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Abstract

A tutorial introduction to the recently developed resampling methods for statistical in-
ference, i.e., the bootstrap, the jackknife, and some of their variations, is presented. The
objective is to establish the basic ideas of the methodology so that the interested reader can

proceed to refer to the review papers, books, and monographs listed in the bibliography.

1. Resampling and the bootstrap

The goal of this article is to provide a readable, self-contained introduction to the boot-
strap and jackknife methodology for statistical inference intended for people that have not been
previously exposed to the subject; in particular, the focus is on the derivation of confidence

intervals in general situations.

1.1 The general non-parametric set-up. Suppose that X = (Xi,...,Xy) is an inde-
pendent, identically distributed (i.i.d.) sample from a population with distribution F. In other
words, F(z) = Prob(X; < z),for i = 1,..., N, where z is any real number; the function F is

usually called a probability distribution function, or a cumulative distribution function. The

*This is an extensive revision of Purdue Technical Report #93-49.



sample is studied in order to estimate a certain parameter §( F) associated with the distribu-
tion F' whose form is unknown. A statistic T = T'(X) might be used to estimate §(F) from
the data. However, a measure of the statistical accuracy of the point estimator T(X) is also
desired. In other words, although it is an unfortunate fact of life that our estimator will not
equal §(F) exactly, the deviation of T(X) from 8(F), i.e., the ‘error’ in estimating 8(F) by
T(X), could be statistically quantified; in that case, the practitioner would be able to gauge
how much importance to attach to the individual ‘measurement’ T(X). For example, the bias
(=‘systematic error’) and the variance (=‘random error’) of the estimator T are of interest,

and are defined as follows:

Biasp(T) = EpT(X) — 6(F) (1)
Varp(T) = ErT%(X) - [ErT(X)]? (2)

where Er denotes expectation under the F' distribution. The quantity T'(X) — 8(F), i.e., the
estimator minus the estimand, represents the ‘error’ in estimating 8(F) by T'(X); it is also
sometimes called a ‘root’, since if the estimator is accurate, T'(X) — 6(F) should be close to
zero (cf., for example, DiCiccio and Romano (1988), or Beran and Ducharme (1991)). Much
(if not most) of statistical theory and practice is devoted to studying the sampling properties
of such ‘roots’; in particular, bootstrap methods provide easy-to-use, and rather powerful tools
for this purpose.

To fix ideas, consider that §(F) is a location parameter, say the mean or median of F', and
T(X) is the corresponding sample statistic (sample mean, sample median, etc.); nonetheless,
our discussion is general, and not at all limited to the simple location problem. In many prac-
tical situations the Central Limit Theorem can be invoked to assert that the estimator T'(X) is
approximately distributed as a Gaussian random variable. This will typically be true for most
‘good’ estimators, provided the sample size N is large enough, in which case the estimator
is said to be asymptotically normal, and an approximate interval estimate, i.e., a confidence

interval, for 6(F) can be formed, in addition to the point estimate T(X).

1.2 Confidence intervals based on asymptotic normality. If the bias Biasp(T) is



negligible (compared to the square root of the variance Varp(T)), a (1 — @)100% confidence

interval for 6(F) will be of the usual form

[T(X) = z2y/Varp(T),T(X) + 2/ Varg(T)], (3)

where z = 2(1—a/2)is the 1 —a/2 quantile’ of the standard normal distribution. If Biasp(T) is
not negligible, the confidence interval must be adjusted appropriately; generally, a (1 —a)100%
confidence interval for §( F') will be given by

[T(X) — Biasp(T) — 24/Varg(T),T(X) — Biasp(T) + zy/Varg(T)] (4)

Note that the aforementioned confidence interval is based on the fact that the shape of the
asymptotic distribution of the root T(X) — @(F) is known —it is the bell-shaped normal. How-
ever, to formulate this confidence interval one needs to know Biasp(T) and Varg(T).
Estimates of Biasp(T) and Varp(T) might be available in the statistical literature for
different problems. For example, if T(X) =X = & SN, X; is the sample mean, and 8(F) =
ErX, is the population mean, then it is well known that Biasg(T) = 0, and Varg(T) =
L+Varp(X:), where Varp(X;) can be estimated by the sample variance 1< YI (X; — X)2.
If T(X) is the sample median and 6(F) is the population median, estimates of Biasy(T) and
Varp(T) can still be calculated (cf. Lehmann (1983)), but are substantially more complicated.
The bootstrap (and the closely related jackknife (cf. Efron (1979, 1982)) could alternatively
be used to easily obtain estimates of Biasg(T) and Varp(T) for a wide variety of statistics

T(X). However, before going into that, let us look at this problem from a different angle.

1.3 The usefulness of Monte Carlo randomization. Suppose, for the sake of argument,
that the population and its distribution F' were in fact known. Then, Biasp(T) and Varp(T)
could be calculated exactly by analytical methods, or approximately by Monte Carlo simulation,

in case the analytical computation is difficult.

! All probability (cumulative) distribution functions are monotone increasing. If a distribution G(z) is strictly
increasing, i.e., + < y implies G(z) < G(y), then its o quantile is given by G~!(a), where G~ is the inverse
function of G; for example, the normal distribution is strictly monotone. If G happens not to be strictly
increasing, then it must have some regions where its graph is flat; in that case, the o quantile of G is defined as

the smallest z-value such that G(z) > a.



The idea behind Monte Carlo simulation is the following. Since the population is considered
known, we can draw any number of i.i.d. samples from it. Suppose that we draw B samples,
X®,...,X®), where each sample consists of N i.i.d. observations from the population F. If

B is large enough, the strong law of large numbers can be invoked to claim that

Brg(T(X)) = 3 3 (T(X®)) (5)

where g(-) is some function, e.g. g(z) = z or g(z) = z%. Then we would have

Biasp(T) =~ % Z T(X(i)) — 6(F) (6)
Vare(T) = 3 3 T(X9) - [ L T(XO)P ™)

But if the population is considered known, we could also directly evaluate the sampling
distribution of the root T(X') — 8(F), without reference to the asymptotic (for large N) normal
distribution. Define Pr(A) to be the probability of event A occurring, under the assumption

that the population has distribution ¥, and let

DiStT,Fyg(.'l)) = PF(T(X) - 0(F) S .'12) (8)

Knowledge of Distr pe(z), for all real &, would immediately yield a (1 — a)100% confidence
interval for (F) in the form

[T(X) - ¢(1 - /2), T(X) - g(e/2)], (9)

where g(a/2) and ¢(1 - a/2) are the o/2 and 1 — o/2 quantiles of the Distr p4(z) distribution
respectively. The above confidence interval is equal-tailed, meaning that the probability the
interval’s left end-point is bigger than 6(F) is equal to the probability the interval’s right
end-point is smaller than #(F). Other constructions (e.g., symmetric, shortest length, etc.)
for confidence intervals are also available (cf. Hall (1988, 1992)) and possess some interesting

theoretical properties; nevertheless, the confidence intervals that are most often used in practice

are equal-tailed (cf. Efron and Tibshirani (1993)).



