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Abstract

Scale symmetry is a natural property to be imposed on the loss function, when
a positive parameter 0 is being estimated. It can be justified with a four century old
argument. Simple scale symmetric loss functions and related descriptive measures
of a distribution are studied, for the purpose of summarizing a Bayesian posterior
distribution.
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1 Some history and a summary

In the Spring of 1627, a peculiar controversy *arose in one of Florence intellectual circles,
where noble gentlemen used to entertain erudite talks:

Un cavallo, che vale veramente cento scudi, da uno ¢ stimato mille scudi e
da un altro dieci scudi: si domanda chi abbia di loro stimato meglio, e chi
abbia fatto manco stravaganza nello stimare.

The problem translates into “A horse, whose true worth is one hundred scudi [a monetary
unit, literaly, a shield], is estimated by someone to be one thousand scudi and by someone
else to be ten scudi worth: the question is, who gave a better estimate, and who instead
gave a more extravagant estimate ?7”. It is formulated in a letter from Andrea Gerini to
Nozzolini, an erudite priest. Gerini wants Nozzolini’s opinion on a sentence by Galileo
Galilei (1627), according to whom

... li due stimatori abbiano egualmente esorbitato e commesse equali strava-
ganze nello stimare 'uno mille e altro dieci quello che realmente val cento

(“ ... the two persons estimating [the horse worth] have been equally exorbitant and
are responsible of an equal extravagance by estimating, one thousand the former and
ten the latter, what is really worth one hundred”).

In the intense correspondence following the initial letters, Nozzolini argues that the
estimates should be evaluated according to the arithmetic proportion, whereas Galileo
insists that the more correct method of judging is by geometric proportion. The crux
of the problem is that the estimand is a positive quantity, for which the geometric
proportion scems more appropriate, as wittingly argued by Galileo in another letter:

Se uno stimasse alta dugento braccia una torre, che veramente fusse alta
cenlo, con quale esorbitanza ncl meno pareggera il signor Nozzolini Faltra

nel piu ?

(“ If one were to overestimate two-hundred-arm high a tower, which is really one-
hundred-arm high, what underestimate would Nozzolini consider as equally deviating?”).

It is apparent that, in modern statistical terms, the problem may be formulated
as choosing between two kinds of loss functions in a decision-theoretic approach to
estimation of an unknown, but intrinsically positive, parameter §. The way the problem
was discussed by the noble gentlemen is remarkably modern, in that the true value, its

2the italic is a translation of a commentary to Galilei (1627) appearing in the edition of Galilei’s
works mentioned in the bibliography, from which all of the quotes are taken.



estimates and the loss (or extravagance, using their colorful expression) are clearly and
separately identified.

In section 2, it is seen how Galileo’s requirement of a geometric proportion can be
recast in modern terms as a simple and appealing property of the loss function, namely
scale symmetry. Curiously, these four-century old scale symmetric loss functions have
not received much attention, although they have been briefly discussed by Brown (1968,
page 37). In section 3 and 4, the use of a particularly simple scale symmetric loss
function for Bayesian analysis is analyzed. Section 5 illustrates how the use of other
scale symmetric loss functions may lead to sensible computational problems.

2 Scale symmetric loss functions

In the modern statistical literature, the inadequacy of difference-based loss functions,
like square error loss, for estimating certain positive quantities has always been recog-
nized. Several alternative loss functions have been proposed, the best-known being the
normalized quadratic loss function [Stein (1964)]

d
(1) LQ(oad) = (5 - I)Za
Stein’s loss
d d
(2) Ls(0,d) = 71— log(g)

and Brown’s loss function [Brown (1968)]

(3 L(0,d) = (log(5))"

where d is the estimate of the positive parameter § and a constant is subtracted, when
necessary, to obtain L(0,0) = 0. All loss functions above are scale invariant, in the sense
that
L(9,d) = L(cb, cd)

for every ¢ > 0 and every pair (6, d). Equivalently, a loss function L(8, d) is scale invariant
if and only if there exist a scalar function g(z),z > 0 such that L(6,d) = g(d/90).

Now, Galileo’s claim of eguali stravaganze can be reexpressed in modern terminology
as a requirement of a scale symmelric loss function, as in the following

Definition 1 A loss function is called scale symmetric if, for every positive dy,ds, 8,
(4) d] 10 =6 d2
implies L(0,dy) = L(0,d,).



It is clear that Galileo’s expression “geometric proportion” comes from relationship (4).

Theorem 1 A scale invariant loss function is scale symmetric if and only if @t can be
written as a scalar function g such that g(d/8) = g(6/d).

