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1 Introduction

Suppose Xj,..., Xy are independent!, identically distributed random vectors taking
values in R?, and possessing an absolutely continuous distribution function F with cor-
responding probability density function f. The density f is assumed to be bounded,
continuous, and smooth to some extent that will be quantified later; f is otherwise
unknown and should be estimated using the data. In particular, it will be assumed
that the characteristic function ¢(s) = [ra €'*? f(z)dz tends to zero sufficiently fast
as ||s||, — oo; here s = (s1,...,84), T = (21,-.-,24) € R%, (s-2) = S spzy is the
inner product between s and z, and || - ||, is the I, norm, i.e., ||s||, = (g |ss?)M?, if
1 <p<oo,and ||s||e = maxy |skl.

The nonparametric kernel smoothed estimator of f(z), for some x € R?, is given by

(cf., for example, Rosenblatt (1991) or Scott (1992))

fo) = £ — X0 = i [ Mom(s)emioDas (1)
FENG YT T ol Jpa N ’

where A(") is the smoothing kernel satisfying? [ A(z)dz = 1; ¢n(s) = & Thl; /%) s
the sample characteristic function, and A(s) = [ A(z)e’**)dz is the Fourier transform of
the kernel. In general, A(:) and A(-) both depend on a positive ‘bandwidth’ parameter
h; in particular, it will be assumed that A(z) = A~Q(x/h), and A(s) = w(hs), where
Q(+) and w(-) are some fixed (not depending on k) bounded functions, satisfying w(s) =
[ Q(2)ei*®)dx; the bandwidth A will in general depend on N but it will not be explicitly
denoted.
It is well known (cf. Rosenblatt (1991, p. 7)) that in this case

Ef(z) = / Q) f(z — hv)do, 2)

1The assumption of independence is not crucial here. The arguments presented in the paper apply
equally well if the observations are stationary and weakly dependent, where weak dependence can be
quantified through the use of mixing coefficients; see, for example, Gyorfi et al. (1989).

2In case it is not otherwise noted, integrals will be over the whole of R%.



and
Var(f(z)) = ﬁ [ [ @)~ ho)de — b [ Q) — be)o] . (3)
If f is continuous at z, and f(z) > 0, and if 2 — 0, as N — oo, but with AN — oo,

equation (3) becomes

i) [ 0(@)dz + O/N). (@)

Var(f(z)) = TN

If the bandwidth % is a fixed constant as N — oo, then it is immediate from (3) that
A 1 ,
Var(f(e)) = 5;Cralz,h), (5)

where Cyq(z, ) is a bounded function depending on f and 2.
If Q has finite moments up to ¢th order, and moments of order up to ¢ — 1 equal
to zero, then ¢ is called the ‘order’ of the kernel Q. If the density f has » bounded

continuous derivatives®, it then follows (cf., for example, Rosenblatt (1991)) that
Bias(f(2)) = Ef(x) — f(2) = cra(a)h* + o(h¥), (6)

where £ = min(q,r), and ¢y(x) is a bounded function depending on {), on f, and on
f’s derivatives. This idea of choosing a kernel of order ¢ in order to get the Bias(f(z))
to be O(h*) dates back to Parzen (1962) and Bartlett (1963); see also Cacoullos (1966)
for the multivariate case. Some more recent references on ‘higher-order’ kernels include
the following: Devroye (1987), Gasser, Miiller, and Mammitzsch (1985), Granovsky and
Miiller (1991), Miiller (1988), Nadaraya (1989), Silverman(1986), and Scott (1992).
Note that the asymptotic order of the bias is limited by the order of the kernel if the
true density is very smooth, i.e., if r is large. To avoid this limitation, one can define
a ‘superkernel’ as a kernel whose order can be any positive integer; Devroye (1992)

contains a detailed analysis of superkernels in the univariate case. Thus, if f has r

bounded continuous derivatives, a superkernel will result in an estimator with bias of

3Existence and boundedness of derivatives up to order r includes existence and boundedness of mixed

derivatives of total order r; cf. Rosenblatt (1991, p. 8).



