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Abstract

Many studies employ multiple measuring instruments such as human raters, observers,
judges, or mechanical gauges to record data. It is well known that the consistency of
these instruments, commonly called reliability, limits the extent to which conclusions can
be drawn from the observed data. However, the degree to which instrument reliability
limits conclusions has traditionally been assessed in only subjective manners. In this
paper, a new method is developed for objectively quantifying the impact of instrument
reliability on a statistical analysis. This method allows the inclusion of reliability into
power calculations and is an invaluable tool in the planning of experiments. We also
refute traditional notions of acceptable reliability levels and show that statistical power is
a clearly defined compromise between reliability and sample size.



1. INTRODUCTION

Associated with every statistical analysis is a measurement process. The measurement process
assigns a score to each experimental unit, then the statistical analysis describes and assesses the
meaning of these scores. The measurement process is therefore critical in obtaining valid statistical
results. Two important elements of this process are “What variable to measure?” and “How to make
the measurement?”. Deciding what variable to measure should be determined by the particular
question that motivated the research. Deciding how to make the measurement involves several
components, one of which may be the selection and training of human or mechanical instruments
to record scores. The impact of these instruments on the statistical analysis is studied in this paper.

In experiments which utilize multiple instruments to collect data, the consistency of these
instruments limits the extent to which conclusions can be drawn from the observed data. The extent
that the instrument consistency, commonly called reliability, limits conclusions has traditionally
been assessed in only subjective manners. The usual practice has been to estimate a reliability index,
and then deem the impact of the instruments negligible if the estimated index meets a subjectively
chosen level. However, this practice is not desirable because it cannot be independently verified
or quantified. Thus, it is critical to assess the impact of instruments on statistical inference in a
manner which can be checked externally. In this paper, a new method is developed for quantifying
the impact of instrument consistency on a statistical analysis. This new method is derived in the
context of a common research problem, the statistical comparison of two population means.

The next two sections present an appropriate experiment and statistical model to compare
two population means when multiple instruments are used to collect the data. An appropriate
reliability index for measuring instrument consistency is discussed in Section 4. In Section 5,
the connection between the statistical model and the reliability index is made. This connection
is applied in Section 6 to statistical power calculations which directly quantify the impact that
instrument consistency can have on a statistical analysis. Section 7 shows that statistical power is
a clearly defined compromise between reliability and sample size. Finally, in Section 8 we conclude
by demonstrating that traditional guidelines for acceptable reliability levels are too general and
potentially misleading.

2. THE RESEARCH QUESTION

Many research questions require the comparison of two population means. Suppose the two
means are to be compared by testing

Ho:p1 = p2
Hy:py # po

where p; and pg are the respective means of the two populations. The null hypothesis can be tested
by using population samples to estimate yy — pa. Let Yy denote a sample average from the first
population and Y, denote a sample average from the second population. Because Y; has mean u
and Y, has mean ps, the difference in sample means, Y; — Yo, is an estimate of p1 — po. If the
two populations follow normal distributions, Y; — Y5 is also a normal random variable with mean
g1 — o and some variance, Var(Y; — Ys).

If the data collection is such that the samples are independent then Var(?l - 72) is the sum
of the two sample average variances, VarY; + VarY,. In this situation, statistical procedures for
-performing an appropriate test of the previous null hypothesis are well known. However, if the



data collection is such that the samples are not independent then Y; — Y still has mean u; — po,
but the variance is no longer the sum of the two sample average variances. Instead, the variance is
given by

VarY, + VarY, — 2Covariance(Y1,Y3).

Such a covariance structure may occur when multiple instruments collect the sample data. This
may be done to facilitate collection of a larger sample, or to collect observations in a more timely
manner. If the instruments measure units in both groups, then dependence has been induced
between the measured responses. In order to further explain this dependence, we investigate a
statistical model which acknowledges the covariance structure between Y, and Y; when multiple
instruments collect the data.

3. THE STATISTICAL MODEL

Consider a study where M instruments measure N experimental units from each of two treat-
ment groups for the purpose of comparing the group means. In the following, the two treatment
groups will simply be called groups (denoted by G), the M assessment instruments will be called
raters (denoted by R), and the 2N experimental units will be called subjects, (denoted by §). If
each rater records an observation for each subject then the data collection can be described as in
Table 1, where an X denotes an observation.

