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Abstract

In Bayesian analysis with a “minimal” data set and common noninformative priors, the
(formal) marginal density of the data is surprisingly often independent of the error distribution.
This results in great simplifications in certain model selection methodologies; for instance, the
Intrinsic Bayes Factor for models with this property reduces simply to the Bayes factor with
respect to the noninformative priors. The basic result holds for comparison of models which are
invariant with respect to the same group structure. Indeed the condition reduces to a condition
on the distributions of the common maximal invariant. In these situations, the marginal density
of a “minimal” data set is typically available in closed form, regardless of the error distribution.
This provides very useful expressions for computation of Intrinsic Bayes Factors in more general
settings. The conditions for the results to hold are explored in some detail for nonnormal linear
models and various transformations thereof.
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1 Introduction

We will freely use the language of group theory, referring to Eaton (1989) for definitions. Note,
however, that the key examples can be understood without use of group theory.

Suppose that a locally compact group G acts properly on the observational space Y C R™.
Consider the problem of choosing between two families of densities

My : {fi(y|61),6:1 € ©1} and M : {fa(y|62),02 € Oz}, (1)

where all densities are with respect to y, a given relatively invariant Radon measure on ). Assume
that ©®; and O are isomorphic to G and that G acts transitively on the ©; in such a way that
both My and M, are invariant with respect to G (i.e. P;(gY € A|0;) = P;(Y € A|gb;), A€ Y,
6; € ©;). Let u* be a relatively invariant measure on G (and, hence, on the ©;).



Example 1.1 Suppose y = (y1,...,%n), Where the y,;’s are i.i.d. from either the density (on R!
and with respect to Lebesgue measure) o7 p1((%: — B1)/o1) or o5 p2((yi — B2)/02). Thus, for
i=12, 0; =(B;,0;) and

1 2 Y — ,3

fi(yl65) = — 11 »; (zU—J) : (2)

J =1 J
These are invariant with respect to the usual location-scale group G = {gp. : —00 < b < o0, ¢ > 0},
where the group actions on Y and ©; are defined by

gey=cy+b-1 and gy0; = (cB; +b,co;), (3)

where 1 € R™ denotes a vector of 1’s. Here p is Lebesgue measure on R", and p* is Lebesgue
measure on (—oo,0) x (0, c0).

To decide between M; and M,, the standard Bayesian approach is to choose proper prior
densities 7;(0;) (with respect to u*, say) j = 1,2, and determine the Bayes factor of M; to Ma,

Biz = ma(y)/m2(y),

where

mi() = [ Fl05)ms(05) w7(d8;). (®)

Improper prior densities cannot typically be used in computation of Bayes factors, because the
m;(y) are then determined only up to arbitrary multiplicative constants. This has been a major
barrier to the development of general default Bayesian model selection methodology.

Recently, Berger and Pericchi (1996a, b) proposed the intrinsic Bayes factor approach to over-
coming this difficulty. The approach is based on using part of the data as a “training sample”
to convert default improper priors into proper distributions. Precursors or variants on such use
of training samples can be found in Lempers (1971), Atkinson (1978), Geisser and Eddy (1979),
Smith and Spiegelhalter (1982), and Gelfand, Dey and Chang (1992).

To define an intrinsic Bayes factor, one begins by choosing default prior densities for the 8;. In
this paper we will choose 7(6;) to be v,(6;), where v, is a right Haar density (with respect to u*)
corresponding to the group-action on ©;. Next, one defines a minimal training sample (MTS) to be
a subset, y(1), of the full data vector y such that 0 < m}(y(l)) < oo, for j = 1,2, and m}(y*) = oo
for either § = 1 or j = 2 when y* is a subset of y(I); here

mi0) = [ H8)w(0:) 17(d5). (5)

Thus an MTS is a subset of the data for which the posteriors corresponding to v,(;) would be
proper, but for which any smaller set of data would not yield a proper posterior for at least one of
the models. An intrinsic Bayes factor is then defined as

B _ ™) (M) , (6)

27 mi(y) mi(y(1))

where “Av” refers to some type of average of the mi(y(l))/mi(y(l)), over all possible choices
of minimal training samples y(!). Common choices of “Av” are the arithmetic average, geometric




average, and the median. For discussions of the appealing properties of B],, see Berger and Pericchi
(1996a).