Again, although F' is considered known, the analytical evaluation of Distr pe(z) may be
difficult, and we might resort to Monte Carlo. Observe that Distr re(z) is just a shifted
(centered) version of

_DiStT’F(.'L') = PF(T(X) < CD) (10)

so that Distr pe(z) = Disty p(z + 0(F)). If we define the indicator function of event A by the

formula
1 if A occurs

H4) = {
0 else
then, using equation (5) with g(T(X)) = 1(T(X) < z), and the fact that Er1(A) = Pr(4), we

have
. 1 & i 1 i
Disty p(z) ~ 5 ; (T(XD)<z)= E(#T(X( )) < z) (11)
i.e., the theoretical probability should be approximately equal to the observed sample propor-
tion if B is large.? From equation (11), the quantiles of Distr p(z) (and therefore also those

of Disty pe(2))) can be approximately calculated, and the confidence interval (9) constructed.

1.4 The bootstrap principle. To summarize, if the population and its distribution F
were known, then we would be able to calculate (analytically or by Monte Carlo simulations)
Biasp(T), Varg(T), and Distr pe(z). However, in the practical problem the population and
its distribution F’ are not known. The bootstrap method now is an outcome of the following
simple idea: since you do not have the whole population, do the best with what you do have,
which is the observed sample X = (X1,...,Xn)-

In other words, the bootstrap method amounts to treating your observed sample as if it
ezactly represented the whole population; see the pioneering paper by Efron (1979). In this
fashion, the Monte Carlo procedure in which B i.i.d. samples were drawn from the population

is modified to read:

e Draw B ii.d. samples X*® ... X*® (each of size N) from the sample population

consisting of the observations {Xi,...,Xx}. In the bootstrap terminology, these B i.i.d.

*Note that (#T(X()) < &) reads: number of the T(XV)’s among T(X™), ..., T(X®) that are observed
to be less or equal to z; equation (11) should be viewed as describing a function of the real argument z, and can

be plotted as such.



samples are called resamples. Of course, drawing an i.i.d. sample from a finite population

such as {X;,..., Xy}, amounts to sampling with replacement from the set {X1,..., Xn}.

Note that, as the whole population has distribution F', the sample population has distribu-

tion I:’, the so-called empirical distribution, which is defined as

A 1 & 1
= = ; < = — L <<
F(z) =+ 21()(, <z) = L(#X; <a), (12)
where z is any real number. To elaborate, in order to form the ith resample X*® = (X;® .. x3®),
we sample with replacement from the set {X;,..., Xy}, or, using a different terminology, we

take an i.i.d. sample of size N from a population with distribution F.

1.5 The bootstrap as a ‘plug-in’ method. This last observation suggests a different
perspective for the implementation of the bootstrap as a simple ‘plug-in’ method. Namely, if
at a certain formula the unknown distribution F appears, you just substitute ¥ in place of F
to get its bootstrap approximation. For example, the bootstrap approximations to Biasg(T)

and Varg(T) are given (cf. equations (1), (2)) by
Bias*(T) = Biasp(T) = ExT(X) — 6(F) (13)

Var'(T) = Vars(T) = EpT*(X) — [EsT(X)]% (14)

It should be noted that O(F) is just the sample statistic corresponding to the population pa-
rameter §(F). In most cases, the statistic T(X) is chosen to be just 8(F). For example, if
0(F) is the population median, then we might want to use the sample median to estimate it,
ie. T(X) = 6(F). Unless otherwise stated, we will henceforth assume that §(F) = T(X) for

simplicity; in a different situation the ‘plug-in’ principle can be appropriately modified.
plug

1.6 A parametric set-up. This ‘plug-in’ viewpoint permits one to see how the bootstrap
would work in a parametric problem as well. For example, if the distribution F(z) = Fy(z)
is known up to some parameter ¢, then the parametric bootstrap method would be to ap-

proximate quantities such as Biasp(T), Varp(T), and Disty p(z) by Biasp,(T), Varg,(T),



and Disty,r,(z) respectively, where § = T(X) is the estimated (from our sample) value of the
parameter #. All the Monte Carlo approximations remain valid, except that in the parametric
set-up, to form the ith resample X*® = (Xf(i), .. .,X;,(i)), we take an ii.d. sample from a
population with distribution F;. Note that in parametric problems, the theory of Maximum
Likelihood estimation and Fisher information are traditionally used to get point and interval
estimates of the unknown parameter ¢ (cf. Miller (1986)); however, the bootstrap will tend to
give more accurate estimates in general (cf. Hall (1992), Efron and Tibshirani (1993)). Having
said that, let us return and focus our attention on the general non-parametric problem, that is,

the problem where F'is completely unknown, since here the bootstrap is more urgently needed.

1.7 Construction of bootstrap confidence intervals. As was mentioned before, to
calculate Biasy(T) and Varg(T) we might have to resort to Monte Carlo simulation even
if the distribution F' were known; see equations (6), (7). Thus to calculate Biasz(T) and

Varz(T) we might use the following Monte Carlo approximations:

Bias™(T) = Biasp(T) ~ %XB:T(X*(")) — 0(F) (15)
Var'(T) = Varg(T) = 3 S T(X00) - [ Y IO (16)

The above mentioned bootstrap approximations to Biasp(T) and Varp(T) can be used
to yield a confidence interval for (F) based on the normal approximation of equation (4).
Alternatively, we can by-pass the normal approximation and set confidence intervals for 6(F)
based on the exact distribution of the root T'(X) — 6(F) given in equation (8).

Of course, this exact distribution is not known, but a bootstrap approximation is available.

More specifically, the bootstrap approximation to Distr re(2) is given by
Disty, o(z) = Disty 5 o(z) = Pe(T(X) - 6(F) < z) (17)
and an equal-tailed (1 — @)100% bootstrap confidence interval for (F) would be
[T(X) - ¢"(1 - a/2),T(X) - ¢"(/2)], (18)

where ¢”(a/2) and ¢*(1—c/2) are the /2 and 1—a/2 quantiles of the Dist;, 4 ,(z) distribution

respectively. It should be noted at this point that this just one of many possible ways to



construct a bootstrap confidence interval, namely the ‘percentile’ method, the ‘percentile-t’
or ‘bootstrap-¢’, the ‘BC,’ method, etc.; see Efron and Tibshirani (1993, chapter 22) for a
thorough discussion, and DiCiccio and Romano (1988), Hall (1988, 1992) for a comparison
of bootstrap confidence intervals. Note that in the terminology of Hall (1988), equation (18)
represents a confidence interval based on the ‘hybrid’ method, whereas in Hall (1992) equation
(18) is the ‘other percentile method’ confidence interval. We will also refer to equation (18)
as the hybrid method for bootstrap confidence intervals; the hybrid method is a cross between
the percentile and the bootstrap-t methods that will be defined shortly.

The bootstrap distributions Disty p ,(z) and Disty s(z) = Pp(T(X) < z) —and therefore

their quantiles as well- can be easily evaluated by Monte Carlo as follows:

Disty p(a) = 3 S UT(X") < 2) = Z(#T(X") < 0) (19)

and

Disty o(z) = Distp p o(z) = Disty p(z + 8(F)) ~ %(#T(X*(i)) <z+0(F). (20

Similarly to equation (11), the functions Disty s ,(z) and Disty p(z) should be viewed as
functions of the real argument z, and can be plotted as such. Alternatively, a practitioner can
plot a histogram of the T(X*®), for i = 1, ..., B; this histogram would be an approximation to
the probability density function of the random variable T(X), while Disty p(z) = Pp(T(X) <
) is an approximation to the cumulative probability distribution function of 7(X). The article
by Zoubir and Boashash (1995) contains many examples of such plotted histograms that are
very helpful in terms of visual inspection and interpretation of the variability of T'(X).