order O(h"™), no matter how large r may be; so, we might say that a superkernel is a
kernel with ‘infinite order’. The advantage in using such a kernel is that the practitioner
does not have to select a new kernel to use with each new incoming data set; the same
kernel (with different choice of bandwidth) will ‘adapt’ to the smoothness of the unknown
density f in achieving equation (6) for any degree of smoothness r. The O(h") order for
the bias (and the corresponding rate of O(N~=%"/ (2r+4)) for the Mean Squared Error of f )
has been shown to be optimal, i.e., it is the smallest achievable with kernel estimators
if the density f is constrained to have exactly r bounded and continuous derivatives. If
the characteristic function ¢(s) decreases exponentially fast with increasing ||s||, or if
#(s) vanishes outside a compact set, then the smallest achievable orders for the Mean
Squared Error of f are O(log N/N) and O(1/N) respectively. These important lower
bounds on the accuracy of kernel estimators are due to Watson and Leadbetter (1963);
see also Wahba (1975).

However, it might be more appropriate to say that a kernel has ‘infinite order’ if it
results in an estimator with bias of order O(h") no matter how large r may be regardless
of whether the kernel has finite moments. It seems that the finite-moment assumption for
Q) is just a technical one, and that existence of the Lebesgue integrals used to calculate the
moments is not necessarily required in order that a kernel has favorable bias performance;
rather, it seems that if the integrals defining the moments of Q have a Cauchy principal
value of zero then the favorable bias performance follows, and this is in turn ensured by
setting w be constant over an open neighborhood of the origin.

A preliminary report on a specific type of such infinite order kernel in the univariate
case (that corresponds to an w of ‘trapezoidal’ shape) was given in Politis and Romano
(1993); in the present paper a general family of multivariate kernels of infinite order is
presented, and the favorable properties of the resulting estimators are quantified. As
elaborated above, the proposed kernels are characterized by the fact that their Fourier
transforms are ‘flat’ over an open neighborhood of the origin. In particular, for the class

of ultra-smooth densities whose characteristic functions are supported on a compact set,
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the proposed kernel estimators are shown to actually be v/N-consistent.

The organization of the remainder of the paper is as follows: Section 2 contains
the necessary definitions and statements of our main results on the performance of the
proposed kernel estimators; Section 3 contains some practical comments and further

discussion; all technical proofs are placed in Section 4.

ot



2 A general family of flat-top smoothing kernels of
infinite order.

Let ¢ and p be constants satisfying 1 < ¢ < 00, 1 < p < 00, and define

L fsll, < 1/k

Ae(8) =S ga(s) i 1/h <||s||, < ¢/h (7)

0 if ||s]], > ¢/h.
Here g)(s) is some properly chosen continuous, real-valued function satisfying gx(s) =
9r(—3), and {g\(s)| < 1, for any s, with gi(s) = 1, if ||s|]|, = 1/h, and gx(s) = 0, if
lls]|, = ¢/h. We will also assume that [g|gr(s)|*ds < co, where S = {s:1/h < ||5]|, <
c¢/h}; the latter assumption guarantees that [ A2ds < co which will be necessary in order
to have kernel estimators with finite variance (see our Remark 2 in the sequel of this
Section).

If ¢ =1, the drop from the value 1 to the value 0 is done in a discontinuous fashion,
and no function g, is needed. On the other hand, the case ¢ = oo covers the situation
where a compact support for A. is not desired. In essence, gy interpolates between the
value 1 for ||s||, < ¢/h, and the value 0 for ||s||, > 1/h. Perhaps the most ‘natural’
way for doing the interpolation would be to do it in a linear fashion provided, of course,
that ¢ < co; more details on the subject of choosing the value of ¢ and the shape of the
function ¢, can be found in Section 3.3.

Having picked a gy function, we now define a family of kernels {A.(-), ¢ € [1, 0]} by

Adlw) = o5z [ Aela)e s (5

i.e., by the Fourier transform of A.(s); note that the corresponding £(-) and w(:) functions

can be obtained by setting h = 1 in the definitions (7) and (8), and that A, is real-valued
because of the symmetry of A, i.e., Ac(s) = Ae(—s).