Example 1.1 (continued). A right Haar density for a location-scale problem is v,((3,0)) = 1/0.
For a single observation, y;, it is clear that

yz) —/ / 02 ](yz ,6] )dBido; = oco.

For two distinct observations y; # yx, computation shows that

© 1 y—=Biy Yk—Bi 1
. . dB:do; = ———,
_OO a?pj( 7; )p;( o; )dBjdo; 21v: — v

m(ww) = [ (7)

regardless of p;. Thus an MTS is any pair of distinct observations. Furthermore, (7) implies that,
for any MTS y(I) = (v, yx), m5(y(1))/mi(y(1)) = 1. It is immediate that

Bf, = mi(y)/mi(y). (8)

In other words, the intrinsic Bayes factor corresponds to utilizing v,(8;) directly as the prior
distribution for both M; and M, and the full data. The training samples become irrelevant.

Equations (7) and (8) provided the original motivation for this paper. Computation of Bf,
can be onerous if averaging over all training samples is required, and it is not always clear which
“average” should be chosen. But when m5(y(!))/mi(y(l)) = 1 for all training samples, these
concerns become irrelevant and (8) becomes a compelling choice as a default Bayes factor. This
motivated our search for general conditions under which (8) would hold.

Equation (7) is itself quite a curiosity, because of the lack of dependence of the answer upon
pj. (The equation can be established directly by changing variables to v = (y; — 3;)/0; and w =
(yx —B;)/0;, and using exchangeability of V and W.) This equation is generalized in sections 4 and
5 to broad classes of linear and transformed linear models. These generalizations are of considerable
importance in their own right, as they allow closed form computation of the mj(y(1))/mi(y(I)) for
a wide variety of situations in which ©; and O, are not isomorphic. This can be crucial to easy
implementation of intrinsic Bayes factor methods, as numerical integration of a large number of
m;(y(l)) is otherwise needed. Note that the expressions obtained in sections 4 and 5 formed the
basis for the methodology developed for normal linear models in Berger and Pericchi (1996b) and
Varshavsky (1996).

Section 2 states a general theorem which forms the basis for the determination of when simpli-
fication (8) results. This is applied to the general linear model in section 3, and to ANOVA type
problems in particular. Section 5 considers various transformed linear models, and presents an
application of the ideas to a common model selection problem in reliability and survival analysis.

2 The Bayes Factor Under Right Haar Measure

For the situation in section 1, let T(y) be a maximal invariant function acting on ), with respect
to G. (Again, see Eaton (1989) for definitions.) Let f7(-) denote the density of T'(y) under Model
j, and with respect to the measure pr induced by pu.



Example 1.1 (continued). One possible choice of a maximal invariant is

1 —UYn Y2 — Yn Yn—1 — Yn
1= ( ST ;
( ) lyn—l - ynl, Iyn—l - ynl, ’ |y'n.—1 - ynl ( )

Note that this takes values in the space R(*~?) x {—=1,1}, and ur is counting measure on {—1,1}
and Lebesgue measure on R("~2), For the special case n = 2 (corresponding to y being a minimal
training sample), T(y) is either —1 or 1. Furthermore, because of exchangeability of and yo, it
is then clear that, for either j = 1 or 2,

fF(-1)=rf1)=1/2 (10)

For n > 2, f* will typically vary with j. This means that only a minimal training sample will
typically yleld the simplification resulting in (8), providing a rather compelling reason to restnct
attention to training samples that are minimal in such situations.