Table 1: Data Collection When M Raters Measure N Subjects per Group

Gy Ga
S1 S -+ Sy SNy1 Sny2 0 Son
R X X ... X X X X
B X X - X X X X
Ry X X ... X X X o X

The observed data can be represented by Y;;x, where ¢ = 1,2 represents groups; j = 1,...,M
Tepresents raters; k = 1,..., N represents the N subjects in each group; and [ = 1,..., L represents
repeated observations on the same group-rater-subject combination. In the following it is assumed
that L = 1 and the last subscript will be suppressed. The Y;;x can be expressed by an equation of
the form

Yijk = p+ Gi + Rj + GRij + Spy + RSjwe) + €ijies (1)
where p represents an overall mean, G; the group effect, R; the rater effect, GR;; the group-rater
interaction, Sy(;) the subject effect (the bracketed 7 subscript denotes nesting of the subject within
the ith group), RS k(;) the rater-subject interaction, and €;;% is a random error component. Note
that because a total of 2V subjects are included in the study, Sy(),. .., Sn(1) denote the subjects in
the first group, and Sy(3), . .., Sn(z) denote distinct subjects in the second group. In order to make
equation (1) a statistical model it is assumed that R;, GR;j, Sk(;), RS jk(zi)’ and ¢;; are independent
normal random variables with zero means and respective variances o?g, 02gR, 02 5(G)s o? RS(G)>
and o?,. The fixed group effects, G;, are assumed to be such that 3, G; = 0. In the following, the

data collection in Table 1 described by equation (1) will be referred to as the complete design. = .= .



The analysis of variance (ANOVA) table associated with the complete design, along with ex-
pected mean squares (EMS), is derived in Appendix 1 and is given in Table 2. The sum of squares
(SS) use an overbar and dots to denote averaging over subscripts. Because only one observation
on each rater by subject combination is taken, the error variance is not estimable. That is, the
rater-subject within-group and random error components cannot be separated and are considered
confounded. This confounding pattern is represented in the ANOVA table by assigning zero degrees
of freedom to any term that cannot be separated from a previously listed term.

Table 2: ANOVA Table for the Complete Design

Source df S8 EMS

G ‘ 1 Y Zj Yore(Yi. — Y..)? 0% + UZRS(G) + M0'2S(G) + No*gr + NMog
R M-1 22 Zk(?] -Y.)? % + UzRS(G) + No%gr + 2No?g

GR M-1 > Zj Ek(?ij- - ?] -Y;,. + ?)2 a? + U2RS(G) + No2gr

5(G) 2N-1) Y k(Yik — Yi)? 0’ + 0%rs(e) + Mo?s()

RS(G) 2(M-1)(N-1) 355 Ze(Vijk — Vi ~ Yie +Yi)? 0% + 0%rs(g)

Error 0 - -

In the complete design each rater measures each subject. Such a design may be used in a pilot
study, but this method of collecting data may be too expensive and time consuming for routine use.
In most studies, it is feasible to only collect a fraction of the data in Table 1. A typical researcher
may only have the resources to measure each subject once. If M raters are available, the 2N
subjects could be randomly assigned so that each rater measures 2% subjects. However, complete
randomization of raters to subjects can introduce imbalance to the data collection. For example,
it is possible that a rater could be assigned to subjects contained only within one group. A more
desirable assignment would be one which attempts to alleviate possible imbalances. A reasonable
approach is to restrict the randomization of raters to subjects so that each rater measures %
subjects in each group. As an example, suppose M = 4 raters are employed to measure sixteen
subjects, N = 8 in each of two groups. Each rater could then measure % = 2 subjects in each
group. Although the assignment of subjects to raters should be completely randomized within each
group, by relabeling the sixteen distinct subjects, the method of data collection for this example is

depicted as in Table 3.

Table 3: Data Collection When M = 4 Raters Measure % = 2 Subjects per Group

Gl GZ
S1 85 S3 S¢ S5 S¢ S7 S So S Su Sz Siz S S5 Sie
R, X X X X
Ry X X X X
Rs3 X X X X
R4 X X X X

Fractional data collection as in Table 3, where M raters each measure % distinct subjects in

each group can still be described by the Y;¢ in equation (1). However, not every possible Y;z will
be observed. Data such as this, where there are only observations on certain, planned treatment



combinations is often called ba,lanced incomplete data. In the following, the data collection scheme
where M raters each measure 47 ¥ subjects per group will be referred to as the balanced incomplete
design.

The missing Y;;z cause notational confusion when averaging over the subscripts of balanced
incomplete data so that the orthogonal decomposition of the sums of squares cannot always be taken
directly from the complete design ANOVA table. Methods for deriving an orthogonal decomposition
of the total sum of squares for balanced incomplete data are well documented (Hocking 1985; Searle
1971). In Appendix 2 the ANOVA table is derived for the balanced incomplete design, where M
raters each measure % subjects per group, and is given in Table 4. In the notation for the sums
of squares, the sums are taken only over available data and the overbar and dots denote averaging
of the subscript over observed Y;;z. Because only one observation is taken for each subject and
each rater by subject combination, neither azRS(G) or 0%, is estimable. That is, the subject
within-group, rater-subject within-group, and random error components cannot be separated in
any obvious manner. This confounding pattern is represented in the ANOVA table by assigning
zero degrees of freedom to any term that cannot be separated from another term previously listed
in the table.