The proposed kernel smoothed estimators of f are given by

A N .
) = 3 LA (o= X)) = (71—)— [ ls)bnls)e s, (9)
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for some choice of ¢ € [1,00]. The estimator f. can be computed using either of the two
expressions appearing in (9). To compute f using the standard expression involving the
convolution of A, with the empirical distribution, the form of A, must be calculated. In
general, a closed-form expression for A, might not be available, but A, can be calculated
numerically over a grid of points (call it G), and consequently f.(z) will be computed
only for & € G} see Section 3.1 for more details on computational aspects.

Note that by equations (4) and (5) it is immediate that Var(f,(z)) = O(dw), as
N — oo, whether £ is a fixed constant, or if A — 0 but with AN — oo. Therefore, the
order of magnitude of the Mean Squared Error (MSE) of f. will hinge on the order of
magnitude of the bias. We will now proceed to investigate the MSE performance of fc
under a variety of different smoothness conditions on f; for this purpose, we formulate
three different conditions based on the rate of decay of the characteristic function ¢ that

are in the same spirit as the conditions in Watson and Leadbetter (1963).
Condition Cy: For some p € [1,00], there is an r > 0, such that [ ||s||7]é(s)] < oo

Condition Cy: For some p € [l,00|, there are positive constants B and K such that

|6(s)| < Be=Kllsllr,

Condition C3: For some p € [1,00], there is a positive constant B such that |¢(s)] = 0,

ifHSHP > B.

Conditions C; to C3 can be interpreted as different conditions on the smoothness
of the spectral density f(w); cf. Katznelson (1968), Butzer and Nessel (1971), Stein
and Weiss (1971), and the references therein. Note that they are given in increasing
order of strength, i.e., if Condition C holds, then Condition C; holds as well, and if
Condition C3 holds, then Conditions C; and C, hold as well. Also note that if Condition

Ci holds, then f must necessarily have [r] bounded, continuous derivatives, where [-] is
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the positive part; cf. Katznelson (1968, p. 123). Obviously, if Condition C holds, then
f has bounded, continuous derivatives of any order; although thié very high degree of
smoothness for f seems like a very strong assumption, it turns out that it is satisfied in
many physical and biomedical applications (cf. Miiller (1988, p. 73)).

The following sequence of theorems quantifies the performance of the proposed family
of flat-top estimators. Note that the constant p to be used in connection with the kernel

A, is the same p that appears in Conditions C; to Cs (as invoked by the theorems).

Theorem 1 Assume that h — 0, as N — oo, but with kN — oo; under Condition Ci,
it follows that

sup |Bias(fo(z))| = o(h").

veRd
Now let @ be some point in R such that f(x) > 0; then by letting h ~ AN-Y@r+d) - fop
some constant A > 0, the asymptotic order of the Mean Squared Error of fc is given by

]VISE(fC(:v)) = 0(1\7—27-/(27-.1-4)).

Remark 1. That the Bias(f.(z)) turns out to be o(k"), rather than O(A") should
not be surprising as it was mentioned that Condition Cy is stronger than assuming f has
r bounded and continuous derivatives; however, it is not much stronger. For example,
in the case d = 1, Condition Cy is seen to be satisfied if it is assumed that f has r abso-
lutely integrable derivatives, and the the rth derivative f (") satisfies a uniform Lipschitz

condition of order a > 1/2; cf. Katznelson, p. 32.

Remark 2. The asymptotic variance of f (2) can be calculated from equation (4).
However, to compute [ Q%(z)dz, it is easier to use the isometric properties of the Fourier
transform, i.e., Parseval’s theorem, and compute (27)~% [ w?(s)ds instead, especially

since, if ¢ < 0o, w has compact support.



Theorem 2 Assume that h — 0, as N — oo, but with h*N — oo; under Condition Cy,
it follows that sup ¢ pa |Bz'as(fc(a:))| = O(h1~4e~%/") Ifwe let h ~ A/log N, as N — oo,

where A is a constant such that A < 2K, it follows that

sup [Bias((o)] = O(EI—) = o ).

z€R4

Now let = be some point in R® such that f(z) > 0; the choice h ~ A/log N implies that

MSE(f.(x)) = O(L52) .