Note that the probability distribution function Disty () is described by the simple equa-
tion (19), and actually represents the ‘empirical’ distribution function of the observed T(X*®),
or, in other words, the distribution function of the (pseudo) sample consisting of T'(X*®),
i = 1,..., B; The graph of Disty z(z) is of a very simple form: it looks like a ‘ladder’, i.e.,
the graph is flat, except for jumps (=‘steps’) of size 1/B occurring at the locations of the
observed T(X*®). These observations point to a very easy way of figuring out the quantiles of
distribution Disty z(z) from which the quantiles of Disty 5 (=) can be readily obtained; for,

if ¢"(@/2) and ¢*(1 — a/2) are the a/2 and 1 — @/2 quantiles of the Dist; 5 ,(z) distribution,



then
¢"(a/2) = Q" («/2) - 8(F), ¢*(1-a/2)=Q"(1- a/2)— 6(F), (21)

where *(a/2) and Q*(1—a/2) are the /2 and 1—a/2 quantiles of the Dist;, »(z) distribution.
We now describe how to easily find the Q*(a/2) and @*(1—a/2) quantiles. Start by sorting
the values T(X*®), i = 1, ..., B, of the (pseudo) sample and recording them in ascending order,

ie., Tf £ Ty < --- < Tj. Now observe that, if k is a positive integer, then
. * 1 *(3 0
Disty (T}) = +(#T(X*O) < T;) = b/ B;

this is because exactly k out of the B values of T(X*®) are less than (or equal to) Ty. Thus,

the two quantiles are:
Q(a/2)=T;, Q(1-a/2)=T;, (22)

where ky = [Ba/2] + 1, k2 = [B(1 — @/2)] + 1, and [.] denotes the integer part.
Putting equations (21) and (22) together, we obtain a quick-and-easy alternative formula-

tion of the hybrid confidence interval of equation (18) as
[2T(X) - 1T;,,2T(X) - Ty ] (23)

Having found the @*(a/2) and @*(1 — a/2) quantiles, we are now in the position to formulate
the equal-tailed (1 — @)100% percentile bootstrap confidence interval for §(F); this is given
simply by the interval

(T3, T3], (24)

The percentile bootstrap confidence intervals are also very popular (as popular as the hybrid
intervals, if not more); however, the justification for their use is not obvious from what has
been discussed so far here. Rather than going into more details, we can refer the reader to the
very interesting exposition in Efron and Tibshirani (1993, p. 170 and on); also look at Example
1 and Table 2 of Zoubir and Boashash (1995) where the percentile intervals are employed.

It should also be noted that since the resampling procedure implicit in equation (20) is done
with the sample X;,..., Xy being fized and playing the role of a population with distribution

F, the sample statistic O(F’ ) is just a fixed number, calculated once and for all from the original



sample Xy,..., Xy. In the bootstrap literature, the terminology is that the resampling is done
conditionally on the data X,...,Xy.

Finally, recall that the construction of confidence intervals and hypothesis testing are dual
problems in statistical theory, i.e., one can perform hypothesis tests on the basis of confidence
intervals and vice versa. So it should be of no surprise that the bootstrap can be used for the

purposes of hypothesis testing; see Zoubir and Boashash (1995) for more details.

1.8 Higher order accuracy of the bootstrap and studentization. The reason for
the success and popularity of the bootstrap methodology is twofold: (a) it provides answers
(confidence intervals, standard error estimates, etc.) in complicated situations, and (b) it pro-
vides more accurate answers in standard settings, more accurate as compared to the ubiquitous
normal approximation. So far we have discussed only part (a) above; we will *now focus on
(b).

Suppose that we have at our disposal a consistent® estimator of the variance Varrp(T); let
us call this estimator V/a?F(T). To fix ideas, consider the simplest case where the statistic
T(X) of interest is the sample mean X. In this case, thére is available a simple consistent
estimator of Varp(T), namely Vary(T) = s2/N, where s2 = (N — 1)~ 3N (X, — X)? is the
sample variance. Dividing the statistic T(X) by its estimated standard deviation \/Varp(T)
is usually referred to as ‘studentization’, since —if the data were Gaussian— this would result in
Student’s {-distribution. Consider then the sampling distribution of the ‘studentized’ statistic,

ie.,

T(X)-6(F)
Varp(T)

Knowledge of Distyygeni(z) for all real z would yield a (1 — «)100% confidence interval for

G(F) in the form

Distgiuaent(z) = Pr( < ). (25)

[T(X) - u(l — o/2)\/Vars(T), T(X) - u(e/2)\/ Vars(T)], (26)

where u(/2) and u(1—/2) are the o/2 and 1 — /2 quantiles of the Dist;yygeni(2) distribution

respectively.

8Loosely speaking, an estimator is consistent if it is accurate for large samples, i.e., asymptotically correct.

10



Note however that for general statistics, or even for the sample mean if we are not willing to
assume that data are Gaussian, the distribution Dist,syaen:(7) and its quantiles are unknown;
nevertheless, it can be estimated by the bootstrap, similarly to what was discussed in the
previous sections. In particular, the bootstrap distribution Dist,, ...(z) that can be used to

approximate Dist,iydeni(z) is given by

. 4 1 B *( - (4 ~
Distyuon(2) 2 7 3 1H#T(X) < o Vary (T) + 6(F))
i=1

= SHTOCO) < o\ Vars (r) + o)), (27)

‘where VTz?F*(i)(T) is the estimate of the variance of the statistic T'(X) as computed from the
X*® resample. For example, in the sample mean case, V/a?p*(i)(T) =(N-1)1 Zle(X,:(i) —
X*®)2, where X*® = N-1TN  x:®)

Note that, if a variance estimate is not readily available, V/G;F(T) itself could be a bootstrap
estimate constructed as in section 1.3; in that case, V/(I,FF*(Z')(T) is the bootstrap variance
estimate computed from the X*® resample! In other wofds, we have an iterated or nested
bootstrap —a bootstrap simulation for each of the original bootstrap resamples; cf. Hall (1992)
or Efron and Tibshirani (1993) for more details.

In any case, an equal-tailed (1 — @)100% bootstrap confidence interval for 8( F')

[T(X) ~ w*(1 = a/2)y/Varp(T), T(X) - u*(a/2)y/ Varp(T)), (28)

where u*(/2) and u*(1—a/2) are the a/2 and 1—a/2 quantiles of the bootstrap Dist},, on:(T)
distribution respectively; the confidence interval of equation (28) is called a bootstrap-t or a
percentile-¢ interval due to the ‘studentization’.