Table 4: ANOVA Table for the Balanced Incomplete Design

Source df SS EMS

G 1 N Ez(Y ~Y..)? o’ +0” _Rs(@) T o’ -s(0) + 470> Jor+ N¢G
R M-1 ]\;u (Y. -Y. )2 0% + 0’rs(a) + o s(¢) + 3707 _OR +2470°R
GR M-1 i (Vi =Y. =Y. +Y..)2 0% +0%rgc) + 0%s(c) + 379°GR

5(G) 2N-2M Ez > k(Y — u-)z 02s +0%Rrse) + % s(6)

RS(G) 0 - -

Error 0 - -

Often balanced incomplete data collected by M > 1 raters is not initially described by the
correct statistical design. The effect of using multiple raters is often neglected and the data is
erroneously considered to have been collected by only one rater as depicted in Table 5.

Table 5: Data Collection When Rater Effect is Neglected

Gl G2
St S -+ Sn SNyt Sny2 o0 Son
E X X ... X X X ce X

Because there are no missing treatment combinations in Table 5, the associated orthogonal
decomposition of the total sum of squares can be taken from the the complete design ANOVA table
with the number of raters equal to one. Taking M = 1 in Table 2 results in many of the terms
having zero degrees of freedom. By leaving out the rows associated with these terms, the ANOVA
table resulting from the neglect of a rater term is as in Table 6. The j subscript corresponding
to raters takes on only one value, so j = 1 was substituted in the subscript notation and the
summation sign over j was omitted.



Table 6: ANOVA Table When Rater Effect is Neglected

Source df 55 EMS
G 1 Yirk(Yi. - Y1) 0% +0°msc) +0°s) + Nogr+ Nég

S(G)  2(N-1) ¥u¥u(Yir—Ya ) o’ +o’rsie) + 025

The degrees of freedom and the sums of squares in Table 6 are equal to the corresponding
results when a two-sample t-test is used to compare the means of two groups. From inspection of
the EMS’s in Table 6 it is clear that the use of a two-sample t-test to test the hypothesis of equal
group means when data is collected by multiple raters requires not only assuming the rater effect
is negligible, but also assuming that the group by rater effect is negligible. That is, also assuming
that o2ggr = 0.

In what follows we will assume 02gr = 0. This means that individual raters consistently rate
subjects from one group higher than subjects from the other group. With mechanical assessment
instruments this is a sensible assumption and with human raters it seems that with appropriate
training this could be achieved.

However, it does not seem reasonable to also presuppose that the rater effect is negligible, that
is to assume 02 = 0. This can be better understood by referring to Samuels, Casella, and McCabe
(1991), where it is shown that the hypothesis

Hyo:0?r=0,0%Gr =0 (2)
may be verbally expressed as
Hp : Raters have no effect whatsoever on the observations.

Clearly, assuming that the raters have no effect whatsoever on the observations is much stronger
than only supposing that the raters are consistent in ordering the group means. Although the
balanced incomplete design ANOVA table implies that the aforementioned stronger assumption
can be tested, we will make only the weaker assumption that 02gg = 0. Under the assumption
that 0?gg = 0, the the balanced incomplete design ANOVA table (Table 4) simplifies so that the
EMS’s for the GR and S(G) factors are equal as in Table 7. That is, each mean square is an
estimate of the same variance. Furthermore, the EMS’s suggest that either mean square would be
appropriate to use in the construction of a hypothesis test for a group effect. The power of the
hypothesis test for the group effect may be increased by pooling the GR sum of squares with the
S(G) sum of squares so that the resulting degrees of freedom and expected mean squares are as
given in Table 8.

Table 8 can be used as a guide in constructing a hypothesis test for the group effect, which for
two groups is equivalent to testing

Ho:py = p2

Hy:pa # po,
where p; is the mean of the first group and p» is the mean of the second group. Table 8 suggests
that an appropriate test statistic for the previous hypothesis is

MSg

F*=_—-
MSsc)

- (3)
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Table 7: ANOVA Table for Balanced Incomplete Design When GR = 0

Source df 55 EMS

G 1 NZ(Y -Y.)? 0 +0RS(G)+05(G)+N¢G
R M-1 ]\M ~-Y. )2 e +0'2RS(G) +0256) + 2550 R
GR M1 53 Z](Yu ~Yi. +Y..)? o +o? JRs(@) + os(c)

5(G)  2N-2M Ez 25 2k(Yijk = Ym ) 0% +%rs(q) + 950

RS(G) 0 - :

Error 0 - -

Table 8: Pooled Expected Mean Squares for the Balanced Incomplete Design

Source df EM S

G 1 0% +o° RS(G)+‘7 S(G)+N¢G
R M-1 e+0'2RS(G’) + %56 +28&0%p
S(G) 2N-M-1 + UZRS(G) + U2S(G’)

RS(G) 0 -

Error 0 -

where M S¢ represents the mean square for group and M Ss(g) represents the mean square for the
subjects within group.

The balanced incomplete design illustrates a typical experiment when multiple raters are em-
ployed to measure subjects in two groups. Furthermore, the statistic in (3) provides an appropriate
method to statistically test the hypothesis of equal group means. It remains to show how rater reli-
ability is related to this hypothesis test. The following section will begin to explain the relationship
by defining an appropriate reliability index.