Theorem 2.1 For the situation described above and when a right Haar density, v,(-), is used as
the prior density for both My and Ma, the Bayes factor can be represented as

f(T()
By = =5 11
"= HaW) ()
Proof: Since the base measure, y, on Y is relatively invariant, it has a multiplier x(-). The

Wijsman representation theorem (Wijsman (1990)) gives the following expression for the ratio of
densities of the maximal invariants:

I 2(gy162)x(g9)vi(dg) (12)
Je F1(gyl61)x(9)vi(dg)’

where v)(-) denotes a left invariant Haar measure on G. Hence, to prove the theorem, it suffices to
show that

[ $5(avibsxiamidg) = [ JiCulods)we(d;). (13)
7

Since the models (1) are invariant under G,
fi(y16;) = fi(gulgb;)x(g), Vy€Y,g€G,0; €0;. (14)

Using (14) and the fact that »(dg™") = v-(dg) yields

[ 5taepx(omids) = [ fiwla™0)x(s)w(do)
G G
/G fi(ylgd)m(dg™)

[ £italgtyw.(dg).
G

Because G is isomorphic to ©; and v, is right invariant, (13), and hence the theorem follow imme-
diately. =



Example 1.1 (continued). From the earlier discussions, (10), and the above theorem, it is clear

that, for any MTS y(I),
1/2

Bia(y(1)) = 12 1.

This provides another route to (8). Note, further, that Theorem 2.1 shows that
B, = f{(T(¥)/ f(T(y))-

This may be useful for computation in some situations.

3 Application to the Linear Model

3.1 The Group Structure

Suppose the data y = (y1,...,¥n)" arises from a linear model
y=Xp+oe, (15)

where e=(ey,...,€,)! is a random vector having the density f(u), » € R", X is an n x (m — 1)
known design matrix of full rank and 8 = (81, - .,Bm-1)" and o > 0 are unknown parameters.
Suppose that we are interested in choosing between two densities for the error ¢,

M e~ fi(-) and Mz :en~ fo(o). (16)

This is an important problem in model validation as well as model selection. The group of trans-
formations that leaves these models invariant is

G= {gb,c: b':(bl"'-,bm—l)abERm_la C>0} (17)

that acts on Y via the group action
98.:(y) = cy + Xb (18)

and acts on the parameter space © = {(8,0), 8 € R™™ L, ¢ > 0}, via
98,c(b,0) = (¢f + b, co).

Denote the matrix consisting of the first n — m + 1 rows of X as X, and the matrix consisting
of the last m — 1 rows as X,. Assume (without loss of generality) that the rank of X, equals m — 1.
Let Z(3) be the ¢th row of X and aG) = (@i n—mt2s -3 8in) = a:(,-)X;I. Then the following is true.

Proposition 3.1 A mazimal invariant under G is

T(y) _ ( Y1 — E?:n—m+2 a1,5°Y; Yn—m — E?:n—m+2 Gn—m,j " Yj
|yn-—m+1 - E?:n—m+2 Gp—m+41,5 ° yjl, ’ |y’n—m+1 - Z;'LG—m+2 An—m+1,5 ° yjl,

n

Sign(Yn-mt1 — ) an—m+1,j'?/j))- (19)

j=n—-m+2

Proof: See the Appendix.



3.2 Bayes Factors for Minimal Training Samples

Let us return to the question of computing the Bayes factor for a minimal training sample. A
minimal training sample for the model (15), under the prior 7(B,0) = 1/o (which is equivalent to
the right Haar density), consists of m observations y(I) = (11(D), - - ., ym(1))* such that the matrix
(X (1) y(1)) is of rank m, where X (1) is the respective m X (m — 1) submatrix of the design matrix
X. The maximal invariant in (19) is then

T(u(l)) = sign(n () - 3 53D, (20)
j=2

where a = (@2,...,0m) = :z:l(l)X2(l)'1. Note that this assumes only the values 1 and —1, cor-
responding to the sets y1(I) — Y7es @;¥;(1) > 0 and y1(l) — iz a59;(1) < 0, respectively.
Thus .
Fr(1) = P (a(D) = Y a¥5(1) > 0) = 1= f3(1),
i=2

where P; denotes probability with respect to the density f.

Theorem 3.1 Suppose that it is desired to compare My and M; using the prior density ©(83,0) =
1/o (which is a right Haar density) for each model. If a minimal training sample, y(l), results in
a mazimal invariant in (20) which satisfies

(1) = 12(1), (21)
then the Bayes factor based on the minimal training sample is equal to one.