As it turns out (cf. Singh (1981)), the confidence interval of equation (28) is more accurate
than either the hybrid bootstrap interval of equation (18), or the normal confidence interval
of equation (3); this is what is meant by ‘higher order accuracy of the bootstrap’, or that the
bootstrap ‘captures the skewness’ of the underlying distribution. The mathematical explanation
of this phenomenon is based on the theory of Edgeworth expansions of Distyydent(z) and
Dist}y, 4ons(2) in powers of 1/v/N, and can be found in Hall (1992); see also Example 5 and
the Appendix of Zoubir and Boashash (1995) where ‘studentization’ (also called ‘pivoting’) is

11



further discussed. Note that this higher order accuracy comes at a price, since the iterated
bootstrap is much more computer intensive than the simple bootstrap; however, in the sample
mean case the extra computational burden is minuscule, because a variance estimate can be
computed without Monte Carlo simulation.

Finally, let us note that the comparison of the (studentized) bootstrap to the normal ap-
proximation is not accidental. As a matter of fact, the question may be posed: "When does
the bootstrap work?”, i.e., under what conditions do the bootstrap confidence intervals (18),
(28), etc. have coverage probability approximately equal to (1 — @)100% as they are sup-
posed to. Although we do not attempt to give a definite answer to this difficult question, it is
important to mention that the validity of the bootstrap seems to be somehow tied to the con-
current availability of the normal approximation. In other words, it seems that the bootstrap
would not work unless T'(X) is indeed asymptotically normal*. However, asymptotic normal-
ity of T(X) is not a sufficient condition for the validity of the bootstrap; other assumptions
on the particular problem at hand must also hold, e.g., moment assumptions. For example, it
seems to be the case that the bootstrap would not work unless the variance of T'(X) is (for large

N) approximately proportional to 1/N; more on this property may be found in our Section 2.1.

1.9 Trasformations and variance stabilization. The reader should also refer to the
textbook by Efron and Tibshirani (1993) for a different construction of higher order accurate
bootstrap confidence intervals, the BC, intervals, that are based on the idea of ‘bias correc-
tion’. As the bootstrap-t confidence intervals can be considered a refinement and improvement
over the hybrid intervals, similarly the BC, intervals can be thought of as a refinement and
improvement over the percentile intervals. It is quite interesting to note that the BC, intervals

have the additional desirable property of being ‘transformation invariant’, a property shared
P g ;

4This point of view allows for a heuristic explanation regarding how the hybrid confidence interval of equation
(23), and the percentile interval of equation (24) could be (and are) simultaneously valid. The reason is that, if
the root T(X) — 8(F) is approximately normal N (0, Varp(T)), then §(F) — T(X) is also approximately normal
N(0,Varg(T)); this is due to the symmetry of the normal probability density. In other words, the large-sample
distributions of T(X) — 8(¥) and of 8(F) — T(X) are the same; thus the confidence intervals (23) and (24) are

both correct (at least to first order).

12



by the percentile intervals of (24), but not shared by either the hybrid intervals of (18), or the
bootstrap-t intervals of (28), nor by the normal approximation interval of equation (3).

To explain the property of ‘transformation invariance’, consider a (strictly) monotone func-
tion g(-), and its inverse g~!(-). Since T = T(X) is considered to be a good estimator of
6 = 6(F), then it follows that g(T") is a good estimator of g(#). Suppose [I, u] is an equal-tailed
(1 — a)100% approximate confidence interval for 8(F) constructed using any of the available
methods, i.e., normal theory of equation (3), hybrid bootstrap of equation (18), percentile
bootstrap of equation (24), bootstrap-¢ of equation (28), or bootstrap BC,.

Observe that ¢g(T') is just a statistic based on our sample, and it can be ‘bootstrapped’ as
well. In other words, the sampling distribution of g(T") can be estimated, and an equal-tailed
(1 — @)100% confidence interval for g(6) can be formed, by the same method used to obtain
the interval for 6(F'); say this interval is [g;,g,]. It then follows that [¢g=(g:),97 ()] is an
approximate (1 — &)100% confidence interval for §( F'), and this new confidence interval should
be compared to the interval [/, u] found directly. If the two intervals for ( F') are identical, then
the property of ‘transformation invariance’ holds; if not, it makes sense to ask ”"which of the
two intervals is better?”, in which case one is led to search for an ‘optimal’ transformation g(-)
to use in connection with the construction of confidence intervals.

In some isolated cases, e.g., Fisher’s hyperbolic tangent transformation for the correlation
coefficient (cf. Efron and Tibshirani (1993, p. 54 and p. 163)), a transformation is available
in the literature that approximately ‘normalizes’ and ‘variance stabilizes’ the estimator T'(X);
in other words, the estimator g(7T') has a distribution that is closer to being Gaussian than the
distribution of T'(X), and the variance of g(T") does not depend on the parameter §( F'), at least
not significantly. As a consequence, such a transformation is ‘optimal’ to use in connection with
the construction of confidence intervals based on the normal approximation of equation (3).

In most cases however, it may not be possible to simultaneously normalize and variance
stabilize the estimator T(X) by a single transformation. As it turns out, the ‘optimal’ transfor-
mation associated with constructing bootstrap-t confidence intervals should primarily achieve
variance stabilization. Now if Varg(T') were known as a function of (), then an approximate

variance stabilizing transformation g(-) could be found by the §-method (cf. Miller (1986),

13



Efron and Tibshirani (1993)). The problem of course is that Varg(T), 8(F), as well as the
functional relationship between the two are generally unknown!

Nonetheless, an approximate ‘optimal’ transformation for variance stabilization can be com-
puted using an iterated bootstrap —much like the iterated bootstrap described in the previous
section on studentization— to calculate estimates of Varp(T) from each resample; details can
be found in Efron and Tibshirani (1993, p. 163), and in Zoubir and Boashash (1995). It
should be noted that if an iterated bootstrap is carried out to calculate the variance stabilizing
transformation, then there is no need to do another iterated bootstrap to get the bootstrap-
confidence interval. In other words, there is no need for the studentization any more since the
variance can be considered constant, and a bootstrap confidence interval for g(8) based on the
hybrid method of equation (18) would be obtained and then inverted (using g~!) to give a good
bootstrap confidence interval for 6(F).

2. Subsampling and the jackknife

While one reason for the success of the bootstrap is its widespread applicability, there are
certainly situations where the bootstrap is not applicable; for example, as was briefly mentioned
in Section 1.8, in the case where the statistic 7(X) is linear, i.e., of the sample mean type, the
validity of the bootstrap crucially hinges on whether the statistic is asymptotically normal or
not. As a matter of fact, a huge statistical literature on the bootstrap has accumulated since
Efron’s (1979) pioneering paper, with main focus to show the applicability of the bootstrap in
many different settings; Brickel and Freedman (1981) and Beran (1984) are two very important
early papers in this connection (see also our Section 4 for more bibliographical comments).

At another level, recall that performing the bootstrap in practice requires sampling with
replacement from the observations X, ..., Xy, to get a resample of size N. The ezact compu-
tation of the bootstrap distribution would actually involve taking into account all the possible

resamples, weighted by the corresponding multinomial probabilities; however, the number of

2N-1)!

NV 1)1 which is impractically large. Doing the Monte Carlo random

possible resamples is
bootstrap sampling gets around this problem, but there is also another way of lowering the

computational complexity: the jackknife and subsampling.
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2.1 The jackknife idea. Consider sampling without replacement from the observations
Xi,...,Xn, to get a resample (now called a subsample) of size b, where of course b < N. If
b = N — 1, this is exactly the original jackknife of Quenouille and Tukey (cf. Efron (1979,
1982) and Efron and Tibshirani (1993) for details), and there are only N possible different
subsamples. Since these subsamples are all equally probable under the sampling without re-
placement scheme, formulas much like (15), (16), (19), and (20) can be constructed to estimate
bias, variance, and distribution of the statistic 7'(X); these will be given in a more general form
in what follows.