4. THE RELIABILITY INDEX

Many experimental studies which utilize multiple raters include a smaller study in which a
reliability index is estimated. To perform such a reliability study, a random sample of raters and
subjects are chosen from the larger populations. FEach randomly chosen rater then measures a
response for every subject. The collected responses can still be described by the Y;; in equation
(1). The distributional assumptions necessary to make equation (1) a statistical model leads to the
identification of a reliability index. When the statistical model associated with the reliability study
involves variance components, a commonly used rater reliability index is the intraclass correlation
coefficient (ICC). The ICC is an appropriate index when raters are trained together but make
decisions as individuals (MacClennan 1993). This implies that the ICC is a suitable reliability
index for the balanced incomplete design discussed in Section 3 because the raters are assigned to
measure distinct subjects. The ICC is defined to be the proportion of the variance components
in the reliability study model attributable to the subjects. Recalling the variance components
associated with equation (1), the intraclass correlation coefficient for data described in this paper
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is defined as

o2
S(G) ) ( 4)
Uzs(g) +0%p+ 0%gR + Ust(G) + o2,
In the previous section, it was assumed for the final study that o2ggr = 0. Applying this
assumption to (4), the reliability index simplifies to

= *s(c) . (5)
025(@) +02r + UZRS(G) + o2,

This is the form of the intraclass correlation coefficient that Shrout and Fleiss (1979) consider
appropriate when a random sample of raters and subjects are chosen to participate in the reliability

study.
The expression in (5) contains o2g, the variance component associated with the raters. If this

variance component is removed, the resulting form of the index is

= ?s() . (6)
o%5) + o%Rsq) + 0%

The formula given in (6) is Winer, Brown, and Michels’ (1991) anchor point method for a single
rater. The decision whether to use (5) or (6) depends upon how the measurements will be used.
Ebel (1951, pp. 411-412) states

Whether or not it is desirable to remove “between-raters” variance in estimating the
reliability of ratings depends upon the way in which the ratings are ultimately used
in grading, classification, or selection. In any case where differences from rater to
rater in general level of rating do not lead to corresponding differences in the ultimate
grades, classifications, or selections, the “between-raters” variance should be removed
from the error term. Specifically, the “between-raters” variance should be removed
where the final ratings on which decisions are based consist of averages of complete sets
of ratings from all observers, or ratings which have been equated from rater to rater
such as ranks, Z-scores, etc. Likewise, if comparisons are never made practically, but
only experimentally, between ratings of pupils by different raters, the “between-raters”
variance should be removed. But if decisions are made in practice by comparing single
“raw” scores assigned to different pupils by different raters, or by comparing averages
which come from different groups of raters, then the “between-raters” variance should
be included as part of the error terms.

Consider the balanced incomplete design, discussed in Section 3, where each rater measures
% subjects in each group. This data will ultimately be used to test for the equality of means by
comparing group sample averages in which all raters contribute in an equivalent manner. From
Ebel’s comments it can be concluded that if the raters are assigned in this balanced manner, then

o?g should be removed and the appropriate form of the reliability index is as given in (6).
5. THE CONNECTION

The question still remains as to the connection between the reliability index and the hypothesis
test for equality of group means using data collected by ‘M raters.- Recall that for the balanced



incomplete design, a test of the hypothesis Hy : p1 = g, can be conducted by considering the

statistic
MSq

~ MSs)

Appendix 3 shows that under an alternate hypothesis, F™* is a noncentral F random variable with
1 and 2N — M — 1 degrees of freedom and noncentrality parameter

e

(1 = p2)?
A= . 7
#(025(6) + 92Rs(@) + %) (M

The previous section explained that an appropriate reliability index for data used to construct the
hypothesis test is

025(G) (8)
o%5@) + 0%rsq) + 0%

Comparing (7) and (8), it is apparent that the connection between the reliability index and the
hypothesis test is that they utilize common variance components. The effect of this relationship
on the hypothesis test can be found by expressing the noncentrality parameter as a function of the
reliability index. Using a simple substitution, (7) and (8) imply that the noncentrality parameter
can be written as y
A= p— ) 9)

20 S(G’)

6. STATISTICAL POWER

Establishing the form of the noncentrality parameter in (9) allows power calculations to be
expressed as a function of the reliability index. The power of the hypothesis test is defined to be
the probability of correctly rejecting the null hypothesis. It can be calculated as

Power = 1 — P(fail to reject Ho|Hy is false) (10)

To determine whether to reject the null hypothesis at a specified Type I error rate, denoted by «,
the statistic
MSq

is compared to the central Fj oy_pr—1 distribution. We will fail to reject Hp : py = py if

’

