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Abstract

This article gives a review of the optimality theory of Bayes experimental designs.
The description includes common formulations, the mathematics, the existing results, and
explicit examples. Since Bayes experimental designs cannot be understood separately from
the rich theory of classical optimal designs, this article also gives a lot of information on
the classical theory and practice. Future directions are discussed and there is an appendix
on moment methods and orthogonal polynomials, which may be of independent interest.

Nonlinear problems are described only tangentially in Section 11.
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1. General Introduction.

It is fair to say that for as long as we can recall, statistical training has emphasized the
role of design of an experiment in extracting the correct type of information and making
accurate inferences for the problem of interest. Proper design of an experiment is evidently
a crucial aspect of sound statistical practice; a classic course on design actually helps bring
this out much more than a sophisticated course on the mathematics of design. Histori-
cally, design of esperiments started out with agricultural studies and therefore factorial
experiments and their design aspects were the natural starting points of the theory and
practice of optimum design. A little exposure to factorial experiments shows how utterly
important it indeed is to use the right design to avoid the pitfalls of confounding, non-
estimability, missing data, and a long list of other genuine problems. See Fisher (1949).
With statistical practice changing rapidly, as an influence of advances in computer technol-
ogy and the inclination among many to treat statistics as mostly data analysis, the role of
design of experiments and controlled studies may get substantially diminished at a future
time. However, that has not happened yet. It therefore appears appropriate that a broad
overview of the history, mathematics, methods, advances,and the future of experimental
design should be made. A number of such contributions already exist; some are more
methodological, others more technical. Design of experiments especially 1s one branch of
statistical theory in which frequentist and Bayesian ideas, formulations, techniques, and
results go very parallel; thus, although the primary goal of this writing is to make a re-
view of the state of the art in Bayesian design, it is quite impossible to do so in isolation
of the rich history of classical optimal design. As a matter of fact, Bayes design can be
understood only in the context of what is known in classical design. One reason for this
is that barring a few exceptions, even the formulation of a Bayes design problem requires
frequentist evaluations of a design. We will therefore have to necessarily consider classical
theory and methods to some extent in this writing. Although there is bound to be some
overlap between the technical contents of this chapter and others, due to the connections
of the mathematics involved in various variety of optimal design theory, there are certain
unique aspects of this chapter, both informationally and technically. In particular, this
chapter is unique in its description of the role of the prior in determining an optimal de-

sign, how the role of the prior typically diminishes in a very strong sense with increasing
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sample size, conditional optimal design formulations that would make sense only in the
Bayesian context of this chapter, and sample size problems that are always regarded as
important by applied scientists, especially those conducting clinical trials. On the technical
side, this chapter provides a self contained brief account of two relevant but highly used
tools of pure mathematics: moment methods and the algebra of orthogonal polynomials.
These are presented in the appendix to retain their independent character and to allow an

uninterrupted flow of the statistical content in the main body of the chapter.

In a broad intellectual sense, the problem of design is encompassing; one can make
the following general statement: in any scientific problem in which the scientist has the
choice and flexibility of choosing one among many initial setups of the experiment, there is
an optimal design problem associated with the experiment. The concept of optimal design
goes far back in the history of mathematical sciences, and probably even further back in
the history of our civilization. For example, the following well known examples are all

instances of optimal designs.

Ezample 1. Polynomial interpolation. Consider a continuous function f(z) on a given
bounded interval [a, b]. It is well known that there exists a polynomial p(z) which uniformly
approximates the given function f (z), to any specified degree of accuracy ¢ > 0, with the
degree of the polynomial p(z) depending on € . A proof of this can be found in standard

texts on analysis; for a historically important proof, see Korner (1989).

It is natural to try to find a good approximating polynomial by interpolating the
function f at a fixed set of say (n + 1) points, X = {z;,0 < i < n}. Indeed, there is a

unique polynomial p(z) with the representation

n

p(z) = Y, L(z) flz:)

1=0
interpolating f at the points of X. In the above, {I;} are themselves polynomials of degree

n, and are commonly known as the fundamental or cardinal polynomials of interpolation.
A natural criterion for assessing the goodness of approximation of f by pis the quantity
e(z) = |p(z) — f(2)]-

Note that e(z) depends on the choice of “nodes” X. A design problem is therefore the

following:



Choose a good set of nodes X according to the criterion e.

As an illustration, consider approximating the (unnormalized) Cauchy density

f) = T2

in the interval [—5,5]. Take two sets of nodes: X; = Equally spaced points at spacings of
5, starting at —4.75; X = The points of peaks of the nth Chebyshev polynomial Tn(z)
in the interval [—5, 5], with »n = 20.

Straightforward computation shows that the equispaced points give a very bad fit
near the boundary of the interval, and even worse, the fit deteriorates by taking more
equispaced points. On the contrary, the Chebyshev nodes result in a maximum error of
< .016 with n = 20. One might therefore say that X3 is a better design than X, in this
example. For universal results on the goodness of X3 as the nodes of interpolation, one
can see Erdos (1958) and Rivlin (1981). For further illuminating discussion of the example

above, one can see Powell (1981).