In general, one can take an arbitrary b, not necessarily equal to N — 1, yielding the so-called
delete-d jackknife, where d = N — b; see Shao and Tu (1995) for more details. Observe that the

number of possible subsamples now rises to and again a Monte Carlo method could be

employed to randomly chose a smaller number, say B, among these subsamples to be included
in the jackknife procedure. As long as b is large enough (but of smaller order of magnitude than
N) the subsampling distribution estimates are asymptotically correct; see Politis and Romano
(1995).

In some sense, subsampling can be thought to be even more intuitive than the bootstrap,
because the subsamples are actually samples (of smaller size) from the true distribution F,
whereas the bootstrap resamples are samples from an estimator of F'. As can be shown, dis-
tribution estimates based on subsampling are valid in a wider range of situations than their
resampling (i.e., bootstrap) analogs, even in cases where the statistic 7'(X) is not asymptoti-
cally normal; however, they do not possess the property of higher order accuracy, and this is
essentially due to the fact that the subsampling size is b and not N.

This difference between the subsample size and the original sample size has an additional
consequence, namely that a re-scaling is in order in computing the subsampling distribution
estimator. Suppose that the variance of T(X) is approximately ¢?/7%, for large N, where c is
some constant, and 7y is a function of the sample size N; in regular cases, e.g., if T(X) is the
sample mean, sample median, sample variance, etc., we have that ry = +/N. It is intuitively

true therefore that the variance of T calculated from a sample of size b would be approximately
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c?/7¢, provided that b is large too; here the need for a re-scaling becomes apparent. The

subsampling procedure can finally be summarized as follows:

¢ Randomly choose B subsamples X*1) ... X*B) among all the possible subsamples of
size b of the sample population {X;,...,Xx}. Suppose the ith subsample is X*®) =
(X f(i), X ,’f(i)); the final step now is to evaluate the statistic T' over each of the chosen
subsamples, creating the pseudo-replications T'(X*1),... T(X*5),

2.2 Confidence intervals based on subsampling. The subsampling estimates of
Biasp(T), Varp(T), Distr rp(z), and Distr re(z) are Bias*(T), Var*(T), Dist§ p(x), and

Disty g o(z) respectively which are presented below:

B
Bias*(T) ~ :—N (% ;T(X*(i)) - T(X)) (29)
Var(T) ~ T—z (l ZB:TZ(X*(")) - [1 zB:T(X*@'))]?) (30)
™~ \B i=1 B i=1
1 & i T 1 i T

Disty p(2) = 5 S UT(X) < 27) = ZHTOXC) <27 (31)
and

Disty r(2) = ZHTXD) <020 + (X)), (52)

where » = bN/(N — b); note that if B = ET(I<IV+6)' and Monte Carlo randomization is not used,

i.e., all possible subsamples are taken into account, the approximation signs (~) above can be
replaced by equality signs.

The reason we have 7, instead of 7 in (29), (30), (31), and (32) is that, although the variance
of T calculated from an i.i.d. sample of size b is approximately ¢?/7Z, i.i.d. samples presuppose
an infinite underlying population; in other words, i.i.d. samples are taken with replacement.
Our subsamples X*(),. .., X*(B) are size b samples taken without replacement from a finite
population of size N. Therefore, the variance of T calculated from one of our subsamples is
approximately ¢?/7?, and not ¢?/7; the ratio 72 /72 is the so-called finite population correction,
which notably becomes close to one if b is much smaller than N.

To briefly sum-up the existing results in the literature on subsampling, note that the esti-

mates proposed in equations (29), (30), (31), and (32) are accurate provided the sample size
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N is large, and that one of the following three conditions is met:
(a) The estimator T'(X) is of very simple form, e.g., T(X) is the sample mea;n, or maybe a
trimmed mean (but not the sample median!), and the population distribution F is known to be
normal (with some unknown mean and variance); here the ordinary jackknife (with b = N —1)
would work (cf. Efron and Tibshirani (1993)).
(b) The estimator is not necessarily that simple, but it satisfies the ‘regularity’ condition that
7~ = V/'N; for example, T(X) may be the sample median. In this case we would have to choose
a b such that both b and N — b are large, e.g., b = [kN], where & is a constant in (0, 1), and [.]
denotes the integer part; see Shao and Tu (1995).
(c) The estimator is arbitrarily complex, and 7y is not necessarily v/N; here we would have to
choose a b such that b is large, but b/N is small, e.g. b = [N*], where k is a constant in (0, 1).
Note that in this case N and N — b will be of the same approximate magnitude, thus r ~ b;
therefore, equations (29), (30), (31), and (32) will be valid with 7, used instead of 7., which is
perhaps more intuitive; see Politis and Romano (1995) for more details on this general case.
Under one of conditions (a), (b) or (c) above, the estimates proposed in equations (29), (30),
(31), and (32) are accurate, and can be used for the construction of approximate confidence
intervals for §(F); as is typically the case, the approximations will be good if the sample
size N is appropriately large. Note that in the usual case where we do not know the form
of the population distribution F, we have to use the settings of conditions (b) or (c) above,
i.e., to assume that both b and N — b are large. Now if the estimator T'(X) is known to be
asymptotically normal (see our Section 1.1), then a (1 — @)100% confidence interval for 6( F)

can be given by

[T(X) — Bias*(T) — zy/Var*(T),T(X) — Bias*(T) + zy/Var~(T)] (33)

where z = (1 — a/2) is the 1 — a/2 quantile of the standard normal distribution as in (4). If
T(X) is not asymptotically normal, then an equal-tailed (1 — &)100% confidence interval for
6(F) based on subsampling could be constructed similarly to the interval (18), i.e., it would be
given by

[T(X) - ¢*(1 - @/2), T(X) - ¢*(e/2)], (34)

where ¢*(a/2) and ¢*(1 — a/2) are the @/2 and 1 — @/2 quantiles of the Dist} p,(z) dis-
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tribution respectively. Note that if both confidence intervals (33) and (34) are valid, i.e., if
T(X) is asymptotically normal, the interval (33) would be considered to be the one that is
more accurate; that is, the coverage probability of (33) would be closer to the desired value
of (1 — @)100%. In other words, whereas the (studentized) bootstrap ‘beats’ the normal ap-
proximation (if a normal approximation is available), the jackknife does not. Nevertheless,
subsampling (and the interval (34) in particular) is more widely applicable in the setting of

condition (c) above; see Section 3.6 for an interesting such example.

3. Non-i.i.d. data: complicated data structures

What has been discussed so far hinges on the assumption that the data X = (Xy,...,Xn)
represent an i.i.d. sample from a population with (unknown) distribution F. Nevertheless,
the assumption of i.i.d. data can break down, either because the data are not independent, or
because they are not identically distributed, or both; we now discuss what can be done to cir-
cumvent this difficulty, and describe procedures that are are valid even if the i.i.d. assumption

is somehow violated.