F* < Fa;l,ZN—M—l (11)

where Fy.1 9n—pm—1 is the upper a percentage point of the central Fjon_p-1 distribution. In
addition, recall from Section 5, if Hp is false then F™* is a noncentral F' random variable with 1
and 2N — M — 1 degrees of freedom and the noncentrality parameter given in (9). Knowing the
distribution of F*, and using (10) and (11), it follows that

Power = 1— P(F* < Fy1on-m—1|Ho is false)
= 1-P(FiaNn-M-1) < Fopan-m-1), (12)



where F1an_p—1,) denotes a noncentral F' random variable with 1 and 2N — M — 1 degrees of
freedom and noncentrality parameter A. With equation (12), the power as a function of reliability
can be calculated using the form of the noncentrality parameter given in (9) as

(11 — po)®
A=pN-—7——.
p 2025(G)

This implies that power studies, traditionally used as a tool for planning experiments, can now be
augmented to include reliability information.

7. A COMPROMISE

Power calculations often preface experimental studies to ensure that an adequately sensitive
test of the hypothesis will be provided. If not, adjustments are usually made to the sample size
in order to obtain a satisfactory level of power. The results of the last section show that for data
which is collected by multiple raters, the power varies not only as a function of sample size, but
also with differing levels of rater reliability. Although this is intuitive, the present work provides
for quantitative incorporation of rater reliability into the planning of experimental studies.

Consider the balanced incomplete design as in Table 3 where M = 4 raters each measure % =2
subjects in each of two groups. Suppose the researcher feels that through differing training methods
it may be possible to achieve various levels of rater reliability. How will this effect the statistical
test for equality of group means? The answer can be found by constructing power curves as a
function of rater reliability. In order to perform power calculations for the hypothesis test of equal
group means, it is necessary to specify the risk of making a Type I error, the difference in the
group means, and the variance component associated with the subjects. In order to circumvent
the specification of the latter two, calculations can be made in terms of the standardized mean
difference | |

M1 — K2
s (13)

Using this, the researcher only needs to specify the Type I error rate and the mean difference
in subject standard deviation units that they wish to detect. Figure 1 shows the power associated
with the statistical test for equality of group means for Type I error rates of .05 and .01, and M =4
raters measuring %V,I— = 2 subjects per group. The power is given for a range of the standardized
mean difference in (13) and reliabilities of p = .60, .70, .80, .90, and .99. The effect of differing
levels of rater reliability is clear and may be cause for researchers to consider the value of pursuing
a specific reliability.

Suppose, however, that additional training is either too expensive or not available. In this case,
the researcher has a fixed rater reliability and can achieve higher power by increasing the number
of subjects contained within each group. Figure 2 shows the power associated with the statistical
test for equality of group means for Type I error rates of .05 and .01, a reliability of p = .80, and
M = 4 raters measuring % subjects per group. The power is given for N = 4, 8, 12, 16, and 20
subjects per group and a range of the standardized mean difference in (13). As in standard power
calculations, it is apparent how increasing the sample size improves the sensitivity of the hypothesis
test.

Figures 1 and 2 demonstrate how increasing the power involves a trade off between the number
of subjects and the rater reliability. This compromise can be further quantified by considering the



variables involved in power calculations. Fixing a standardized mean difference, a Type I error
rate, and the number of raters; the only variables in power calculations are reliability and sample
size. In particular, the noncentrality parameter in equation (9) is A = ¢pN, where c is a constant, p
is the rater reliability, and N is the number of subjects per group. Thus, to keep the noncentrality
parameter constant any change in the reliability must be accompanied by a corresponding change
in the sample size. Figure 3 demonstrates this relationship between the sample size and reliability.
However, keeping the noncentrality parameter constant does not imply that the power is also kept
constant. - The degrees of freedom involved in power calculations are also a function of sample
size. Therefore, to clearly define the compromise between reliability and sample size we must
simultaneously consider the noncentrality parameter and the degrees of freedom involved in power
calculations. For example, suppose that the power is calculated for a standardized mean difference
of .75, a Type I error rate of .05, N = 50 subjects per group, and M = 5 raters with an initial
reliability of p = .50. Figure 4 shows how increasing the rater reliability allows for the number of
subjects per group to be decreased in increments of M = 5, while maintaining the original power.
This clearly demonstrates that even marginal increases in the reliability allow for a substantial
decrease in sample size. Calculations as demonstrated in Figure 4 can be used in the planning of
experiments to decide whether the extra cost or effort to increase reliability is made worthwhile by
the corresponding reduction in the number of subjects necessary to obtain a specified power.

8. CONCLUSIONS

“How reliable is good enough?” is a question deliberated by every researcher who utilizes
multiple raters to collect data. Answers to such a question have been subjective and widely varying.
The most common guidelines suggest that a reliability greater than .70 is necessary, greater than
.80 is adequate, and above .90 is good (House, House, and Campbell 1981). However, Table 9 gives
the power from Figure 1 for varying reliability levels, a Type I error rate of .01, and with M =4
raters each measuring TI\,} = 2 subjects per group.