Proof. Scale invariance implies L(0,d) = ¢(d/0) for some g, scale symmetry implies
L(8,d) = L(0,0%/d) and viceversa. il

Loss function Lp is scale symmetric, Lo and Lg are not. For any real function w(#),
and any scale symmetric and scale invariant loss function L, the product w(8)L is scale
symmetric but not, in general, scale invariant.

3 Scale means

We now focus on some particular scale invariant and scale symmetric loss functions. A
natural subclass are the ones for which the function g(z) of theorem (1) is written as an
average of h(z) and h(1/z), for a nondecreasing function A(z),z > 0. Among the many

k

possible choices, h(z) = z* seems to be a natural one, providing

1,,.d

) L(0,d) = 5[5V + O -1,

where, as usual, a constant is subtracted for normalization purposes. We then have the
following theorem:

Theorem 2 Let O be a positive random variable and k > 0. If EO% < co and EO~F <

0o, then the expectation of loss funclion (5)

Eo*
(Fo+)

R

(6) d=u(0):

In particular, write v(0) := 11(0). Then

1 | E©
(7) o1 <r(0)= 761 < EO.

Proof. The first result is proved by differentiating in d, the inequalities are proved by
Jensen’s inequality applied to the function 1/0. Il

Definition 2 Let © be a positive random variable with finite EO% and EO*. Then
vk(0) s called the scale mean of order k of the random variable ©.



Scale means are particularly meaningful in the context of Bayes estimation, where
© is an unknown parameter and its distribution a posterior distribution, given some
sample information. If a point estimate has to be selected according to loss function
(5), then v4(©) is usally called a Bayes estimate. The scale mean of order 1, or simply
the scale mean v(0), is particularly interesting. First, the fact that underestimation is
penalized as much as overestimation does not imply that the resulting Bayes estimate
v(0) is greater (further away from 0) than the Bayes estimate under squared error loss
EO. One would expect such a thing since squared error loss is finite at d = 0. While
this may be true for other loss scale symmetric functions, as discussed for example in
Brown (1968, page 37), it is not true for L,(f,d), as seen in (7). In a sense, this is a
consequence of requiring FO~! < oo, a condition which, at first, seems quite arbitrary,
but is is indeed not any more special than requiring FO to exist finite. The scale
group of transformations is a natural group for the problem of estimating a positive
(scale) parameter, much in the same way the translation group is a natural group when
estimating a location parameter. From this point of view, it is much too tempting looking
at formula (7) as a very close analogue to the following redundant way of writing an
expectation:
E© — E(-0)

2

The analogy between the scale mean and the usual mean then becomes clear if we
substitute scale symmetry for location symmetry, ratios for differences and the geometric
mean for the arithmetic mean. Much in the same way F© < oo requires that both the
expectation of the positive and the negative part of © be finite, so the finiteness of v(©)
is a consequence of E® < oo and EO~! < oo.

In view of the above discussion, loss function L;(4, d), or more in general Ly (0, d), may

EO =

sometimes be preferable, for example, to Lo(0,d), which generates a Bayes estimator
E©~!'/EO~?, not sharing the same characteristics of symmetry.

It is convenient to use a power k # 1 in situations when the estimand is expressed
in some units different from the data. For example, in estimating a variance, it may be

more natural to use a scale mean of order 1/2.

Example 1 Consider estimating the unknown common variance § of a random sam-
ple Xi,...,X, from a normal distribution with unknown mean g, using loss function
L1/2(6,d). The standard conjugate prior for (u, ) is an inverse gamma on §, with density
7(0) = b°e~*%/(I'(a)8**!), a,b > 0, and, conditionally on 6, a normal on g with mean
m and variance 8/p, p > 0. Standard computations show that the limit of the corre-
sponding Bayes estimator of # obtained using formula (6) with k = 1/2, as a,b,p — 0,



is 11/2(0) = Y(X; — X)?/(n — 1), which is the usual unbiased estimate of © and can
also be obtained using loss function Ls(8,d).

Example 2 As an example of a computation of a scale mean in the presence of nuisance
parameters, consider estimating the scale parameter of a Weibull distribution. Given
type II censored observations Xj,... , X, from the density (ﬁ/ﬂ)mﬁ‘le‘zﬁ/a, let r be the
number of observed order statistics and ¥ 2 := i1 z? + (n —r)zP. Joint continuous
conjugate priors on § and 3 do not exist [Soland (1969)], but it is customary to choose a
prior density on 6 and 3 of the form w(3)b%%%/(T'(a)6°+!). «(B) is then the marginal
prior on § and @ has, conditionally on 3, an inverse gamma distribution, with parameters
a and b which may depend on §. Standard calculations show that the posterior scale
mean of O is

(8)

/ (b ig fc"))ﬁ::—l r(B)dp ]1/2 (@ tnatr-1)f (b f—gl z"))ﬁ_:ﬂ ﬂﬁ)dﬁ]—l/2

The computation of (8) does not seem to be any more difficult than the computation of
the posterior expectation. For numerical and Gibbs sampling computational methods
see for example Canavos and Tsokos (1973) and Berger and Sun (1993), respectively. If
B is known and a,b — 0, then expression (8) tends to 3-* 27 /1/r(r — 1), which is smaller
then the usual Bayes estimator with an improper prior 3 * :1;;6 /(r — 1) and greater than
the MLE estimator % z° /r.