Ezample 2. The Secretary problem. The basic Secretary problem corresponds to the
situation in which n candidates are interviewed for a job in a random order and a candidate
once rejected cannot be recalled. The employer would be able to rank the candidates from
1 (best) to n (worst) if s/he could indeed see them all at one time. The criterion of the

employer is the following:
Maximize the probability of selecting the actual best candidate.

The following is a design problem:
What interviewing strategy should be used according to this criterion?

Although in this form, the problem is admittedly somewhat unrealistic, various modifi-
cations of the basic problem have been studied in great detail; however, even the basic
problem is intellectually interesting due to the beauty and the neatness of the optimal
design. The optimal design says that there exists a value k = k(n) such that the employer
should reject the first k candidates and then accept the very first one s/he likes better than
the others who went by. In the process, there is the possibility that the employer has to
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#

accept the last candidate to arrive, even if this is the worst candidate among all. The value
E can be found with relative ease by maximizing a unimodal function defined on integers.

The asymptotic solution is perhaps one of the most neat results of mathematical statistics:

it is to reject the first 100/e % of the candidates and then follow the design given above.

If one does this, the probability of getting the best candidate is also about 1/e for large n.
Among the large literature on the Secretary problem, this author particularly recommends

Freeman (1983) and Ferguson (1989).

Ezample 3. Allocation of treatments in clinical trials. Consider estimating the average

rate of response in & clinical example with the model
E(X;) = b,
Var (X;) = a (B(X:))?, p20

where X; are independent observations on the response to b; units of a stimulus. The goal

is to estimate the response rate 6.

Suppose, as is often the case, a total fixed amount of the stimulus is available, and
the dose that can be given to an individual has to be between two bounds (a very low dose
is useless, and a very high dose is dangerous). Suppose the experimenter is unwilling to
assume normality or any other model assumptions, and decides to estimate 8 by using its

BLUE.

The following is a design problem:

How many individuals should be used and how many doses should they get in order

to minimize the mean squared error of the estimate?

It turns out the optimal design crucially depends on the value of p; in some cases, it
is harmful to use more individuals for the study: i.e., a smaller sample is much better. In
some other cases, the design is completely unimportant. and the same mean squared error
is achieved regardless of the design. In some other cases still, it is best to use as many
individuals as possible by applying the smallest amount of the stimulus. For an enjoyable

look at this, one can see Kiefer (1987). A more recent generalization is DasGupta and Zen

(1996).



Ezample 4. Sequential analysis. In sequential experiments, data come in a sequence, with
the experimenter retaining the option of stopping and making an inference at any stage
without collecting more data. The practical impetus for sequential experiments came from
the frequency of real problems in which the inference problem was satisfactorily solved
without the need of more data. In law enforcement, an analog may be that police stop
taking tips incriminating other individuals when the existing evidence against a current
suspect is overwhelming. In his monograph, Chernoff (1972) eloquently describes the
relation of sequential experimentation to design: “in the act of deciding whether or not to
gather more data, the statistician is making a choice of design. In this sense, sequential

analysis . .. is not a separate field (from optimal design)”.

Deep and profound questions exist on what exactly is the “correct” optimal design
problem in this context; particularly, the importance (or the lack of it) of exactly how
the sampling process was terminated is a bitter bone of contention among statisticians of
various descriptions. For a lucid and remarkably enjoyable discussion on this issue, one
can see Berger (1986). Generally speaking, a strict believer in the Bayesian paradigm
should have no use for knowing the exact termination rule; however, it is a truth that
many declared Bayesians do not believe that with conviction. It is much like the parallel
fact that randomization has no role in a strictly idealistic Bayesian world, but probably
no Bayesians exist who would recommend against randomization, generally accepted to be
a most sacred principle of statistical data gathering. Underneath all of these, the design

problem is the following;:

Choose a stopping rule and a procedure for deciding between actions after one has

stopped.

The exact optimal design in a strictly sequential context is usually not something one
can write easily on a piece of paper; there are many instructive examples of Bayes optimal
designs in sequential contexts in Chernoff (1972). Generally, one has to propose a design
and establish its near optimality. Further contributions came from Schwartz (1962) and

Siegmund (1985).

Ezample 5. Greedy algorithms. The Greedy algorithms refer to a whole family of op-

timization procedures in the problem of assigning k people to k jobs, when the cost of



assigning the ith person to the jth job is C(¢,j). Two common greedy algorithms are the

following;:
Method A. Assign to each individual the available job s/he does the best;

Method B. Initially, identify the best (z,7) combination; then eliminate the selected

person and the selected job, and identify the next best (7, j) combination, and continue.
The design problem is the following:

Choose among the possible finite number of job assignments, the one that minimizes

the total cost.

