 0.0984 | 0.8845 | 0.1029 | 0.8940 | 0.1007
Q20,1(5% — 95%) 0.8574 | 0.1169 | 0.8647 | 0.1238 | 0.8698 | 0.1232
Q20,1(25% — 75%) 0.8244 | 0.1516 | 0.8315 | 0.1550 | 0.8341 | 0.1535
a20,10([1%, 25%) — [99%, 75%]) | 0.8416 | 0.1334 | 0.8484 | 0.1383 | 0.8528 | 0.1402
a20,600{[1%, 25%] — [99%, 75%]) | 0.8380 | 0.1336 | 0.8441 | 0.1420 | 0.8483 | 0.1430

Table 4: Comparison of the estimators
distributions, for different sample sizes; case @ = 1 and EpX = 0.
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The estimators reported in Tables 3 and 4 seem to be quite more accu-
rate than those in Tables 1 and 2; the extra computational effort seems to
be well worth it. In particular for the o = 1/2, the results are quite precise.
In the a = 1 case the estimators based on the quantile method with I = 20
have half the variance in comparison to those based on I = 2.

Note that the (empirical) bias of the estimators of a decreases as n
increases in Tables 3 and 4 as it is expected from our consistency theorems.
However, it is quite apparent that in the case @ = 1 (see Table 4), the
(empirical) standard errors of the estimators of @ do not seem to decrease
as n increases, whereas in the case o = 1/2 (see Table 3) the standard
errors do decrease. This phenomenon can be attributed to the fact that in
the simulations that generated Tables 3 and 4 the subsample sizes used were
proportional to n (i.e., b;, = n % /21,7 = 1,...,20), and equation (3) was
not satisfied. Intuitively, to control the bias of the subsampling distribution
estimator a large subsample size b, is required, while to control its variance
a small ratio b/n is needed. Thus, without letting b,/n — 0, there is no
guarantee —unless of course stronger model assumptions are made- that the
variance of the subsampling distribution estimator will tend to zero as n
increases.

Nevertheless, in very regular cases (e.g., i.i.d. data with normal limit
distributions and /n rate of convergence) it is possible to get a consistent
estimate of scale using subsampling foregoing equation (3) and replacing it
with the condition that the subsample size b, is proportional to n; see Shao
and Wu (1989). Therefore, it is not surprising, in the regular case a = 1/2
of Table 3, that the standard errors do decrease as n increases.

To empirically verify the consistency of our estimators of a under the
necessary condition b,/n — 0, the simulations that resulted into Tables 3
and 4 were repeated (with different subsample sizes) and presented in Tables
5 and 6 that follow; here subsample sizes b; , were were chosen such that the
ratio b‘T" is decreasing with n. In particular, for n = 100, the b; ,s are the
same as those used in Tables 3 and 4; thus the first two columns of Table 5
are identical to the first two columns of Table 3, and the first two columns
of Table 6 are identical to the first two columns of Table 4. However, for
n = 1000, we chose b; , = ¢ % n/42, i = 1,..,20, i.e, half the subsample sizes
used in the middle two columns of Tables 3 and 4, and for n = 5000, we
chose b; , = t%n /168, 7 = 1,.., 20, i.e, one-eighth of the subsample sizes used
in the last two columns of Tables 3 and 4.
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EPX=2

ay g n = 100 n = 1000 n = 5000
Quantile method Mean | S.E. Mean | S.E. Mean | S.E.
a20,1(99%) 0.5525 | 0.0185 | 0.5249 | 0.0116 | 0.5228 | 0.0107
a20,1(95%) 0.5386 | 0.0167 | 0.5182 | 0.0090 | 0.5161 | 0.0085
a20,1(90%) 0.5323 | 0.0189 | 0.5145 | 0.0094 | 0.5128 | 0.0086
a20,1(75%) 0.5249 | 0.0344 { 0.5084 | 0.0153 | 0.5076 | 0.0125
az,600([75%, 95%]) 0.5302 | 0.0228 | 0.5122 | 0.0100 | 0.5112 | 0.0085
Range method
Q0,1 (1% — 99%) 0.4984 | 0.0084 | 0.4992 | 0.0075 | 0.4994 | 0.0070
Q20,1(5% — 95%) 0.4992 | 0.0058 | 0.4999 | 0.0052 | 0.4998 | 0.0050
a20,1(25% — 75%) 0.5015 | 0.0081 | 0.5002 | 0.0070 | 0.5003 | 0.0068
a20,10([1%, 256%] — [99%, 75%]) | 0.5003 | 0.0052 | 0.4999 | 0.0046 | 0.5000 | 0.0044
a20,600([1%,25%] — [99%, 75%]) | 0.5009 | 0.0054 | 0.5001 | 0.0049 | 0.5000 | 0.0046
Table 5: Comparison of the estimators build with I = 20 subsampling

distributions, for different sample sizes; case @ = 1/2 and EpX = 2 (using
decreasing ratios l’n—")