4 Scale variances

In the previous section, we have used symmetric loss functions to obtain “Bayes es-
timators”, to be compared to standard frequentist estimators. This mixed approach
to inference is sometimes convenient, since it allows for comparison between different
procedures in terms of frequentist measures of performance.

In a more fundamental Bayesian approach to inference though, a Bayes estimator is
regarded only as a convenient summarization of the posterior [for a discussion, see for
example Box and Tiao (1973, Appendix A5.6)]. A loss function is then a way to prescribe
what kind of summary is appropriate. Typically, a posterior expectation is used as the
Bayes estimator, implying that a quadratic loss function is being used. A second step
is usually taken to accompany the Bayes estimate with a measure of uncertainty of the
posterior. If a posterior mean is used, a posterior variance is presented at this stage.
But, if a specified loss function is considered to be a reasonable criterion for choosing



an estimator, i.e. a number which minimizes a posterior expected loss, then it should
also be reasonable to present the achieved minimum of the posterior expected loss as a
second summary of the posterior. Perhaps the reason why a posterior variance, or even
a frequentist MSE, are sometimes used instead of an expected posterior loss is that only
few losses actually allow for simple expected posterior losses. For example, the use of
loss function Lg(6,d) involves the posterior expectation of the logarithm of ©, which
may not have an immediate intuition for a user. '

In the previous section we have argued for the use of symmetric loss functions for
certain kinds of problems. In particular, we tried to appreciate the usefulness of simple,
albeit arbitrary, loss functions of the form (5). These loss functions give rise to particu-
larly simple expected posterior losses, which may be of independent interest as measures
of variability of a positive variate.

Definition 3 Let O be a positive random variable with finite EQ* and EO~*. Then
Tk(@) = VEO*EO-F —1

is called the scale variance of order k of the random variable ©. If either EQ* or EQ~*

is infinite, then 74(0) := oo.

In a Bayesian framework, if © is assigned a posterior distribution given some data,
then 7+(O) is the posterior expected loss, when loss function (5) is used.

Scale variances are descriptive measures of the distribution of a positive random
variable. They are scale invariant and symmetric, in the sense that 74(c®) = 73(®), for
¢ > 0, and 7(071) = 7,(O). In particular, let 7(0) := 71(0) be called scale variance
tout court. By Jensen’s inequality, we have 0 < 7(0) < oco. Table 1 contains scale means
and scale variances for a few commonly used distributions.

5 Scale centers

There are many other ways to define a ¢ satifying the conditions of theorem 1 and
obtain a scale symmetric loss function. Another simple one is the following: given a
nondecreasing function h(zx),z > 0, define

g(z) = max{h(z), h(1/z)},

in analogy with a symmetric loss functions ¢(|6 — d|), for some nondecreasing ¢, in a
location parameter problem.



Example 3 Take h(z) = (log(z))? and obtain Brown’s loss function Lg(6,d).

As in section 3, in connection with the choice A(z) = z*, k > 0, we have

(9) Lpaz(0,d) = (max {g,% ) -1
and the following theorem.

Theorem 3 Let © be a positive random variable with density n(6) and k > 0. If
EOF < 0o and EO~* < oo, then the expectation of loss function (9) is minimized by the
solution dy, to the following equation.

(10) &2+ — ( /d :° 6% 1(8)d8)( /0 ™ 9=k (9)d0)".

Proof. The minimization problem

, do..,
min / (max {5, })*n(6)ds,

is easily seen to be equivalent, by differentiating in d, to equation (10), which has a unique
solution since the left hand side is an increasing and the right hand side a decreasing
function of d, spanning all the positive reals. il

Definition 4 Let dy be called the scale center of order k of the random variable ©.

The center of order 1 is a sort of scale median for the parameter @, but see Lehmann
(1983, page 176) for an alternative definition of scale median.

Unfortunately , finding a scale center usually requires numerical methods, for example
Newton-Raphson, and it seems hopeless to obtain estimators and posterior expected
losses of direct interpretability.



density (for z > 0)

scale mean

scale variance
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Table 1: Scale mean v(X) and scale variance 7(X).
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