A mystifying result is that if C(,5) are 13d Exponential, then each of Method A and
B are equivalent to each other. The result is not trivial, and to see the equivalence one has
to use various algebraic facts and other facts particular to the Exponential distribution,

specifically, its memory-less property.

Ezample 6. Blackwell prediction. The Blackwell prediction algorithm deals with the
problem of predicting the (n + 1)th member of an infinite 0 — 1 sequence knowing the past
members. A design thus corresponds to construction of an algorithm. This is probably
one of the earliest examples of optimal design in which minimaxity appeared as a selection
criterion (almost concurrently with the appearance of the Blackwell prediction algorithm,
came the minimax ideas in Kiefer (1953), in which Kiefer uses minimaxity as a criterion for
choosing a set of evaluation points in order to locate the maximum of a unimodal function
in a bounded interval. Brown (1991) also gives a charming description of these growing

years of optimal design).

Interesting things happen; a naive prediction algorithm (also appealing due to its
simplistic nature) is to predict the (n 4+ 1)th member as 1 if the average of the past
members is > 1/2. While it predicts sequences that are really Bernoulli quite well, it does
not do well for deterministic sequences of certain kinds. The Blackwell algorithm, which
is randomized, in contrast seems to cover both types and has a minimax property. A
Bayesian optimum design problem arises by putting a prior distribution on the unknown
infinite sequence; but then, the problem is easily solved. One simply calculates the posterior

probability of each value at the (n+1)th stage and predicts the one with a larger posterior



probability. Blackwell gives a nice colloquial description of the relevance of this problem
in Information theory and artificial intelligence in his interview with Morris DeGroot in

Statistical Science (1986).

Example 7. Computer ezperiments and infinite dimensional problems. In recent years,
emphasis in optimal design is shifting to new families of problems. One such area involves
the writing of a stochastic equation for predicting the output of a deterministic computer

code. Typically, the problem is of the following type:

One has a (possibly very high dimensional) input z in response to which the computer
produces an output y = y(z). The relation is supposed to be deterministic. However, a

stochastic model is introduced:
y(z) = A regression function + z(z),

where z(z) is an error. The idea is to build a predictor by treating this as a regression
problem; this predictor acts as a (cheaper) proxy to the deterministic computer output of

the complex code. The design problem is the following:

Determine a set of n values of z which are to be used in constructing the prediction

equation.

As in Example 3, one can decide on a linear method and avoid making assumptions
about the stochastic process z(z) or one can assume z(z) is a path of a certain well under-
stood process, typically a Gaussian process. Linear estimation in this context is commonly
called kriging; one can use a kriging procedure together with a specified design criterion to
arrive at a functional that needs to be maximized to construct an optimal design. Com-
mon design criteria include an integrated mean squared error (over z, with respect to some
probability measure on z), and a maximum mean squared error. The problems are much
harder than what one sees in ordinary regression designs; as a consequence, it is typical
that the optimal design has to be found by a search method and the construction of the
search algorithm is as important as the identification of the criterion functional. One can
see Sacks, Welch, Mitchell and Wynn (1989) and Sacks and Schiller (1988) for a broad
exposition. Use of stochastic processes as priors on continuous functions is also done in
Diaconis (1987), O’Hagan (1978), among others. Essentially the same things also go by

the name of illposed inverse problems.
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The above examples clearly show how rich the study of optimal designs is and can be.
Tt is an error to think that optimal design is an abstract area of mathematical statistics
limited to standard statistical models like factorial experiments, or linear and nonlinear
models. In fact, according to this author, the more lively optimal design problems arise
in branches outside of these models, and much remains to be looked at. As commented
earlier, a remarkably vast literature already exists on optimal design. Anyone seriously
interested in learning about optimal design must at the least consult , in addition to the
references above, Kiefer (1959), Atkinson and Donev (1992), Fedorov (1972), Silvey (1980),
Pukelsheim (1993), Pilz (1991), and in particular for Bayesian optimal design, a very recent
review article by Chaloner and Verdinelli (1994). Indeed, we will make a conscious effort
to as much as possible emphasize aspects and literature not emphasized in this review
article in order to avoid a wasteful duplication of intellectual effort. However, there will

necessarily be some overlapping due to the review nature of both articles.