Theorem 3 Assume Condition Cs and that, as N — oo, h is some constant small
enough such that h < B~!; it follows that

sup |Bias(fo(z))] = 0.

zER4

Now let & be some point in R? such that f(z) > 0; it follows that MSE(f,(z)) = O(1/N).

Remark 3. The special case where ¢ = 1, i.e., when the drop of A. from the value
1 to the value 0 is done discontinuously, has been considered by many authors in the
literature, e.g. Parzen (1962). Thus, considering the estimator f1, Davis (1977) proved
analogs of our Theorems 1 to 3 for d = 1, while Ibragimov and Hasminksii (1982) have
proved an analog of our Theorem 3 in the general d case. Nevertheless, the choice ¢ =1
is not recommendable in practice; our next Section addresses this issue, as well as other

practical concerns.



3 Discussion and practical comments

3.1 Computational aspects and remarks

Assuming ¢ < 0o, and choosing g\ to be linear, actually results into a compact expression

for A, namely

+
LIN ¢ h 1 +
= - — ———(1=h
()= =5 (1= 2l ) = 2 0 Bl (10)
where (z)* = max(z,0) is the positive part function. A closed-form expression for

AUN(g) = (2m)™ f ALIN (5)e~#*%)ds in the special case d = 1 is given by

Lsinz(wcac/h)—sinz(vr:vM .
ALIN(g) = § 27 ) ifc>1 -
c _21;sm(27r7rx:1:/h) T 1.

it is apparent that in the case ¢ > 1, ALIN is just a linear combination of Fejér kernels,
whereas if ¢ = 1, ALV reduces to the Dirichlet kernel. In the general case where d > 1,
ALIN depends on p and may be difficult to evaluate analyticaly; see Figures 1 and 2 for
graphs of AN and AMIN for d =2, p =2, c =2, and h = 0.067, where AL™V has been

computed numerically using a two-dimensional discrete Fourier transform.

Figures 1 and 2 around here

In the Euclidean norm case (p = 2), computations can be aided by the observation
that, since A;(s) depends on s only through ||s||z, its functional form is rotation-invariant;
consequently, A.(z) depends on 2 only through ||z||2, and the functional form of A,
is rotation-invariant as well. Hence, to evaluate A (z) for any = € R?, it suffices to
evaluate it for # = (21,0,0,...,0), with x1 spanning R, and then rotate the resulting
graph. But A.(21,0,0,...,0) can be obtained by a univariate Fourier transform as

A(21,0,0,...,0) = (2m)~! [ p(sy)e™"11 dsy, where
w(sy) = (27r)”d+1 / / . / Ae(81,82, .-+, 84)dsadss - -+ dsy

10



is the ‘marginal’ of the function A.(s) = A.(s1,82,- .., Sd)-

It should be pointed out that the computation of fc can actually be accomplished
faster by using the rightmost expression of (9), i.e., multiplication (‘tapering’) of the
empirical characteristic function by A., followed by a discrete Fourier transform; cf., for
example, Silverman (1986, p. 61). In that sense, exact knowledge of the form of A, is
not needed; see also our Remark 2 after Theorem 1. However, for illustration purposes,
we now construct an explicit (A, Ac) pair by taking products of the univariate kernel
given in (11); see Miiller (1988) or Scott (1992) for more details on the product method
of constructing multivariate kernels. So let d be any positive integer, 1 < ¢ < oo, and

h > 0, and define

APROD (5 ( )d ﬁ sin’ wcm]/h) — sin®(7z;/h) (12)

o1 m2at(c—1) ’
and
1 ¢4
APROD(s) = (—= ) TT (e~ hlsiD* = (1= hls;)*) (13)
c— <1
it is easy to check that APEOD and APROD are related to each other by a Fourier transform,

and that
1oif [[sflee < 1/R

/\PROD(S) —
: 0 if ||s]|e > ¢/h.
The functions APROD and APROD are plotted in Figures 3 and 4 in the case d = 2, p = oo,

¢=2, and h = 0.067.

Figures 3 and 4 around here

It is well-known in the literature (see, for example, Miiller (1988) or Scott (1992))
that kernel density estimators corresponding to kernels of order bigger than two are
not necessarily nonnegative functions; it goes without saying that the same applies for

our estimators f. that are obtained using kernels of ‘infinite order’. To appreciate why,
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ALIN and APROD

observe that in Figures 2 and 4 the kernels exhibit negative ‘sidelobes’
beside the main prominent ‘lobe’ around the origin which is positive.