Table 9: Power for Various Reliability Levels

Standardized Reliability
Mean Difference .60 .70 .80 .90 .99
1.5 27 33 .39 44 .48
2.0 b2 .60 .68 .74 .78
2.5 .76 .83 .88 .92 .95
3.0 91 95 .97 .99 .99

NOTE: The tabled entries are the power values taken from Figure 1 for the hypothesis test of equal
group means. The probability of a Type I error is fixed at o = .01, and M = 4 raters measure
% = 2 subjects per group.

This table shows that for relatively small standardized mean differences, the power is so small
that the difference between reliabilities of .70 to .90 is negligible. Similarly, for large standardized
mean differences, the hypothesis test may not be noticeably sensitive to differences in reliability
between .70 and .90, and still lower levels of reliability such as .60 may still be acceptable. For

10



mean differences between 2.0 and 2.5 standardized units, a reliability of .80 may or may not provide
an adequately sensitive hypothesis test.

The implication of Table 9 is that traditional guidelines of acceptable reliability levels are too
general. In the past, raters have most likely been retrained and adequately powerful experiments
have been canceled because the reliability index was judged to be only .60 or .70. Conversely,
reliabilities of .80 and .90 may have provided faulty justification for reporting experiments not ad-
equately sensitive to a specified hypothesis. Acceptance of general guidelines for acceptable rater
reliability can obviously be misleading. Instead, researchers should begin to base decisions about
reliability levels on the circumstances of particular experiments. By performing power calculations
as a function of reliability, researchers can evaluate the impact of reliability on their specific situa-
tion. The potential applications of this procedure are numerous and include not only experiments
which utilize human raters but also experiments which utilize mechanical instruments. Decisions
about the value of including more experimental units, requiring additional rater training, or invest-
ing in more reliable mechanical measuring instruments can all be objectively determined by using
the methods presented in this paper.
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Figure 1: Power Curves With Varying Reliability Levels for the Hypothesis Test of Equal Group

Means. The power is given when M = 4 raters measure % = 2 subjects per group.
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Means. The power is given when M = 4 raters, with a reliability of p = .80, measure
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Figure 4: Number of Subjects Necessary to Maintain Power as the Reliability Increases. At a
standardized mean difference of .75, a Type I error rate of .05, and M = 5 raters with a reliability
of p = .50, the power of the hypothesis test for equal group means is .75. The figure shows that
while decreasing the number of subjects per group by increments of M = 5, the original power can
be maintained by increasing the reliability beyond the initial level of p = .50.
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Appendix 1: Derivation of the Complete Design ANOVA Table
The statistical model
Yijk = p+ Gi + Bj + GRij + Sps) + BSjriy + €k

with the restrictions and distributional assumptions as specified in Section 3 was used to describe
the data identified as the complete design and pictured in Table 1. The orthogonal decomposition
of the total sum of squares for complete designs are well known. The specific decomposition for the
complete design of Table 1 is presented in Table 10, where an overbar and dots denote averaging
over subscripts.

Table 10: Orthogonal Decomposition of Sums of Squares for the Complete Design

Source df SS
G T S ST~ Vo)
R M1 SR T -Y

5(G) 2N-1) XYk —Y)
RS(G) 2(M-1)(N-1) 3,5, Sk(Yije — Yij. = Yin + Yi)?

-Regarding the group effect to be fixed and the rater and subject effects to be random, application
of the ‘EMS Algorithm’ (Hicks 1982; Kirk 1982; Winer, Brown, and Michels 1991) gives the expected
mean squares labeled ‘Version A’ in Table 11. The method for calculating EMS’s as presented in
Searle (1971) and used in the software package SAS gives the expected mean squares labeled ‘Version
B’ in Table 11.

Table 11: Expected Mean Squares for the Complete Design

Source Version A EMS Version B EMS

G 0% + 0’rse) + Mo’g) + No’gr+ NMéc 0. + 0’ps(q) + MoZsg) + NoZar + NM g
R 0% + d’ps(q) + 2No?g 0% + 0’ps(e) + No’ar + 2No?g

GR 0% + 0?rse) + No’ar 0% +0%rse) + No’ar

S(G) 0% +0%grge) + Mo 0% + 02 gs(q) + Mo

RS(G) % +0%gs(q) 0% + 0 ps ()

Inspection of Version A and Version B shows that the EMS disagree on whether the term
02gr should be included in the expression for the R factor. This disagreement is longstanding
and has been discussed in numerous places (Samuels, Casella, and McCabe 1991; Searle 1971).
The assumption of independent GR;; terms taken in Section 2 turns out to be consistent with
the Version B expected mean squares. Thus, Version B represents the form of the EMS’s chosen
for the purpose of this paper. It should be noted that under the additional assumption that
o2gr = 0, taken in Section 3, the two versions become identical. Taking Version B along with the
corresponding degrees of freedom and sums of squares results in the ANOVA table for the complete
design being that of Table 2.
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Appendix 2: Derivation of the Balanced Incomplete Design ANOVA Table

The equation
Yiik = b+ Gi + Rj + GRij + Si6) + RSji) + €iji

with the restrictions and distributional assumptions as specified in Section 3 can be used to describe
the data referred to as the balanced incomplete design. As mentioned in Section 3, because of
notational confusion it is not always possible to obtain the orthogonal decomposition of the total
sum of squares for balanced incomplete data directly from the decomposition associated with the
complete design. Instead, balanced incomplete data can often be equivalently described by an
alternative complete data collection with no missing treatment combinations. For example, in the
case of M = 4 raters measuring % = 2 subjects per group, the data in Table 3 could have just as
well been represented as in Table 12.