2. Outline.

In Section 3, we give some history of the theory of optimal design; naturally, this
will include the early developments usually attributed to Kiefer and Wolfowitz (1959).
In Section 4, we explicitly start to discuss Bayesian formulations of the design problem,
and we will discuss the direct impact of the Kiefer-Wolfowitz theory on Bayes design and
also discuss the early history of Bayes design. In Section 5, we will broadly discuss the
typical mathematics of Bayes regression designs; this will cover the Elfving theorem, other
geometry due to Chaloner (1984), and El-Krunz and Studden (1991), and Studden and
Dette (1993), and will also include the role of moment methods and equivalence theorems.
Section 6 will apply the theory to explicit description of Bayes optimal designs; this section
will also include some work on Factorial experiments, in particular those of Notz,Toman,
and their coauthors. In Section 7, we critically assess the relevance and impact of optimal
design theory, and address issues such as belief in the model, and construction of all
around designs. This section will include an outlook into how optimal design theory can
adapt itself to the opinion of practitioners. Section 8 discusses the nonconjugate case, and
whether Bayesians need to even worry about optimal designs : this will cover two aspects
- whether classical designs alone suffice, and whether the prior matters. Robust Bayes

optimal designs will be discussed in this section. Section 9 will cover miscellaneous design
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problems, as in quality control, engineering reliability, spatial designs, etc. Section 10
covers sample size and preposterior formulations of the Bayes design problem as opposed to
standard criteria like integrated Bayes risk. Section 11 gives a brief exposition to nonlinear
models and associated design problems. In Section 12, various other issues are discussed
and concluding remarks are made. Section 13 contains an appendix on the mathematical
tools of optimal design.

3. Some history.

Optimally setting up an observational study so as to extract as much relevant in-
formation as possible is such a natural idea that it is possibly impossible to trace back
to the first scientific article on this; there are, however, some demonstrably early ones.
Smith (1918) already has a clear flavor of optimal design in polynomial regression; apart
from one intermediate but clearly a key contribution by Wald (1943), the culture of a
structured optimal design theory arrived with Jack Kiefer. The paper by Wald (1943) was
key in its influence on how optimal design theory was formulated and was done for three
decades. Although the time around the second world war was in some sense the golden age
of decision theory (every eminent statistician did some decision theory around that time),
it is fair to think that Wald’s 1943 article had a binding influence on the formulations
that came through later. Stigler (1974) gives a fine account of the history of polynomial

regression that makes interesting reading for researchers in design of experiments.

The most remarkable and time tested contribution of the Kiefer - Wolfowitz theory
was the concept of an approximate design. Indeed, this concept had such a tremendous
impact that optimal regression design is done even today more or less within the domain
of approximate designs. The idea was that exact optimal designs for a given sample size
n are to a significant extent dependent on the value of n, and their derivation corresponds
to a straightforward (but not proportionately enlightening) integer programming problem;
in contrast, by formulating a design as a probability measure on the design space, two
things are achieved: avoiding a dependence on n (except at the implementation stage) and
making possible a strikingly beautiful theory that connects together several branches of
mathematics (analysis in particular); Karlin and Studden (1966) is a standard reference
on connections of optimal design theory to moment methods and orthogonal polynomials.

The other important contributions of the Kiefer-Wolfowitz theory were the concepts of
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alphabetic optimality; these are accepted quite universally as criteria for evaluation even
today, although a somewhat small school has argued against a few criteria in use due to
their apparent lack of correspondence to decision theory based on a utility function: see

Chaloner and Verdinelli (1994) for more on this.

An important point at which regression and other (factorial or qualitative) types of
optimal design theory separated is the adoption of approximate designs as a founding
concept. Historically, in these other branches of optimal design theory, combinatorics and
integer programming continued to play the key roles. Bose (1948) is an early important
work followed by much work of many researchers, notably C.S. Cheng. One can see Shah
and Sinha (1989) for a comprehensive and informative account of nonregression optimality
theory; Kurotschka (1978) gives an account of the nature of optimality theory in the

presence of both quantitative and qualitative factors.

A mathematical tool from which all of optimal design theory benefitted is commonly
called an equivalence theorem. At a basic level, an equivalence theorem only states that
at a point of minima a differentiable function has derivative zero and it increases as one
moves away from the minima in a given direction. The use of an equivalence theorem is in
its ability to verify that a design suspected to be optimal is indeed so; subject to numerical
accuracy of such a verification, this has been creatively used in a number of problems,
notably in nonlinear models by Kathryn Chaloner and her coauthors. Statements of general
equivalence theorems can be seen in many writings; one can see in particular Silvey (1980),

Pukelsheim (1993), and Schoenberg (1959).

As much as the Kiefer-Wolfowitz theory was beautiful, its impact on practitioners was
limited. The problem is in the nature of the optimal designs. One has to trust the model
absolutely to consider actually using these exact designs. It is therefore quite natural that
concerns about robustness with respect to misspecification of the model were voiced; Stigler
(1971) and Studden (1982) reacted to these concerns, among many others. There are also
many who believe that parameter estimation is not the aim of an experiment and a model
should be assessed on the basis of its predictive power; it is a fairly persuasive argument and
not surprisingly, predictive design criteria have been suggested. Lindley (1968) is probably

the earliest article on Bayesian-decision theoretic design based on predictive evaluations:
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the topic continued with a number of articles by Brooks (1974, 1976), and has recently

gained further momentum with an article due to Eaton, Giovagnoli and Sebastiani (1994).