Proof: First note that the group G defined in (17) - (18) is a proper action on R¥, k> m. The

conclusion is immediate from Theorem 2.1.
a

The problem thus reduces to the question of when (21) holds. Let |A| denote the determinant
of a matrix A, |A|T the absolute value of |A], and ||a|| the Euclidean length of the vector a. Finally,
define the set ’

HO)={weR™:|(X({)v)|= 0}. (22)
This is a hyperplane through the origin which splits the space R™ into
Q) = {o € R™ : [(X(1) y()I/I(X (1) v)| > 0} and {Q(D)}". (23)

The following is true.

Theorem 3.2 Equation (21) is satisfied if

/. NOL I QLS (24)



Proof: Suppose, without loss of generality, that |(X ({) y)| > 0. Making the change of variables
U= (u - X(l)ﬂ)/a7 u= (ula .- '7um) = (u17 U2)7 say, we get

/Q(l) Tiloyto = /I(X(l) oo TN = /9(1)-(1/ o)™ - fil(u— X(1)B)/0) du,  (25)
where

Q) = {u:|(X() (w=XNB)/o) >0} = {u:[(XD)w)l/o>0} = {u:|(X() )] >0}

Now note that

oo = |( 29 5| )

(D) - Jur = e (DX o) ] = —Xa(D)]- (1 — 3 agus).
=2

Hence,

_ ] (=1 i [ Xa(D)] >0
/Q(l) fi(v) dv = { JfJ’-"(l) ochrWise '

Repeating the argument for fn(z)c fi(v) dv, we get that it is equal to f7(1), in the case | X5(I)| > 0,
and f¥(—1) otherwise. Hence equation (24) implies that f7(1) = fr(=1) = 1/2. This immediately
yields (21).

O

Remark 3.1 Condition (24) will clearly be satisfied if f(v),v € R™, is symmetric about the origin,
ie. if

f(v) = (=) (26)
Indeed, since |(X (1) (—v))| = —=|(X(!) v)| and f(v) = f(—v), we then have

/Q(l) f(w)dv= /Q(z)c f(v)dv .

While the symmetry of f(v) about the origin is, of course, a much stronger condition than (24),
it is extremely convenient for practical purposes for two reasons. First of all, it is often easy to
check. For instance, it follows immediately that the theorem holds for models with #id errors coming
from a symmetric distribution. It also holds, for example, for the non-iid case of ¢ ~ N(0,X).
Secondly, it is convenient for use in computing intrinsic Bayes factors because (24) then holds for
any minimal training sample, regardless of the associated X (I). Indeed, it then follows directly
that BY, is as in (8), which here can be written

_JJ Ay =XB)/o)o~ ") dBdo
~ [ ((y-XB)/o)o-(mt) dBdo’

An important special case of a design matrix for which (24) holds is a design matrix that has
two identical rows. We begin with a simple example.

By, (27)



Example 3.1 Consider the location-scale scenario discussed in Example 1.1. This is a special
case of model (15) with m =2, X = (1,...,1)t, and § = p , and minimal training samples,
y(1) , consist of any pair of distinct observations: y(l) = (y1(1),y2(1)). The design matrices,
X(1) , are the same for all : X(I) = (1,1)°. Then {v € R? : |(X(1) v)] = 0} becomes
{(v1,v3) : v — vy = 0} . Condition (24) will clearly be satisfied if f;(vq,v2) is symmetric about
the line v; = g , i.e. if fj(v1,v2) = fj(v2,v1) ; this holds if the ¢;, and hence, y;, 1 =1,...,n, are
exchangeable.

Another important situation that falls into this category is Analysis of Variance models. Indeed,
consider an experiment with s factors, Ay, As,...,As, having ay,az,...,as levels, respectively.
If yix, i = (i1,%2,...,%5), denotes the kth experimental observation (k = 1,2,...,K;) on the
combination of the i1-st level of Ay, 7-nd level of Ay, ..., is-th level of A;, then the model can be
written as

Yik = Mi + O€ik, (28)

where the ¢; ; are random variables with the joint density f(u),u € R",n =} K;. By writing

y={Y%x 1=1,...,815 ...; is=1,...,a5 k=1,...,K;},
B={p, t1=1,..,01; ...; ts =1,...,a5},
e={&x 1=1,..,01; .5 s =1,.. .05 k= 1,...,K},

the model (28) translates into the regression form (15) with n x (a1a2 - - - a,) design matrix:

10 ...0)
10 .0
01 ...0
X= 010 (29)
00 .. 1
\(:)0...i/

The size of the minimal training sample is m = a1az - - -as+1, and hence any MTS design submatrix
X (1) will have 2 coinciding rows. (There can not be more than 2 identical rows since then X(I)
is not of full rank and the respective sample is not an MTS). Note that one can always rearrange
the observations in the MTS in such a way that the two rows will follow each other. For an MTS5,
model (15) becomes

y() = X(D)B + oc. (30)

Theorem 3.3 If the errors €; 1, in the ANOVA model (28) corresponding to an MTS are exchange-
able, then (24) holds for that minimal training sample. If all of the error terms in the model (28)
are ezchangeable, the statement of Theorem 3.1 holds for all minimal training samples, and Bl is
given by (8) or (27).



Proof: The pool of patterns for MTS design matrices for the model (28) (up to a permutation
of observations in an MTS) is

100 0 10 0 0 10 0 0
100 0 010 0 010 0
01 0 0 010 0 001 ...0
00 1 olloo 1 0o l> - | - e (31)
: : : : 000 1
00 0 1 000 1 000 1

Note that each of the matrices (31) has two identical rows. It follows that respective hyperplanes
take the form
Hl = {(1}1,’02, .. .,’Um) TV = ’02},

Hy = {(v1,v2,...,Vm) : v2 =v3}, (32)

Hpo1 = {(v1,v2,-.,0m) : Um—1 = Um}-

Indeed, suppose that rows i and i + 1 of the matrix X (!) are identical. Decompose |(X([) v)| by
the last column. Then all the terms not involving v; or v;4+1 will contain determinants of matrices
with 2 identical rows, and hence will be equal to zero. The term containing v; will clearly have the
same absolute value as the term containing v; 41, but will differ in the sign. Hence the hyperplanes
have the form (32).

For condition (24) to hold, it is clearly sufficient for f (v), v € R™, to be symmetric with respect
to each one of these m— 1 hyperplanes. This means that f(v1,v2,vs,...,0m) = f(v2,01,73,---,Vm),
f(’l)l,’Uz,’Ug,, .. -yv'm) = f(’l)l,’tig,’tl2, .. '7'vm)7 ceey f(vlav% .. -avm—lavm) = f('vtha . 'avmv'vm-—l)-
The latter will follow if the error components in an MTS, are exchangeable. The rest of the
statement of theorem follows immediately since exchangeability of the error terms in any MTS is

implied by the exchangeabilty of all of the error terms in the model (28).
a

Remark 3.2 It is the special structure of ANOVA design matrices that allows one to employ the
exchangeability condition. It is easy to construct an example of a design pattern X (1) for which
exchangeable errors coming from a nonsymmetric distribution will not imply (24). For this, it
suffices to choose the design matrix X ([) in such a way that it does not have an (m — 1) x (m — 1)
zero minor, and then to take €,..., €, from f(v) for which condition (24) does not hold. For
instance, we can choose y; = p + g€, Y2 = 24 + o€z, Where €, €z are iid from an extreme value
distribution f(v;) = exp(—wv;) - exp(—exp(—v;)), ¢ = 1,2. Then the left hand side of (24) becomes
P¢(Va > 2V;), which is not equal to 1/2.

On the other hand, two independent observations, Y7 and Yz, with Y1 ~ N (#,0), and
Yy ~ Cauchy(p,o) provide an example where the symmetry condition (26) and hence (24)
do hold, but exchangeability does not.



4 Marginal Distributions for Minimal Training Samples

The curious identity in (7) can also be generalized to structured linear models. This is of interest
for model comparisons involving linear models having differing design matrices. The terms in the
intrinsic Bayes factor in (6) that arise from the minimal training samples will then not equal one, but
having a simple closed from expression for the m}(y(!)) greatly reduces the computational burden
in evaluating (6). Indeed, the expression (33) below was the basis for the formulae in Berger and
Pericchi (1996b) and Varshavsky (1996) for determining intrinsic Bayes factors when comparing
normal linear models. Note, however, that (6) will also hold for a wide variety of non-normal error
structures. That closed form computation of the m7(y(l)) is then still possible is quite surprising
and extremely useful.