Nevertheless, the nonnegativity is not a serious issue; there is a natural fix-up, namely
using the modified estimator® f(z) = max(f.(z),0). The estimator fF(z) is not only
nonnegative, but is more accurate as well, in the sense that MSE(f}(z)) < MSE(f.(z)),
for all a; this fact follows from the obvious inequality |ff(z) — f(z)| < |fe(z) — f(z)]-
In addition, note that if f(z) > 0, an application of Chebychev’s inequality shows that
Prob{f.(z) = f+(z)} — 1 under the assumptions of any of our Theorems 1 to 3; on
the other hand, if f(x) = 0, then the large-sample distribution of either \/ij’(a:), or

VhiN fc(m), degenerates to a point mass at zero.

3.2 Choosing the value of p and transformations

The implicit assumption in our Theorems 1 to 3 was that the value of p used in A, and
the subsequent computation of the estimator fc (or fc+ ) was the same as the value of p
appearing in the invoked Conditions C; to C3. Note, however, that if one of Conditions
C; to Cs holds for some p € [1,00], then, by the equivalence of /, norms for R?, that
same Condition would hold for any p € [1, 00], perhaps with a change in the constants
B and K. In that’ sense; the matching of the values of p in A, with that of the invoked
Condition Cy, Cy, or Cs is not required for the asymptotic arguments to go through, and
Theorems 1 to 3 are true even without the matching.

Nevertheless, it makes good sense to have this matching occur (even approximately)
as it would make a difference in practice. The reason it would be beneficial can be
attributed to this possible change in the constants B and K that influence the propor-

tionality constants in calculating the bias of f.. While the asymptotic order of the bias

*Strictly speaking, the modified estimator should read fi(z) = max(f.(z),0)/ fma.x(fc(y), 0)dy, so
that the estimator integrates to one; nevertheless, this renormalization is an asymptotically negligible
adjustment because under appropriate conditions fma.x(fc(y), 0)dy — 1 in probability {cf. Nadaraya
(1989)).



remains unchanged, the proportionality constant can be reduced by this matching of the
values of p; see, for example, the proof of Theorem 2.

A practical way to ensure that this approximate matching occurs is described next.
Once |¢n(s)]| is calculated, it can be plotted as a diagnostic tool, in analogy to correl-
ogram plots in the spectral analysis of time series (cf. Priestley (1981)). Since s is in
general multi-dimensional, ‘slices’ of |¢n(s)| can be plotted, i.e., varying only one or
two of the coordinates of s at a time; alternatively, we can vary s subject to a linear
constraint of the type Ms = m, where M is a (d — k) by d matrix (and k is 1 or 2),
and m is a (d — k) dimensional vector. By so doing, one can get a rough estimate of the
different rates of decay of |¢n(s)| along all directions, and certainly along the d principal
directions. Note that the rate rates of decay of |¢pn(s)| can be influenced by scaling the
X data. Thus, a first step is to employ a diagonal transformation D to come up with
transformed data V; = DX;, ¢« = 1,..., N; here D = diag(Ds,..., Dy) should be chosen
such that Dj' equals an estimate of scale (say, sample standard deviation) of the j-th
coordinate of the X data. In conjunction with the new Y data, using p = oo seems like
a reasonable choice.

Ideally however, we would want the ‘level’ curves of |¢n(s)| (i.e., the sets of the type
{s : |¢n(s)| = const.}) to be shaped like an I, unit ball. If the ‘level’ curves of the
sample characteristic function of the ¥ data are not shaped like [, balls, another linear
(not diagonal) transformation can be employed in an effort to achieve approximately
equal rate of decay of the sample characteristic function in all directions (and not just
the d principal ones); cf. Scott (1992, p. 153) for more details on use of transformations.
Finally, the value p = 2 can be used in conjunction with kernel estimation of the proba-
bility density of the transformed data where the sample characteristic function has equal

rate of decay in all directions.
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3.3 Choosing the value of ¢ and the shape of the function g,

It is quite interesting that the actual value of ¢ and the actual shape of the function g,
do not enter at all in our asymptotic Theorems 1-3; this observation agrees with the
findings of Devroye (1992) who considered flat-top kernels in the univariate case (d = 1).