The history of a structured Bayesian optimality theory is by far much more recent; in
fact, it can be said that Chaloner (1984) is the first serious attempt to develop a theory
of Bayes optimality in linear regression context. Chaloner (1984) gives a formulation,
shows analogs of the Elfving geometry of the classical theory in some special cases and
explicitly describes the role of the prior on the difference between the Bayes and classical
optimal designs. Meanwhile, a number of people in Europe started to actively work on
Bayesian optimal designs, and Pilz (1991) is an early contribution that assembled a great
amount of material in the context of linear regression and really provided a solid impetus
for further work. The Elfving geometry in the context of Bayes designs was beautifully
described in El-Krunz and Studden (1991), perhaps the deepest theoretical contribution
to Bayes designs till now. Sensitivity of Bayes designs to the choice of the prior was given
a structured formulation and explicit robust Bayes designs were given in DasGupta and

Studden (1991); Toman (1992) treats sensitivity in models with qualitative factors.

It was already well known that practically all of the neat theory of optimal designs one
sees in linear models is unachievable in even the simplest kinds of nonlinear models. In fact,
a great amount of philosophical and moral dilemma pervade optimal design in nonlinear
models. The problem is that strictly speaking, an optimum design depends on the true
value of the parameter one is trying to estimate in the first place. The concept of local
optimality was introduced in the classical theory to tackle this issue. The first attempt at
seriously working out Bayesian optimal designs in a series of nonlinear models was made in
Chaloner and Larntz (1989), although prior important contributions exist, notable among
them Box and Lucas (1959). The mathematics of the Bayesian optimality theory for
nonlinear models is challenging, and rather surprising advances have come through in a
short period of time. The works of Holger Dette and his coauthors deserve specific mention
due to their insightful nature. Unfortunately, however, all the evidence still suggests that
a unifying theory as in the case of linear models would not be possible and a piecemeal

theory may emerge with time.

The theory and practice of Bayesian optimal design are still at an early stage; many
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topics for which a great amount of results exist under classical optimality criteria have
not been at all looked at. Effect of dependence in the observations is one such (old works
of Sacks and Ylvisaker (1966) and Bickel and Herzberg (1979) are by now classic con-
tributions to this) topic. Determination of minimum and optimal sample size which has
taken the status of textbook material in classical statistics, is just beginning to get serious
attention in terms of a debate about which formulations are proper for the Bayesian; some
early theoretical works include DasGupta and Mukhopadhyay (1994) and DasGupta and
Vidakovic (1994). It is encouraging to see that efforts are being made , although somewhat
in isolation of a structured theory, to work out Bayesian optimal designs in actual applied
problems; workers at the Duke school have already made good contributions in this area.
Caselton and Zidek (1984) and Schumaker and Zidek (1993) are instances of elegant the-
oretical developments in interesting real problems. Another area in which some effort is
being made is the writing of computer codes for numerical implementation of Bayes op-
timal designs (Clyde (1993)). Significant literature on this already exists for construction
of classical optimal designs; in particular, one can see Atkinson and Donev (1992) for an
exchange algorithm much like the exchange algorithm of numerical analysis for finding the
minimax fit to continuous functions from Haar spaces, and Haines (1987) for an innovative

use of simulated annealing in constructing D-optimal designs.

For comprehensive reading of optimal design, both classical and Bayes, many excel-
lent sources exist; we enthusiastically recommend Atkinson and Donev (1992), Box and
Draper (1987), Herzberg and Cox (1969), Pukelsheim (1993), Silvey (1980), Chaloner and
Verdinelli (1994), and Wynn (1984) for anyone interested in this topic. In fact, our effort
would be to emphasize whenever possible specific points not addressed in much detail in
these earlier contributions. It is also necessary to consult these for bibliography in addition

to the bibliography of this article.

4. Alphabetic criteria and other formulations.

4.1. Approximate designs. The five most widely accepted criteria for an optimality
theory of designs are ¢, A, D, E, and G optimality; there are others. The road to arrival at
these criteria can be thought of in the following way: one has a standard Gauss-Markov
linear model and decides to use the leastsquares estimate of the regression coefficients; it

seems natural that one should want to make the estimate as accurate as possible. Since
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the leastsquares estimate is already unbiased, consideration will then focus on the variance
covariance matrix of the leastsquares estimate. Minimizing the trace, determinant, and
the maximum eigenvalue of this matrix respectively correspond to A, D, and E optimality.
Minimization of the variance of the leastsquares estimate of a linear combination of the
regression coeflicients corresponds to ¢ optimality. G optimality, which corresponds to an
average over linear combinations of the coefficients thus also links up to essentially the

same fundamental idea.