3.1 Data that are not identically distributed: the regression example. To fix
ideas, let us consider the simplest example. Suppose the X;, i = 1,..., N, are observations from

the straight-line regression model

Xi=7+p0Y; + &

where the ¢;’s are assumed to be ii.d. with mean zero, and Y;, ¢ = 1,..., N, are known
(nonrandom) design points.

Let '7,3 denote the least squares estimates of the intercept « and of the slope 3 respectively,
and suppose we want to construct a confidence interval for one of the two parameters, say 5. It

is well-known that, regardless of whether the ‘errors’ ¢;, ¢ = 1,..., N, are normally distributed
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or not, B is a reasonable estimator of B; as a matter of fact, typically ,3 will be consistent for
B, i.e., for large sample size N, B will be close to the true value B with high probability.

Nevertheless, the standard textbook confidence interval for 3 is based on the assumption
that the ¢’s are normal; if the normality assumption is questionable,® then an alternative
method of constructing the confidence interval must be found. The bootstrap may offer this
well-needed alternative. However, note that the X;’s are not i.i.d.; in particular, EX; = ¥;
which varies with i =1,..., N. In orther words, although the X;’s are independent, they are not
identically distributed; thus, naive resampling of the X;’s can not be applied here.

To actually apply the bootstrap in this setting observe that, whereas in the previous sections
the data X, i = 1,..., N, were i.i.d. with unknown distribution F, here it is the errors ¢;,
t=1,..., N, that arei.i.d. with unknown distribution which we may denote by G(-). Although
the errors ¢; are not directly observable, note that 8 will be close to the true value B (and
similarly 4 will be close to the true value v), and thus 4 + BY; will be close to ~ + 8Y;, for any
i=1,..,N. It follows that the ¢; = X; — (¥ + BY}), t=1,...,N,i.e., the residuals from the
least squares fit, will be good approximations to the unobservable i.i.d. errors ;.

So we may treat the residuals e; as being an i.i.d. sample from distribution G(-), provided
the e;’s have mean zero; note that although G(-) is unknown, we do know that G(-) is a
distribution with zero mean. Thus we are led to define the mean-corrected residuals & =
e — N1 E‘;V:l ex®. We can now invoke the bootstrap principle and treat the é’s as if they
represented an i.i.d. sample from distribution G(-). Let G(z) be the empirical distribution of

the é’s, i.e., let
. 1 Y 1
- e < 1) = —(#¢ < ).
G(-’L‘) N ; 1(€z — ‘T) N(#Gi = :E)

The bootstrap resampling in this case can be done as follows:

®For example, a histogram of the shortly-to-be-defined residuals e;, ¢ = 1,..., N, may exhibit evidence of

nonnormality, e.g., pronounced skewness.
6As a matter of fact, the inclusion of the unknown (and to be estimated) intercept parameter v in the

regression model is sufficient to guarantee that the original residuals e; do have mean zero, and thus ¢; = e; in
this case. Nevertheless, it is important to point out that if, for some reason (e.g., a more complicated regression
function of the type X; = I'(Yi) +¢;), the residuals from the fitted model are not forced to have mean zero, then

the corresponding bootstrap inferences will not be valid.
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e Draw B iid. samples E*®), ... E*®) (each of size N) from the sample population
consisting of the mean-corrected residuals {¢;, ..., éx}; note that to form the kth resample
E® = (&® &8 we sample with replacement from the set {é&,...,&x}, or, in other
words, we take an i.i.d. sample of size N from a population with distribution G. Use the
kth resample E*®) to generate pseudo-data X;®) = % + 8Y; + &®, i = 1,..., N, where
the 4, B, are the previously (and once and for all) calculated least squares estimators.
Now apply least squares estimation to the kth pseudo-dataset to obtain the estimator

,3*(’“); repeat this procedure for each of the kth resamples, £ = 1, ..., B.

Having performed the above Monte Carlo experiment, we are now in a position to formulate

estimates of the bias and variance of ,3 similar to equations (15), i.e.,

B
Bias*(B) ~ % Z:; B® ~ 3 , (35)
. 1 B . 1 EB. .
Var'(B) = & Y (B ®) - [ 3 80 (36)
i=1 i=1

and an equal-tailed hybrid (1 — &)100% bootstrap confidence interval for 3 similar to the one
in equation (18), i.e.,

[6-9"(1-a/2),8-g"(a/2)]; (37)
here g*(a/2) and ¢*(1 — @/2) are the /2 and 1 — @/2 quantiles of the Dist; ¢ 4(z) =
BUYEL 130~ f < 2) = BHEO <o 4 ).

Note that different confidence interval constructions are possible here as well, in analogy to
what was discussed for the i.i.d. bootstrap in Section 1. As a matter of fact, using the trick of
reducing the non-i.i.d. situation to an ii.d. situation (by looking at the residuals) permitted
us to use the bootstrap methodology for i.i.d. data with almost no alterations. This is actually
a general technique, applicable in all settings where the problem can be reduced to i.i.d. (or
almost 1.i.d.) residuals. In general, the regression model might be more complicated, e.g., the

relation of X; to Y; might be nonlinear, and described by
X; =T(Y) + &

where the ¢;’s are i.i.d. with mean zero, the ¥;’s are known and nonrandom, and I'(.) is an

unknown function; perhaps I is known, except for some parameters associated with it, e.g.,
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I'(y) = e*#i, with 7,8 unknown as before. If an estimator I'(.) of I'(.) can be constructed
from the data, the residuals X; — I'(Y;) should be almost i.i.d. (and can be centered so that

they have mean zero), so the i.i.d. bootstrap methodology described above applies immedia,tely.‘

3.2 Data that are not independent: the autoregressive time series example.
Another way to relax the assumption of i.i.d. data is to assume that the data are identically
distributed but not independent; this is the essence of the stationarity assumption. In partic-
ular, let X;, X5, ... be a sequence of random variables; the sequence is called strictly stationary
(or just stationary) if the joint distribution of the random vector (X1, X3, ..., X,,) is identical to
the joint distribution of the random vector (Xpi1, Xmy2, ... Xmin), for any positive integers
m,n.

The simplest example of a strictly stationary sequence is given by the autoregression model
(of order one) given by

X, =06X;.1+ €, (38)

where the ¢;’s are i.i.d. with mean zero; for simplicity, let us assume that the X;’s have mean
zero, so no constant term? is included in the right-hand-side of the auto-regression (38). It is
also usually assumed that |§| < 1, in which case we may consider that the X;’s were obtained
recursively by letting ¢ = 1,..., NV in equation (38), and some proper choice of X,. Note that
the data Xi,..., Xy can be explained by means of the model (38) driven by i.i.d. errors. It is
apparent that since the parameters in the model (in this case it is just 3) can be estimated
consistently, the i.i.d. errors ¢;, i =1, ..., N, can be approximately recaptured; in other words,
the stationary data problem at hand can be reduced to an (approximate) i.i.d. problem, in the
same spirit as in the regression example of Section 3.1. As a matter of fact, by making the
formal identification Y; = X;.;, for : = 1,..., N, the bootstrap algorithm described in Section

3.1 applies verbatim here as well, although the Y; are no longer nonrandom; for more details on

"Note however that, although the theoretical mean satisfies EX; = 0, the sample mean of the X-dataset,
ie, N7! 211 X, will not be identically zero. Working with the mean-corrected Xi’s, i.e., defining X; =
X;—- N1 211 X; and working with the model X; = 8X;_; + ¢; instead, is recommendable in practice; it also
has the convenient side-effect of forcing the residuals from the fitted model X'.- = ﬁX i—1 + €; to have mean zero,

so that no re-centering would be required (see also Zoubir and Boashash (1995)).
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the bootstrap for linear or nonlinear autoregressive time series models see Léger et al. (1992)

and Zoubir and Boashash (1995).