Table 12: Data Collection When M = 4 Raters Measure % = 2 Subjects per Group

Gl G2

Ry Ry R3 Ry Ry Ro R3 R4

S1 52 Sz Sy S5 Se S7 S8 Se  Sio S Sz S13 S14 S15  Sie

X X X X X X X X X X X X X X X X

This represents complete data which can be expressed as Y;;i*, where ¢ = 1,2 represents groups;
j=1,..., M represents raters; and k = 1,.. .,% represent the % subjects contained within each
group-rater combination. In the example data collection given in Table 12, M = 4 and % = 2.

The Y;;x* can also be described by the equation
Yijr* = p+ Gi + Rj + GRij + Si(ij) + €ijk (14)

where u represents an overall mean, G; the group effect, R; the rater effect, GR;; the group-rater
interaction, Si(;;) the subject effect (the bracketed zj subscript denotes nesting of the subject within
the ijth group-rater combination), and ¢;jx is a random error component. It is assumed that R;,
GR;j, Sk(ij)» and €;jx are independent normal random variables with zero means and respective
variances 2R, 02GR, 02g(gr), and o%. The fixed group effects, G, are assumed to be such that
> Gi = 0. Let data collection as in Table 12 and the associated equation (14) be referred to as the
alternate design. The orthogonal decomposition of sums of squares associated with the alternate
design is given in Table 13.

Regarding the group effect to be fixed and the rater and subject effects to be random, application
of the ‘EMS Algorithm’ gives the expected mean squares labeled ‘Version A’ in Table 14, while
the method for calculating EMS’s as presented in Searle (1971), gives the expected mean squares
labeled ‘Version B’ in Table 14.

Inspection of Version A and Version B shows that the EMS again disagree on whether the term
o%GR should be included in the expression for the rater factor. To be consistent with the results
derived in Appendix 1, Version B will be used. Using the relationship between crossed and nested
factors the term S(GR) can equivalently be expressed as

S(GR) = S(G) + RS(G),
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Table 13: Orthogonal Decomposition of Sums of Squares for the Alternate Design

Source df SS

G 1 LI VT
R M1 DTSR
GR M-1 > Zj Zk(Yij-* - Y.j.* - Y,'..* + Y...*)2

S(GR) 2N-2M ¥, %, Yu(Yip™ — Yis.")?
Total  2N-1 3, %. S, (Yip* - V.")?

Table 14: Alternate Design Expected Mean Squares

Source Version A EMS Version B EMS
G 0% + 0’sgRr) + 30°cr+ Nba 0%+ 0°sgr) + 170°cr + Ndc
R o%e + 0%s(R) + 2470°R 0. + 025Gy + $r0lcR + 2550k
GR 0% + 0%ser) + 719°GR 0% + o%seRr) + 179°GR
S(GR) 0% + o%5(gR) 0% + o5cR)
which implies that
o’s@r) = 92 s(@) + 7 rs()- (15)

Using the equality in 15, the ANOVA table with expected mean squares for the alternate design
can be written as in Table 15. Because there is only one observation on each subject within group
by rater combination, the subject within group, the rater-subject within group, and the random
error components will not be separately estimable. This confounding pattern is represented by
assigning zero degrees of freedom to any term that is confounded with a previously listed term.

Table 15: Alternate Design ANOVA Table

Source df Sum of Squares EMS

G 1 Y k(Y Y. 0% + 0%5(¢) + 02Rs(c) + 20°crR + Noa

R M-1 > Ej Zk(?-j-* - ?...*)2 o + GZS(G) + O'ZRS(G + %0‘291?_ + 2%0‘23
GR M-1 3,3, Ek(?ij-* - ?.j.* TN +?...*)2 o2 + 0'25(@) + RS+ -M0'2GR

S(G) 2N-2M 3,3, Vit - Vi )? 0% + %) + 9°rs(6)

RS(G) 0 - -

Error 0 - -

It still remains to derive the ANOVA table in terms of the original equation
Yijk = p+ Gi + Rj + GRi; + Sii) + RSjx(s) + €ijee-

This can be accomplished by noting the correspondence between the Y;;; and the Y;;,* terms used
in the sum of squares notation of Table 15. Taking sums over only the observed Y;;; and letting
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the overbar and dots denote avera,gmg of the subscrlpts only over available observations, it is easy
toseethatY..=Y..",Y,;. =Y,;.", Y.; =Y, ,and Y;;. = Y” In addition, summing over the
subscrlpt k, assoc1ated with subJects, in the ngk representation involves the summation of only
M observatlons Using the above, the ANOVA table for the balanced incomplete design can be
written in terms of the Y;;; as in Table 4.
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Appendix 3: Derivation of Noncentrality Parameter

For the balanced incomplete design, Section 3 showed that under the assumption o?gg = 0,
pooling the sum of squares results in expected mean squares as in Table 16.