P
Consider then the usual linear model y; = > 6; f;(zi)+ €, where the vector of errors
j=0

satisfies E(¢) = 0 and D(¢) = 021, where o2 > 0 is possibly unknown. A large number of
statistical models in everyday use fall under this general setup, and in principle, therefore,
an optimality theory for designs in the canonical linear model certainly has a wide scope
for application. The leastsquares estimate for § has the representation (X'X)~1X'Y, with
variance covariance matrix 02 (X'X)™!, where X denotes the design matrix with rows
(1, fi(zi), ..., fo(zi)). These statements need to be slightly changed when X'X is not full
rank, which in fact does happen in some interesting problems. We shall later see that
usually this ceases to be a problem in the corresponding Bayes theory. For the alphabetic
criteria listed above, one can make a transition to the precision matrix %(X 'X), due
to the well known relations between the trace, determinant and eigenvalues of a matrix
and its inverse. Actually, there is a whole family of criterion functions that permit such
a transition from the “dispersion” matrix (X'X)~! to the "information” matrix X'X.
Thus, for instance, the E optimality criterion corresponds to maximizing the minimum

eigenvalue of the information matrix X'X.

Now if the distinct rows in the “design” matrix X are denoted as zi,z},..., with
multiplicities ny,n2,... (a repeated row corresponds to replication of the same levels of
the independent variables for two or more individuals), then the information matrix takes

the form

X'X = nZn,/n T; Ti;

Writing n;/n as p;, one therefore sees that X'X equals an average of the quantities z;z!.
The idea of an approximate design is to allow an arbitrary probability measure instead of

a discrete probability vector p such that the elements of n.p are integers. One then has a
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general information matrix
M= (€)= [a2' de)

where £ is a probability measure on the design space X.

Ezample 1. Consider quadratic regression y = 6 + 6,z + 6,22, with z varying in the

interval = [—1,1]. Then the information matrix M is immediately seen to be
1 cC1 €
M= |ci ¢ cs{,
Cy C3 C4

where c; denotes the ith moment of the probability measure £. Notice the interesting fact
that the elements of M are moments of £. Because of this reason, it is quite common to

refer to the information matrix as a moment matrix as well.

This connection of information matrices to moments also helps illustrate the form of
optimal designs according to the alphabetic criteria described above in polynomial regres-
sion. For instance, according to the D-optimality criterion, one should try to identify a
probability measure on [—1,1] such that the corresponding moment matrix has a maxi-
mum determinant. The original (finite dimensional) integer optimization problem has now
changed to an infinite dimensional problem on the space of probability measures. Iron-
ically, this complexity actually adds structure and simplicity to the problem. Assuming
for a moment, that a probability measure giving a largest value of the determinant exists,
it is clear that this particular £ must give the largest value of the moment c, among all
probability measures which produce the same values as those of £ for the lower moments
¢i, © = 1,2,3. Theorems in moment theory and an easy symmetry argument now imply
that there is an optimal choice of the probability measure with supports at 0,+1 and
calculus then shows that the weight at 0 has to be 1/3. The solution to the D-optimal
problem for quadratic regression on [~1,1] according to the approximate design theory
is thus to take an equal number of observations at 0,£1. Of course, if the total sample
size is not a multiple of 3, the ideal design has to be rounded to an integer design; even
more, even if the total sample size was a multiple of 3, the ideal D-optimal design from
the approximate theory need not coincide with the solution that would obtain from the

+ integer problem. These are issues one needs to be aware of, but the strong structure that
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the approximate theory provides more than makes up for these somewhat minor issues.
A much more serious issue is that the D-optimal design is too thinly supported; in view
of this, it is rare for an exact optimal design to be religiously used in practice. But they
provide a useful yardstick for the performance of other designs under the assumption of
an approximate validity of the regression model. Pukelsheim (1993) and Pukelsheim and

Rieder (1992) write eloquently about these issues.

All common criteria ¢ for optimal design satisfy a monotonicity property in the infor-
mation (moment) matrix M : if one considers two such matrices M, , My, with My > M, in
the Loewner ordering, i.e., if M2 — M is nonnegative definite, then the criterion ¢ satisfies
#(Mz) > ¢(My). This motivates the following definition:

Definition. An information matrix M; is called inadmissible if there exists another in-
formation matrix M, such that My > M; (i.e., My — M is nonnegative definite but not

the null matrix).

In construction of optimal designs, it is therefore necessary to only consider proba-
bility measures resulting in admissible information matrices: this is like the well known
fact in decision theory that admissible rules form a complete class. In polynomial regres-
sion problems, due to the moment interpretation of the information matrix, this helps in
bounding the number of support points in an optimal design according to any criterion
that is monotone increasing in the moment matrix in the Loewner ordering. Indeed, the

following holds:

Theorem. Under the hypothesis of monotonicity of ¢ in the Loewner ordering, an optimal
design for a polynomial regression model of degree p can have at most p + 1 points in its

support with at most p — 1 points in the interior of X.

This result aids in understanding why the theoretical optimal designs are generally so
thinly supported. Further pinpointing of the exact number of points and their weights do

not come out of this theorem.