3.3 Data that are not too dependent: weakly dependent observations. Suppose
that no plausible model (such as the autoregression of Section 3.2) is available for the proba-
bility mechanism generating our stationary observations X;,..., Xy; in this case, the problem
must be approached in a nonparametric fashion. Nonetheless, in order to have consistent esti-
mation of # by T(X), i.e., in order to be able to say that ‘the more data available, the more
accurate our inference is’, the observations should not be too strongly dependent; for example,
in the extremely dependent case where X; = X, for j = 1,2, ..., N, obtaining more data (i.e.,
increasing N) does not tell us something we do not already know by looking at X, alone.

So an assumption of weak dependence must be made in order that consistent estimation is
possible. One such assumption is m-dependence: the stationary sequence X;, X, ... is called
m-dependent if, for some integer m, the set of random variables (X, Xs, ..., X,,) is indepen-
dent of the set of random variables (X, 4441, Xntk42,---X2ntk) for any n and any k > m; thus,
independence can be thought of as 0-dependence. Another weak dependence assumption is
strong mizing: although the precise definition is a bit technical (see, e.g., Politis and Romano
(1992, 1994)), the intuitive idea is that observations far apart (in time) should be almost
independent; more carefully, a stationary sequence X;, X,,... is strong mixing if the set of
random variables (X, Xa, ..., X,,) is approzimately independent of the set of random variables
(Xntr+1y Xnak+2s ooy Xontk), fOr any n, as long as k is large enough. Note that an m-dependent

sequence is definitely strong mixing; just let £ > m in the above.

3.4 Subsampling weakly dependent observations. Let X;, X,,... be a strong mix-
ing stationary sequence of random variables, and suppose our data consist of the stretch
X1,X3,...,Xn. Note that the order of the observations in our sample X, X,,..., Xy is im-
portant now that the X;’s are serially dependent, whereas it was not important in the case the
X;’s were independent.

So consider the N — b + 1 subsamples characterized by the property that each contains b
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consecutive observations from the original sample X, ..., Xy; in this sense, the time order of
the observations is maintained within the subsamples. For example, the ith subsample X*(®)
would consist of the observations X;, ..., X;,;.1, and ¢ runs from 1 to N — b+ 1. Note that now
the number of subsamples consisting of b consecutive data is N — b+ 1 which is rather small
compared to b—,(%b),, thus, Monte Carlo randomization typically will not be needed and we
would choose B = N — b+ 1 subsamples (i.e., all of them) to be included in the subsampling
procedure as outlined in Section 2.1. In other words, the statistic T would be evaluated over
each of the B = N — b+ 1 subsamples creating the pseudo-replications T'(X*®),..., T(X*®),
Interestingly enough, this modification (i.e., looking only at subsamples containing con-
secutive X;’s) is sufficient to make the subsampling méthodology work in this case where the
observations are stationary (and weakly dependent); see Politis and Romano (1995) for more
details. Note, however, that similarly to condition (c) in Section 2.2, here we have to choose a
b such that b is large, but b/N is small, e.g. b = [N*], where & is a constant in (0, 1); standard
choices of b would be b = [N¥/2] or b = [N/3]. With such a choice for b, equations (29), (30),
(31), and (32) would apply here verbatim and they would give accurate estimators of bias, vari-
ance, and distribution if the sample size NV is large enough. Consequently, (34) would give a,.
valid (1—a)100% confidence interval for 8(F'), whereas (33) would also give a valid (1-«)100%
confidence interval for §( F") provided the estimator T'(X ) is known to be asymptotically normal.

3.5 Resampling weakly dependent observations. Again let us assume that our data
consist of the stretch X, X,,..., Xy from the strong mixing stationary sequence X, Xs,....
Unlike the bootstrap for i.i.d. data, a bootstrap for stationary observations would have to
somehow maintain the time order of the observations as was done in the subsampling case
in Section 3.4. This is the essense of the ‘moving blocks’ bootstrap that was introduced by
Kiinsch(1989) and Liu and Singh(1992); see also Politis and Romano (1992, 1994) for closely
related proposals for bootstrapping dependent data.

Consider the set & = {X*1), X*?), | X*N-+D1 where X*() = (X, ..., X;;5_1) is the ith
subsample defined in Section 3.4; so S is a set of subsamples. As in Section 3.4, here as well

we require that b is large, but b/N is small, e.g. b = [N*], where k is a constant in (0, 1).
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Let K = [N/b], and let L = bK; thus, L = N if N is divisible by b, whereas L will at least
approximate N if N is not exactly divisible by & (because N/b is assumed to be large).

The ‘moving blocks’ bootstrap can be described as follows;

¢ Take a random sample of size K with replacement from the set S, i.e., randomly choose
subsamples X**(), ..., X**(8); concatenate the observations found in X*@) .. . X*&¥)
into a series of L = bK observations denoted by Y**(1). Take another random sam-
ple of size K with replacement from the set S, and store it in Y**(®). In the same
manner, generate Y**®, for i = 3,4,..., B. Now evaluate the statistic 7' over each of
the Y@, for ¢ = 1,2,3,..., B, bootstrap pseudo-series to get the pseudo-replications
T(Y*W), . T(Y®),

Note that the requirement that b is large is only pertinent if the data are indeed dependent;
if the date are i.i.d., b can be taken to equal 1, and the ‘moving blocks’ bootstrap actually
reduces to the standard i.i.d. bootstrap described in Section 1. If the data are just suspected
to be serially dependent, then the ‘moving blocks’ bootstrap (with large b as opposed to b=1)
can be employed in order to be on the safe side.

The ‘moving blocks’ bootstrap estimates of Biasg(T), Varg(T'), Disty r(z), and Distr ()

are Bias™(T), Var**(T), Disty p(z), and Disty'p 4(z) respectively which are presented below:
1E :
Bias™(T) =~ (E > T(y®) — T(X)) (39)
i=1

Var™(T) ~ (% ZTz(Y**(i)) - [% Z:T(Y**(i))]z) (40)

Distip(s) = & 3°1(T(Y0) < 0) = LHTEY0) < 0 (41)
and )
Dist (@) = Z(HT(VO) < o 4 T(X)). (42)

Similarly to Section 3.4, an equal-tailed hybrid (1 — &)100% confidence interval for 6(F)

based on the ‘moving blocks’ bootstrap would be given by
[T(X) - ¢ (1 - /2),T(X) - ¢ (a/2)], (43)
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where ¢**(/2) and ¢**(1—«/2) are the @/2 and 1—a/2 quantiles of the Dist}*y, ,(z) distribution
respectively.