Nevertheless, properly choosing ¢ and the shape of the function gy will definitely have
a practical impact. In terms of choosing the shape of A; or of w, i.e., choosing ¢ and g,
Devroye (1992, p. 2053) writes: "The recommendation is to take (our w) rectangular
with two smooth tails added on so as to make the tails of (our ) small. The size of
these tails has to be determined from nonasymptotic considerations, perhaps via some
data-based rule.”

Making the tails of 2 small has a twofold advantage®: (a) reducing the bias of the
resulting estimator by reducing the ‘leakage’ through the many small peaks in the -
typically wavy- tails of 2, and (b) reducing the variance of the resulting estimator which
is approximately proportional to [Q?*(z)dz. Therefore, comparison between different
kernels can be accomplished by inspecting the relative magnitude (and sign) of the
‘sidelobes’ as compared to the main ‘lobe’ around the origin. _

In particular, the choice ¢ = 1 which was considered by Davis (1977) and Ibragi-
mov and Hasminksii (1982) is not recommendable in practice. To see this, consider the
functions A; and A; that are plotted in Figures 5 and 6 in the case d = 2, p = oo, and
h = 0.05. It is apparent that the magnitude of the wavy ‘sidelobes’ of A; is much bigger

N or APROD (see Figures 2 and 4). As a matter of fact, to really

than those in either A7
witness the tails of A; become negligible in magnitude, we have to look at A;(x) over a

wider region of the (21, ;) plane; see Figure 7.

5Tt should be stressed however that by different choices of of ¢ and gy we can not change the asymp-
totic orders of bias and variance of the resulting estimators; that is why the actual shape of A; is
immaterial in our asymptotic Theorems 1-3, as long as A is flat near the origin, and has finite Eu-
clidean norm. By choosing the value of ¢ and the shape of the function ¢, properly, we can only influence

the proportionality constants in the large-sample bias and variance of the estimators.
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Figures 5, 6 and 7 around here

The reason h = 0.05 was used in connection with A; in Figures 6 and 7, (as opposed
to b = 0.067 that was used for ALY and AFROD in Figures 2 and 4) was the effort to
compare kernels that yield estimators with approximately equal variance. As can be
seen from the first column of Table 1, with these choices of h, the variance integrals
[ A%(s)ds = h™¢ [w?(s)ds are about equal for the three kernels. So, in other words,
choosing the A bandwidths so that we achieve similar variances we empirically verify
that A; will result to more biased estimators than either AZTY or APEOD because of the
more pronounced ‘sidelobes’. Alternatively, suppose that the same bandwidth was used
for all three kernels. Then, as can be seen from the second column of Table 1, A; will

result to an estimator with bigger variance than either AZ/N or APROD,

[ A2(s)ds | fw?(s)ds

Figure 1 0.360 0.0016
Figure 3 0.445 0.0020
Figure 5 0.467 0.0243

Table 1. Entries of the first column are the variance integrals [ A?(s)ds = h™¢ [ w?(s)ds
that equal the asymptotic variance of VN f (z)/+/f(x) for the three functions shown in
Figures 1, 3, and 5; entries of the second column are the variance constants [w?(s)ds

for the three functions shown in Figures 1, 3, and 5.
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In short, ¢ = 1 is a bad choice. Our empirically-based recommendations at this point
suggest that using ¢ = 2, or ¢ in the neighborhood of 2 (say ¢ € [1.5,3]), and using the
gy corresponding to either AN or AP ROD will give good results; see also our discussion
in Section 3.2 where the choices of p = 2 and p = oo that correspond to ALIN and
APFOD come up rather naturally. As evidenced by the variances presented in Table 1,
ALT™N might be somewhat preferable to ATFOP, but it is also a bit harder to work with
because it is not given in closed form. We conjecture that the ‘optimal’ (with respect
to some reasonable criterion, say exact MSE of the resulting estimators) choices of ¢
and gx(s) will turn out to be ¢ = oo, and a gi(s) that decays to zero fast enough as
s — oo, but that it is not necessarily nonnegative for all values of s; rather g(s) will
have small negative (and positive) ‘sidelobes’ for s large, in much the same way as the
kernel (z) has to go negative for some z-regions to achieve optimality. Nevertheless,
this extra fine-tuning of kernel choice will not be very significant in practice —unless the
sample size N is really huge, and higher-order refinements acquire importance; using
either ALTN or APROD (with ¢ in the neighborhood of 2) will probably be as good for all

practical purposes.