Theorem 4.1 For the linear model in section 3, if condition (24) holds then the margmal density
m5(y(1)), with respect to the prior n(f,0) = 1/0, is

1

) = S EOEOP W0 - XOXOXO)XOwOl
Proof: Let
v =(v1,..,0m) = (y(1) — X(1)B)/o. (34)
Letting z; = (2i1,...,%im~1) be the ith row of X(I), the inverse of the Jacobian for the transfor-

mation to v is

71 dvy,...,dvy
dﬂh R dﬁm—lda
+ +
T1,1 e Tm,1 z1,1 e Tm,1
_ 1 : : _ 1
o™l Z1,m-1 e Zm,m—1 omtl Tim—1 -+ ZTmm—1
n)—z18 ... yu(l) —zmp n@ - (D)

Thus J=1 = |[(X (1) y(1))|T/o™*. Note that |(X(I) v)| = |(X(I) y(1))|/o. Using this, the marginal
becomes

mi(v) =

R™-1xRt

y(l) — X(l)ﬂ ﬂ(ﬁ,a) - (v) dv
i ) BB dpde = (i i )

Hence, in view of condition (24), we have m7(y(l)) = (2- |(X () y(1))[*)™". To complete the proof,
observe that

(X (@) yOIF = (XQXOI2 ly(1) - XOEX O X)X OO, (35)

since |[(X () y(1))|* is just the volume of the m dimensional hyperparallelepiped based on columns
of X (1) and vector y({) (see, for example, Shilov (1961)); (| X (1)!X (1)[+)'/2 is the volume of its base
and ||y(I) — X()(X ()X (1))71X(1)*y(1)|| is the length of the height to the base.

a

10



5 Transformed Linear Models

Theorems 3.3 and 4.1 can be generalized to the case where the model is not of the form (15),
but can be reduced to it by a suitable transformation. To fix notation, suppose, observations
z, 1 = 1,...,n, have a joint density g(z|p), where z € R™ and p € R™. Suppose further that a
minimal training sample, z(I), under the prior (p) consists of m observations. Also assume that
there exist transformations y; = hi(2), i = 1,...,n, of the data, and By = ¥1(p), ---, Bm-1 =
Pm-1(p), & = ¥m(p) , of the parameters, such that the transformed data can be represented by the
model (15) and the transformed prior density, 7(8,0),8 € R™ 1,0 € RY, is equal to 1/0. Then
the following is true.

Proposition 5.1 Suppose that the error density of the transformed data y as defined in (15) sat-
isfies condition (24). (Note that Remark 3.1, Ezample 3.1, and Theorem 3.3 give conditions under
which this is so). Then the marginal density of 2(1) is

J(0)

D) = RO D) - XOXOXO) X0

where J(l) = % is the Jacobian of the transformation h = (hy,...hp) from 2(1) to y(1).

Proof: Straightforward change of variables. O
Typically, the choice of the transformation h of the data, if one exists, dictates the transforma-
tion of the parameters.

Example 5.1 Suppose z, i = 1,...,n, are itd Weibull random variables distributed with the
density p(z]a,v) = a-22 "1y~ exp(—(2i/7)*). Suppose we are using the reference prior r(c,7) =
1/(ey). (The reference prior, defined, for example, in Berger and Bernardo (1989), typically reduces
to a right Haar measure in a group invariant model.) Employing Proposition 5.1, let y; = log(z;).