EpX =0
arg n = 100 n = 1000 n = 5000
Quantile method Mean | S.E. Mean | S.E. Mean | S.E.
@20,1(99%) 0.9006 | 0.0761 | 0.9389 | 0.0527 | 0.9719 | 0.0341
@20,1(95%) 0.9146 | 0.0854 | 0.9344 | 0.0606 | 0.9732 | 0.0344
Q20,1(90%) 0.8941 | 0.0923 | 0.9362 | 0.0628 | 0.9752 | 0.0327
Q20,15(75%) 0.9128 | 0.0917 | 0.9556 | 0.0575 | 0.9864 | 0.0239
a20,600([75%, 95%]) 0.8991 | 0.0919 | 0.9419 | 0.0614 | 0.9787 | 0.0294
Range method
a20,1(1% — 99%) 0.8764 | 0.0984 | 0.9254 | 0.0661 | 0.9666 | 0.0397
a90,1(5% — 95%) 0.8574 | 0.1169 | 0.9123 | 0.0818 | 0.9642 | 0.0443
@30,1(25% — 75%) 0.8244 | 0.1516 | 0.8952 | 0.1076 | 0.9601 | 0.0520
@20,10([1%, 25%) — [99%, 75%]) | 0.841 | 0.1334 | 0.9044 | 0.0937 | 0.9623 | 0.0471
@30 600{[1%, 25%] — [99%, 75%]) | 0.8386 | 0.1336 | 0.9021 | 0.0967 | 0.9618 | 0.0482
Table 6: Comparison of the estimators build with I =20 subsampling

distributions, for different sample sizes; case @ =1 and EpX = 0 (using
decreasing ratios b—n'%)
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It is quite evident from the entries of Table 6 that ensuring b—';f — 0 fixes

up the problem of nondecreasing standard errors in the @ = 1 case of Table
4. In particular, it is apparent that both bias and standard error of our
estimators of « are evidently decreasing as n increases, and at a reasonably
fast rate. Nevertheless, the empirical results of Table 5 are worse than those
of Table 3, i.e., bias and standard error of our estimators of o decrease faster
with n in Table 3 as compared to those in Table 5; this seems to indicate
that in very regular cases (as in the Shao and Wu (1989) setting) the b; ,,
could (and actually should) be are taken to be proportional to n. However,
in the paper at hand it is assumed that the convergence rate 7, is unknown,
and hence it is also unknown a prior: that a regular set-up holds. Equation
(3) provides a general condition that ensures consistency of our estimators
of a without special model assumptions.

It is also noteworthy that the comparison between the range and the
quantile methods, which was attempted on the basis of the entries of Tables
1 and 2, seems to still hold after examining all presented simulations: the
range method seems to be best in the regular case (normal limit distribution
and /n rate of convergence), whereas in the not-regular case (skewed limit
distribution and not 4/n rate of convergence) the quantile method is prefer-
able. Of course, more simulations involving other perhaps more complicated
examples may be needed to confirm the reported empirical results. It is clear
however even from our limited simulation experiment that the estimation of
o using subsampling is not infeasible in finite samples, and may prove to be
an important practical tool.

5 Technical proofs

Proof of Theorem 1 First note that under conditions (i) and (ii) it follows
that u; = op(1) in equation (8). Therefore (9) yields

i1 (4 — w)(log(bi ) — log)
Yi=1(log(bs,n) — Iog)?

where T = I"lz;;l u; . But since b;, = nf, i =1,..,I, then log =
I71Y, Bilogn = Alogn, and it is easy to see that

5, (10g(bi) — To)? = (S(B: — I X0, Bi)?) (log m)? = B(log n)?, for
some A, B constants; thus, for fixed I, we have a; = a+o0p((logn)~!). QED

ar =a+
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Proof of Lemma 1 Let € > 0; by (5), we have that Prp{| K}, (z | X,,,7) -
K(z,P)| < €} — 1, uniformly in z.
Solet z = K; '(t — €| X,,7), thus with probability tending to one