4.2. Bayesian formulation of an optimal design problem. In a strictly Bayesian
decision theoretic setup, one has a set of parameters § with a prior distribution G, a

specified likelihood function f(z|6), and a loss function L(6,a). Given a design, there
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is an associated Bayes rule with respect to the trio (f, L,G); an optimal design should
minimize over all designs the Bayes risk , i.e., the average loss of the Bayes estimate over
all samples and the parameters. Chaloner and Verdinelli (1994) give a fairly comprehensive
review of this formulation. In particular, they give a number of loss functions that have
been proposed, and there is an instructive account of which alphabetic Bayesian criteria
correspond to such a a loss-prior formulation. Note that the formulation can as well take
the route of prediction rather than estimation; Eaton, Giovagnoli and Sebastiani (1994)
consider a predictive formulation and show that sometimes one returns with the alphabetic

optimal designs again, but not always.

There is another (simplistic) way to look at the Bayes design problem which in fact
has the axiomatic justification under a normal-normal-gamma linear model with squared
error loss. Thus, consider the canonical linear model ¥ ~ N (X8, 0%I), § ~ N(u,0?R™1),
Then, under the standard squared error loss || — al|?, the Bayes risk (in fact even the
posterior expected loss itself) equals tr(M + R/n)~!, where n denotes the sample size.
One would therefore seek to minimize tr(M + R/n)~! | which has a remarkable similarity

to the classical A-optimality criterion.

The Bayesian alphabetic criteria are thus defined for linear models as:

Bayesian A-optimality: Minimize tr(M + R/n)~!,
Bayesian D-optimality: Minimize |M + R/n|™!,
Bayesian c-optimality: Minimize ¢'(M + R/n) ¢ for a given vector c,

Bayesian E-optimality: Minimize the maximum eigenvalue of (M + R/n)™1,

Bayesian G-optimality: Minimize [ ¢/(M + R/n)"1¢ dv(c), where v is a probability
measure on the surface of the unit ball ¢'c = 1. (note that Studden (1977) calls this

integrated variance optimality).

Of course, in the absence of a meaning for R, these criteria do not stand to reason.
They do stand to reason by doing one of two things: a structured setup of normal-normal-
gamma distributions with a squared error loss, or restriction to affine estimates with only

¢ assuming that the dispersion matrix of § equals g2R™!. The presence of 02 as a factor in
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the dispersion matrix of ¢ makes this less inoccuous than it seems.

A substantial amount of the optimality theory in Bayes design has been done with
these alphabetic criteria. Note that if the sample size n is even reasonably large, the extra
factor R/n in these functionals should not (and indeed do not) play much of a role. Thus,
for priors in linear models which are not flatter in comparison to the normal likelihood tend
to report optimal Bayes designs that track the classical ones very closely, or even exactly.
On the other hand, although there is some scope for optimality work with ¢ or other flat
priors, so far there are no published works in this direction. The field of Bayes optimal
designs therefore still holds out some (hard) open problems even for the Gauss-Markov

linear model.

Of course, estimation and prediction are not the only inference problems one can de-
sign for; indeed, the design to be used should be consistent with what would be done with
the data. The role of optimal designs in testing problems is described in Kiefer (1959),
where he shows that for maximizing the minimum power over small spheres around the
null value in ANOVA problems, it is not correct to use the F test regardless of the design.
Kiefer’s criterion would not be very interesting in a Bayesian framework (although some
Bayes design work has used average power as the criterion: see Spiegelhalter and Freed-
man(1986)); however, Bayes optimal design for testing problems has generally remained
neglected. DasGupta and Studden (1991) give a fully Bayesian formulation and derive
Bayes designs; there are also a number of remarkably charming examples in Chapter 7
of Berger (1986), and there is some more theory with conjugate priors in normal linear

models in DasGupta and Mukhopadhyay (1994).

In closing, the Kiefer-Wolfowit theory has had a profound impact on the work in
Bayes optimal designs in two ways: use of the alphabetic criteria and adoption of the

approximate theory.

5. Mathematics of Bayes design.

5.1. General exposition. The mathematics of Bayes optimal designs is generally the
same as that in classical optimal design. There are three main routes to obtaining an
optimal design: i. use an equivalence theorem, 75. In polynomial models, use inherent

symmetry in the problem (if there is such symmetry) and convexity of the criterion func-
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tional in conjunction with Caratheodory type bounds on the cardinality of the support,
and 4. Use geometric arguments, which usually go by the name of Elfving geometry, due

to the pioneering paper Elfving (1952).

An equivalence theorem does the following: it prescribes a function F (€,z) defined
on the design space such that F(&,2) <0forall zin X and is = 0 if and only if z is in
the support of an optimal design £. Usually, but not always, some guess work and some
luck is involved in correctly using equivalence theorems for identifying an optimal design.
The nice thing about equivalence theorems is that really general equivalence theorems are
known that cover probably almost all cases one would be interested in, and in prineiple,
it is supposed to work. One can see Silvey (1980), Whittle (1973) and Pukelsheim (1993)

for increasingly general equivalence theorems.