3.4 Choosing the bandwidth £

Last, but not in any means least in terms of practical importance, is the the choice
of bandwidth h. Miiller (1988, p. 61) writes ”... the behavior of kernel estimates
with kernels of higher order is less sensitive towards a suboptimal choice of bandwidth.”
Consequently, our kernels of infinite order should also share this robustness property.
Nevertheless, to take full advantage of the smoothness of the underlying true probabil-
ity density using our infinite order kernels one should be prepared to use really large
bandwidths if deemed necessary.

As a matter of course, our Theorems 1-3 give expressions for the optimal bandwidth

(optimal with respect to minimization of the asymptotic order of the resulting MSE), i.e.,
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h~ AN-Y@+d) h ~ Allog N, and h = const. < 1/B respectively, where the constants
A and B are described in Theorems 1-3. However, this is not entirely satisfactory from a
practical point of view since it is assumed we know which of Conditions C1—C35 holds true
(and we know r and B) which is not given in any real data-analytic situation. Rather,
the degree of smoothness of the true probability density should also be gauged from the
available data at hand.

Although more work is needed in order to settle the problem of optimal bandwidth
choice, we now give a practical recommendation based on our Theorem 3 in conjunction
with a diagnostic plot of |¢n(s)| as discussed in Section 3.2. Suppose that the empirical
plot of |¢n(s)| reveals that |¢n(s)| is of negligible magnitude for ||s||, bigger than some
number B. Then, B can be considered as an estimate of the constant B appearing in
Condition C3, and we should be advised to choose h =1/ B. Note that even if the weaker
Conditions C; or C; hold instead of Condition Cj, still |¢(s)| (and therefore |pn(s)| as
well, since ¢n(s) — &(s) as N — oo) would be negligible for big enough ||s||p; hence,
the above simple diagnostic procedure should give reasonable choices for the bandwidth

h under any of our assumed smoothness Conditions C;-Cs.

Acknowledgement. Many thanks are due to Prof. George Kyriazis of the Univer-

sity of Cyprus for many helpful discussions.
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4  Technical proofs.

PROOF OF THEOREM 1. Let z be any point in R? and note that

Bias(fc(:c) = Efc(:l?) — f(z)

) (2%)”‘ / Ao(s) B (s)e™")ds - (271r)d / $(s)e™)ds
1

- - 8) — q e—i(s.z)cs — __1_ s) — s e_i(““) s
— (2m)d /()\c( )= 1)6(s) / (27r)d/” (Ae(s) —1)é(s) ds, (14)

sllp>1/h

since A;(s) = 1, for all s such that ||s||, < 1/h.

Now note that

. 2
Bias(Fue)| < o f 0 160610
2 sl ;2 16(6)]ds = ol
= G oo T 19 < G g IGO0

where it was used that, since |ga(s)| < 1, |Ae(s) — 1| < 2. The reason the little o(-)
arises in the above is the following: note that [||s|[;|¢(s)lds = [j,>1/n |Is|[5l¢(s)lds +
isto<ayn NIslpl@(s)lds; as b — 0, we have [y <1/ |Isllpl8(s)lds — [ls|[;|#(s)|ds which
is finite by Condition C1, and thus it follows that [, s1/x |Is|l;1¢(s)|ds — 0.

Therefore, Bias(fc(m)) = o(h"), uniformly in ¢ € R%, as we were supposed to prove.
Finally, under Condition Cy, f is continuous at &; now if f(z) > 0, equation (4) holds
true, and the asymptotic order of the MSE(f.(z)) is O(N~%/*d)) a5 stated in the
theorem. Q.E.D.