Note that, as opposed to the subsampling method of Section 3.4, no rescaling is needed
for the ‘moving blocks’ bootstrap (as it was not needed in the i.i.d. bootstrap as well); this is
because L ~ N, and therefore 71 /7y ~ 1. In addition, the ‘moving blocks’ bootstrap shares
with the i.i.d. bootstrap the property of higher order accuracy as was discussed in Section 1.8.
In other words, if T(X) is asymptotically normal, the ‘moving blocks’ bootstrap can be applied
to an appropriately ‘studentized’ version of T'(X) to yield confidence intervals that are more
accurate than the intervals obtained from the normal approximation; see, for example, Lahiri
(1992). Nevertheless, there are situations where the ‘moving blocks’ bootstrap would not be
applicable, and subsampling would provide the only solution; for example, a requirement for
the ‘moving blocks’ bootstrap to ‘work’ is that 7y = v/N, i.e., that the variance of T(X) is (for

large N) approximately proportional to 1/N, and that T'(X) is indeed asymptotically normal.

3.6 A ‘difficult’ example: nonparametric confidence intervals for the spectrum.
As before, our data conmsist of the stretch X, Xs,..., Xy from the strong mixing stationary
sequence X, X,, ... which for simplicity we now assume to have mean zero, i.e., EX,, = 0, for
any n. Let R(s) = EXyX|, denote the autocovariance at ‘lag’ s; as a consequence of strong
mixing, it can be shown that R(s) — 0 as |s| — oo. If we assume in addition that R(s) — 0
fast enough such that Y oo |R(s)| < oo, then we can define the spectral density function
f(w) = &= 302 R(s)e~**; here w is a point in [0,27], and j is the imaginary unit, i.e., v/-1.

Suppose that the problem at hand is interval estimation of f(w,), where wy is a point of

interest in [0, 27]; thus, the unknown parameter of interest is § = f(wg). Suppose also that for

this purpose we decide to employ Bartlett’s spectral density estimator
. 1 & . ,
fw)y=5= Y RlsPuls)e™,
where Ap(s) is Bartlett’s kernel defined by

1Bl |s| < M
Au(s) = M -
{0 for |s| > M,
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and R(s) is the sample autocovariance at lag s given by
NYN XXy, f0<s<N
R(is)=40 ifs>N
R(-s) if s < 0.

It is well known (cf. Priestley (1981)) that, under some regularity conditions, f(w) is
asymptotically normal, and that Var(f(w)) ~ M £2(w)(1+n(w)), if N is large, where n(w) = 0
if w # 0(modr) and p(w) = 1if w = 0(modr). It is also well known that to minimize the Mean
Squared Error of the estimator f(w) we should choose M to be approximately proportional to
N1/3; this is because the bias of f'(w) is approximately (for large N') proportional to 1/M. So
let us choose M = [AN'/3], where A is some positive constant; thus

T(X) = fuo) = o 32 R(s)awm(s)e ™" (44)

§=—00

With this choice of M the variance of f (w) becomes approximately (for large N) proportional
to N~2/3; in other words, the variance of T(X) is (for large N ) approximately proportional to
N—2/3 and Ty = N1/3,

Since the variance of T(X) is not approximately proportional to 1/N, it should not be sur-
prising that the ‘moving blocks’ bootstrap does not apply here; a generalization of the ‘moving
blocks’ bootstrap (the so-called ‘blocks of blocks’ bootstrap) was introduced by Politis, Ro-
mano, and Lai (1992) in order to handle this ‘difficult’ example. Nonetheless, the subsampling
methodology as described in Section 3.4 does apply, provided we choose b such that b is large,
but b/N is small, e.g., b = [N*], for some constant & in (0, 1); see condition (c) in Section 3.4.
To elaborate, let the ith subsample X*® consist of the observations Xj;, ..., X;,s_1; applying
the statistic 7 on the subsample X*®) amounts to letting

) 1 & » ]
T(X*9) = or D Ri(s)Apapus(s)e e, (45)

where R;(s) = b7' 0 X, X0, if 0 < s < b, Ri(s) = 0,if s > b, and R(s) = R(—s),if s < 0.
In other words, to calculate T(X*(®) we focus attention on the size b subsample X*®), and all
data belonging to other subsamples are ignored. Thus, Ri(s) is the estimated autocovariance

at lag s, where only observations in the subsample X*() are used in the estimation; similarly,
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since we chose M = [AN'/3] as the cut-off parameter in Bartlett’s kernel when the sample size
was N, we chose [Ab'/?] as the cut-off parameter when our sample (the ith subsample) was of
size b.

Using (45) we can calculate T(X*®) for ¢ = 1,..., B (with B = N — b+ 1), and employ
equations (29), (30), (31), and (32) to get accurate estimators of bias, variance, and distribution
if the sample size N is large enough. Consequently, both (34) and (33) would give valid
(1 — )100% confidence intervals for 8§ = f(wp) since T(X) is known to be asymptotically
normal.

Although confidence intervals for this particular problem can be constructed using various
methods, the beauty of the subsa,mph'ng. (and resampling) data analysis methodology is its
simplicity and generality. Thus, the moral of the ‘bootstrap philosophy’ as described so far can
be summarized as follows: If the general statistic T' can be computed from the sample X, then
it can certainly be re-computed from pseudo-samples (subsamples, resamples, etc.) of the type
X*9), §=1,..., B, and this is enough to gain valuable information on the accuracy of T(X) as

a point estimate of 6.
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4. Some bibliographical comments

At this moment, there are five published books on the bootstrap: the original monograph of
Efron (1982); the textbook by Hall (1992) that contains a lot of material concerning the higher
order accuracy of the bootstrap and the effects of ‘studentization’; the collection of research
papers in LePage and Billard (1992) that also contains an'introduction to bootstrap ideas by
Efron and LePage; the textbook by Efron and Tibshirani (1993) which presents the bootstrap
methodology and its applicability in complex data analysis problems — this is definitely a
book that the interested reader should consult at some point; and the book by Hjorth (1994).
A book by Shao and Tu (1995) is also in press at the moment; this interesting new book
attempts to wrap up all the recent theoretical results that are related to the bootstrap and the
jackknife. There are also three collections of lecture notes: Beran and Ducharme (1991) provide
theoretical expositions of the concept of ‘prepivoting’, a method related to ‘studentization’,
and of bootstrap balanced confidence intervals and prediction regions; Mammen (1992) focuses
mainly on the bootstrap for linear models, and contains details on a bootstrap variation, the
‘wild’ bootstrap, which was introduced in Wu (1986) — see also Beran (1986) in that regard;
and Barbe and Bertail (1995) consider -among other things- the ‘weighted bootstrap’ which is
an interesting generalization of the standard bootstrap.

Several review articles are also available in the literature: Efron and Gong (1983) and Efron
and Tibshirani (1986) have a more applied flavor, whereas DiCiccio and Romano (1988) give
a theoretical treatment; see also Hinkley (1988). Swanepoel (1990), and Léger, Politis, and
Romano (1992) review more recent developments and provide discussion on more advanced
applications of the bootstrap methodology; both papers also contain an extensive list of ref-
erences. Léger et al. (1992) and Bose and Politis (1995) p&ovide reviews of the bootstrap for
dependent samples, while the reference for most of our section on subsampling is Politis and
Romano (1995) that also contains a good number of examples where the bootstrap does not
work; a critical account of bootstrap ideas was recently presented in Young (1994). Finally,
the review paper by Zoubir and Boashash (1995) should be consulted, especially in connection
with signal processing applications of the bootstrap.
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