Then the density of y; is

F(wila,7) = o exp{(y: —log(7))a} - e~ =PllizlosMad

If we now set (3 = log(7) and 7 = 1/a, the density f(yi|8,7) becomes a location-scale density with
location parameter 8 and scale 7. The Jacobian of the transformation to (7, 3) is exp(8)/ n? and,
hence, the transformed prior on the new parameters is 7(8,n) = 1/5. Thus, by Proposition 5.1

and using Example 3.1, )

2. Ziz5 * |log(zi/zJ-)| )

m(zi,2;) =

Example 5.2 Reliability and life-testing studies often deal with sets of nonnegative data arising
from a skewed distribution. The competing distributions in this case are often chosen to be two-
parameter Weibull and Lognormal densities (McDonald et al, 1994); that is, the comparison

My : pi(zile,y) = o - 281y~ exp(—(zi/7)%)

versus

M, : py(zilp, 0) = (1/(V2r02:)) exp(—(log(z:) — 1)*/(20%))

11



for the observed iid data z;, i = 1,...,n , is of interest. Model M;, with the reference prior
m1(0,7) = 1/(ay) was considered in Example 5.1 above. Using the reference prior m2(p,0) = 1/0
for the parameters of the second model and applying the same logarithmic transformation to the
data, with the identity transformation for the parameters, Proposition 5.1 yields exactly the same
marginal density for a minimal training sample. Hence, B1a(2()) = 1 for all training samples, and
the intrinsic Bayes factor again simplifies as in (8).

Example 5.3 An important class of examples is the class of generalized linear models, where the
data z; comes from z = exp(X f+0¢). Here we can again apply Proposition 5.1 with the logarithmic
transformation of the data.
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mar Nariankadu, and J.K. Ghosh for many helpful discussions and insightful comments.
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Appendix
Proof of Proposition 3.1.

To save on notation, let ¥ = m — 1. The process of determining a maximal invariant will be
carried out in two steps, corresponding to two subgroups that generate G:

Gi:y—y+Xb, b=(b,...,br), beERF

Gy:y—cy, ¢>0.
(see Lehmann (1991)). The orbit containing the point yo € R™ under G is the set

{yo + Xb, b € RF}. (37)

To find a maximal invariant, let us choose a representative point O on this orbit. Let it be the
point of intersection with the hyperplane {yn—x+1 = 0,...,%, = 0}. Denote the matrix consisting
of the first n — k rows of X as X;, and the matrix consisting of the last k rows as X,. Likewise, let
yc(,l) € R %) be a vector consisting of the first (n — k) components of yo, and y(()z) € R* a vector

consisting of the last & components. Then we see that O corresponds to b = — X 1y((,2) and, thus,

using (37), can be written as (yo — XX{lyéz)) = (y((ll) - X1X2_1y((,2),0, ...,0). This leads to the
maximal invariant (under Gy)

Ty(915--»%) = ¥y — X1 X5y®, (38)
where v = (g1,...,unt), and ¥® = (yn—k+1,...,yn). Letting z(;y be the ith row of X and
a@) = (Gip—kt1s - CGipn) = a:(z-)Xz—l, we can rewrite (38) component-wise as

n n
Ty (Y1, ntn) = (B1— O QL Uir oo> Ynok— D, Gnkj i)
j=n—k+1 j=n—k+1
= (21y-++)%n—k), SaY.

A maximal invariant with respect to G acting on z is
I3 = (zl/lzn—kla ceey zn—k—l/lzn—kly Sign(zn—k))-
Switching back to the space of 4’s, we obtain the maximal invariant T(y1,...,¥,) under Gt

Y1 — D ien—k+1 01, " Yj Yn—k—1 — D j—n—k+1 On—k—1 " Yj
[Yn—k — X gmm_k41 Onbi " Y5l 1Yok = imnk41 On—kyj Y5l

T(y)=(

n
Sign(yn—k - Z Qp—k,j* yj)) .

j=n—k+1
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Abstract

In this paper we derive a simple closed form expression for the marginal distribution
of a minimal data set arising from a nonnormal linear model with reference noninformative
priors. Specifically, we prove that this marginal distribution is independent of the distri-
bution of the error when the latter satisfies a certain symmetry condition. We show how
this result can be generalized to a class of nonlinear models. We establish a link between
the symmetry condition and the distribution of a maximal invariant under the appropri-
ate group of transformations. Finally, we mention some implications of these results and
discuss their applications to Bayesian model selection, in particular to the Intrinsic Bayes
Factor, a model selection criterion recently proposed by Berger and Pericchi.
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