PROOF OF THEOREM 2. We will do the proof in the case p = oo, the other cases
p € [1,00) being similar; alternatively, note that if Condition C; is true for some p €
[1,00], then (by the equivalence of I, norms for R%) it is also true for any p € [1, 0],
perhaps with a change in the constants B and K, therefore for p = oo as well. Let z be

any point in R? and, as in the proof of Theorem 1, note that

Bias( o) = o [ Ods) = D)e7C s,
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since A.(s) =1 for ||s||eo < 1/A.

Consider the following partition of the set {||s]|cc > 1/h}, namely {||s|lcc > 1/h} =
U, (Ai U /_lz-), where A; = {s such that [{s|| > 1/k and s; = maxy |sk|}, and A; = {s
such that ||s||cc > 1/h and —s; = max;, |sz|}. Note that the A;’s and A;’s are essentially
disjoint except for their boundaries, e.g., in the case where s; = s, = max; [si|, etc.

Therefore, we can write

Bias(fc(m)):/ + 4+ + [ + _+---+/A, (15)

Ay Az An Ay Az

where for j = 1,2,...,n

and

[y = G g, O = ) 1007

We now proceed to analyze in detail the first term, i.e., [, . Observe that

2
< {
| A = (27)d /||s|]°°>1/h [#(s)lds,

Ae(s) — 1] £ 2. But

since |gr(][s]|e)] < 1 implies
/ 6(s)|ds < [ s31Be Koids = O(ﬂ).
[I5l]co>1/R — Ji/n ha-1

Note that to bound the multiple integral by the single integral above, the following
argument was used: let A; = {s: s; € (31,81 + ds1)}; the volume of the set 4; N A is
sf_ldsl, and |¢(s)| < Be 1, for s € A; N Ay, since 51 = |[s]| over A;.

A similar analysis shows the terms [, ,..., 4., [1,5--+, [, being bounded above by
O(%), uniformly in = € R%. Hence, |Bias(f.(z))| = O(e}:;—i/lh), uniformly in z € R%.
Letting h ~ A/log N, where A is a constant such that A < 2K, it follows that

N (log N)d-1 1
sup |Bias(f)] = O] =) = ol ),
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as required.

Finally, under Condition Cs, f is continuous at z; now if f(z) > 0, equation (4)
holds true, and the asymptotic order of the MSE(f,(z)) is O(W) as stated in the
theorem. Q.E.D.

PROOF OF THEOREM 3. The proof of Theorem 3 is again based on the decomposition
(15) presented in the proof of Theorem 2. We take p = oo here as well; the other cases
p € [1,00) are similar.

Note that A < B™!, and thus 1/h > B. Since |¢(s)| = 0, if ||s]]ec > B, it follows that
|6(s)| = 0, if ||s||eo > 1/h. Hence,

sup |Bias(f.(z))| =0,
z€Rd
as stated in the theorem.

Finally, under Condition C3, f is continuous at z; now if f(z) > 0, equation (5) holds
true, and the asymptotic order of the MSE(f.()) is O(1/N) as stated in the theorem.
Q.E.D.
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CAPTIONS FOR FIGURES.
Figure 1. The Fourier transform of ALV i.e., A\ETN(5s), as a function of s = (s1,82),

ford=2,p=2,¢c=2, and h = 0.067.

Figure 2. The kernel ALV (z), as a function of z = (z;,2;), ford =2, p=2, ¢ = 2,

and h = 0.067.

Figure 3. The Fourier transform of AFEOD je. MPEOD(s) as a function of s =

(s1,82), for d =2, p = 0o, c =2, and h = 0.067.

Figure 4. The kernel AP%#9D(z), as a function of z = (z1,z,), for d = 2, p = oo,

¢=2,and A = 0.067.

Figure 5. The Fourier transform of Ay, i.e., A(s), as a function of s = (s;, s,), for

d=2,p=o00,and h = 0.05.

Figure 6. The kernel A;(z), as a function of & = (z1,2;), for d = 2, p = oo, and

h = 0.05.

Figure 7. Same as Figure 6, i.e., d = 2, p = 00, and h = 0.05, but here A;(z) shown

over a wider region of the (z1,z,) plane.
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