Ky (2| X,,7)>t—€e=>K(2,P)>t—2= 2> K *(t - 2¢, P).
Similarly, let y = K~1(¢, P), thus with probability tending to one
K(y,P)2t=> K, (y| X,y7) 2t -2y > K (t — ] X,, 7).
Hence, for any ¢ and any € > 0, we have that
K (t—2¢,P)< K;i'(t-¢| X,,7) < K7'(¢,P)

with probability tending to one. Now let ¢ — 0% to conclude that
K;M(t| X,,7) = K~'(t, P) + op(1). QED

Proof of Theorem 2 First note that equations (2) and (3) follow from
our assumption on the b; ,,’s, hence equation (5) —~with any of the b; ,’s used
as subsample size— is seen to hold as well from the results in Politis and
Romano (1992, 1995).

Now note that, under (5), Lemma 1 validates the ANOVA equation (15),
and in particular the fact that u; ; = op(1); therefore (16) yields

Sl (s, — )(log(b,.) ~ o)
Yi=1(log(bi ) — log)?
where @ = (IJ)"' 37, Zfﬂ ; ;. As in the proof of Theorem 1, note that

log = Alogn, and Y/, (log(b; ) — Tog)? = B(logn)?, for some A, B con-
stants; thus, for fixed I and J, we have oy ; = a + op((logn)~!). QED

ory=a+

Proof of Theorem 3 Similar to the proof of Theorem 2.

Proof of Lemma 2 Similar to the proof of Lemma 1.

Proof of Theorem 4 Similar to the proof of Theorem 2 using Lemma,
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2 and the results of Politis, Romano, and You (1993). QED

Proof of Theorem 5 Let z be a real number and note that

q
Ky (2] X,,7)=q"> 1{b3(Ty,; — Tn) < z}

i=1

q
=q! Z H{bX(T, i — 0) + (T, — §) < z}.
i=1

Put U,(z) = ¢7' 3%, 1{6%(T},; — 0) < z} and E, = {b2|T,, — 6] < €}. Since
& = a+ op((logn)~1), it follows that

b2 = b2 exp(log b, (& — a)) = b2(1 + op(1)).

As in Politis and Romano (1992, 1995), it follows that (2) and (3) imply
that P(E,) = 1; hence, with probability tending to one,

Un(z —€) < Ky (2| X,,,T) < Un(z + ¢).

Now it suffices to show that U,(z) converges to K(z, P) in probability;
for in that case we could let ¢ — 0 in the above inequality to conclude that
K. (z | X,,,7) — K(z,P) in probability. The uniform convergence (23)
would then be a consequence of Polya’s theorem, since K (z, P) is continuous.

To show U, (z) converges to K(z, P) in probability, first note that

EUu(x) = E(L{b3(Ts,,1 — 0) < z}) = Pr{b3(Ts,1 — 0) < z}};

but b2(Ty,; — 0) = b2(Ty, — 0)(1 + o(1)) and it follows that EU,(z) —
K(z, P).

Now let us look at the two cases that correspond to the two different
constructions of the subsampling distribution (4).

General case (strong mixing data). Now, similarly to the proof of
Theorem 3.1 in Politis and Romano (1992, 1995), it follows that

2, +1 8

Var(Un(z)) < - + ~ 1; ax(k);

under the assumption of strong mixing it is now apparent that the Cesaro-
sum 1370 ; ax(k) — 0, and using (2) we conclude that Var(U,(z)) — 0,
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and therefore U, (z) converges to K(z, P) in probability.

Special case (i.i.d. data). As in Theorem 2.1 in Politis and Romano
(1992, 1995), Hoeffding’s inequality gives

Prp{U,(z) — EU,(z) > €} < exp(—2nb;'e?)

which, in combination with EU,(z) — K(z, P), shows that U,(z) converges
to K(z, P) in probability.

Finally note that the proof of (24) is very similar to the proof of Theorem
1 of Beran (1984) given result (23) and noting that 7, /7, — 1 in probability,
since & = a + op((logn)~1). QED

Proof of Theorem 6 Similar to the proof of Theorem 5 using Theo-
rem 4 in conjuction with the results of Politis, Romano, and You (1993).
QED
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