Table 16: Pooled Expected Mean Squares for the Balanced Incomplete Design

Source df EMS

G 1 0% + 0’grs(c) + 07 s(c) + Noc

R M-1 0% + o%pgg) + 02s(6) + 28-0%R
S(G) 2N-M-1 o2, + UzRS(G) + U2S(G)

RS(G) 0 -

Error 0 -

The previous table suggests that under the hypothesis of equal group means, the statistic

_ MSq
MSs(q)

*

(16)

follows an F distribution with 1 and 2N — M — 1 degrees of freedom. In (16), M Sg is the mean
sum of squares for the group term given by

MSe=N> (Yi.-Y.)?

and M Sg(g) is the mean sum of squares for the subject term. For only two groups, it is easy to
show that the mean sum of squares for the group effect simplifies to

N — —
MSg = 5 (¥i. - Y2.)%

where Y;.. and Y,.. are the average responses from the two groups.

To show that the statistic /* in (16) follows a noncentral F distribution under alternatives of
no group effect, let Y;.. represent the average of the N measurements in the ith group. Assuming
the data is described by the balanced incomplete design,

- 1
Vi = 522 Y
7k
1
= szk: (,u +Gi+ R; + GR;; + Sk(i) + RS;k(y + 5ijk)
J
1
= n+Git 3D 2. (Bj + GRij + Suoy + RSjuio + €ie)
ik

1 1 1
= pu+Gi+ —M;(Rj + GR;;) + —N—Xk:sk(i) + W;Zk: (RS]-k(,-) + Eijk) .
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The difference in the group sample means is then given by

— — 1 1
Yi.—- Y, = (Gl — Gz) + M_Z(GRU - Gsz) + ]—V-Z(Sk(l) — Sk(g))
J k
1 1
+WZZ(RSJ'1¢(1) — RSjn(z)) + WZZ(%% — €24k)-
J ok ik

Because Y;.. —Y,.. is a sum of independent normal random variables, the distribution of ¥y.. —~Y,..
is normal with mean
E(Y,.-Y3.)=G1 -G,
and variance 9 9
2 2 2 2
7° GR+'N‘ (0 s(@) to°Rrs@) +0 e) .
Defining the ith group effect in the usual manner as

V(M’(?]_.. - ?2) =

Gi = pi = py

where y; is the mean for the sth group and u is the overall mean, the expected value of Y;.. — Y ,..

can be restated as _ _ .
E(Yl.. — Yz..) =Gy — Gy = py —~ lo. (]_7)

Taking the additional assumption as in Section 2 that o2gr = 0, the variance of Y;..— Y ,.. can
be simplified to

— — 2
Var(Y1.—-Y,.) = N (Uzg(g) + U2RS(G) + 025) . (18)
Thus, (17) and (18) imply that
\/ MSq _ Y. -Y,. (19)
o’s@) T O’rs@) T 0% [E(025(6) + 0%Rs(c) + 0%)

is a normal random variable with mean

My — M2 (20)
\/%(Uzs(c) + 02Rs(e) + %)
and unit variance.
The properties of normal random variables imply that the mean sum of squares for the subject
term is a scaled chi-squared random variable. Specifically,
(2N — M - 1)M S5

21
o%s(q) + o%rs(q) + 0% 1)

is a chi squared random variable with 2N — M — 1 degrees of freedom. Furthermore, the fact that
the decomposition of sums of squares in Table 16 is orthogonal implies that M S¢ and M Sg(q) are
independent.
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Let n(6, 1) denote a normal random variable with mean § and unit variance and let x?, denote
an independent chi squared random variable with v degrees of freedom. Then a random variable
of the form (n(6, 1))?

n ?
—a— (22)

Xy
v

is defined to have a noncentral F' distribution with 1 and v degrees of freedom and noncentrality
parameter §2. If § is zero, the random variable in (22) will follow a central F' distribution with 1

and v degrees of freedom.
From (19), (20), and (21) the statistic

(2N—M—1)MSS(G)

P = MSg L 9se)to’rs(a)to’e
o%s¢)+ 0%rse) + 0% = 2N -M -1
. MSq
B MSS(G)

satisfies the distributional assumptions necessary to make F™* follow a central F' distribution under
Hp : gy = po. Under an alternative hypothesis F' follows a noncentral F' distribution with 1 and
2N — M — 1 degrees of freedom, and noncentrality parameter

(1 — #2)2
. 23
%(UZRS(G) + 025 + 0%) (23)
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