Convexity arguments do the following: First by using Caratheodory type theorems, or
if possible upper principal representations from moment theory, one gets an upper bound
on the number of points in the support of an admissible design. Then, one proves that
the criterion functional has some symmetry or invariance property; finally, one proves that
the functional is convex in a convex class of moment matrices. Application of all of these
together would reduce the dimensionality of the problem to a very low dimension, which

is then solved by standard calculus.

The geometric methods attributed to Elfving (and developed by many others sub-
sequently) are by far the most subtle methods of optimal design theory, and need to be
stated very carefully with changes in the criterion function. It is best understood by a ver-
bal geometric description for the c-optimality problem. For this, one takes the symmetric
convex hull of the design space, i.e., E = CH(XU — X), where CH denotes convex hull.
This set is symmetric, convex and compact provided X is compact. Now take any vector
¢ if ¢ # 0, then on sufficient stretching or shrinking, it will fall exactly on the boundary
of the convex set E (the scalar by which ¢ is divided in order that this happens is called
the Minkowski functional of E evaluated at ¢). Call this scaled vector c*. Then ¢* can be
represented in the form Y p;y; where each y; is either in X or —X. If X is not already
symmetric, then those that are in X' give the support of an optimal design. A concise

general version of this method for c-optimality is given in Pukelsheim (1994); there is also
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a wealth of information with many greatly unifying results in Dette (1993). One should
be cautious about the use of the terminology “prior” in Dette (1993); the unifying nature
of the theorems is the most gratifying aspect of this article, but the worked out examples
indicate that again elements of intuition and good luck are needed for the Elfving geometry

to be useful.

5.2. State of the art in Bayesian alphabetic optimality.

5.2.1. c-optimality. It seems that the best results on Bayesian optimality are known
for this criterion. Chaloner (1984) already considers Bayesian c-optimality and gave a
form of the Elfving geometry in this case. Her results imply that Bayesian c-optimal
designs can be one point, i.e., they can sometimes take all observations at one point. The
deepest results on Bayesian c-optimality are given in El-Krunz and Studden (1991). They

succeeded in achieving the following:

(a) give a characterizing equation completely specifying a c-optimal design, together
with a Bayesian embedding of the classical Elfving set that describes the c-optimal

design,
(b) characterize the situations when the c-optimal design is in fact one point,
(c) characterize the situations when a particular one point design is c-optimal,

(d) characterize the cases when the classical and the Bayesian c-optimal designs are

exactly the same, and

(e) demonstrate that for any prior precision matrix, there is a sufficiently large sample
size beyond which the classical and the Bayesian c-optimal designs have exactly
the same support. This last result has a remarkable consequence: it is a classic
fact (see Karlin and Studden (1966)) that in polynomial regression, for the ex-
trapolation problem, i.e., for estimating the mean response at an = outside of the
design space, the c-optimal design is always supported at the same set of points
(it is a particularly brilliant application of the methods of orthogonal polynomi-
als to optimal designs). Therefore, the result in El-Krunz and Studden (1991)
demonstrate the same property for the Bayesian c-optimal design in the extrap-

olation problem for any prior precision matrix provided the sample size is large.
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This is extraordinary, because one is saying much more than weak convergence to
the classical design. That the supports coincide for large sample sizes was already

recognized in Chaloner (1984) also.

9.2.2. A-optimality. The criterion for c-optimality can be written in the equivalent form
tr(cc'(M + R/n)™' ). A generalization of this is the functional tr(o(M + R/n)~1), where
¢ is some nonnegative definite matrix of rank k,k < p, where p denotes the rank of the

information matrix M. This corresponds to Bayesian A-optimality.

A general equivalence theorem for this case is given in Chaloner (1984); a clean version
of this equivalence theorem is available in Dette and Studden (1994b). In principle, this
theorem can be used to find a @-optimal Bayes design, but as with all equivalence theorems,
one almost has to guess the design to use the theorem. This is like theorems in minimax
theory which provide excellent vehicles for verifying that a good guess is in fact a minimax
rule, but are not tremendously useful in guiding to the rule. In fact, a subsequent result in
Dette and Studden (1994b) is of much greater practical use: in this result, they show that
phenomena earlier described for Bayesian c-optimality continue to hold for p-optimality.
This result completely describes a value of a threshold sample size after which the Bayes
and classical optimal designs are identically supported and then even gives the weights at

the support points for the Bayes design.

For the case when ¢ is full rank, ie., k¥ = p, the invariance-convexity arguments
outlined in section 5.2.1 can be used for certain types of prior precision matrices. One
can see DasGupta and Studden (1991) for some further hints on this. In general, however,
calculus followed by application of Caratheodory type bounds appears to be the only
method that will apply. For bounds on the number of points in the support of the Bayesian
A-optimal design that are improvements on the Caratheodory bounds, one should see

Theorem 2 in Chaloner (1984).

9.2.3. D-optimality. Dykstra (1971) has a flavor of Bayesian D-optimality; the theoretical
foundation seems to be the convexity arguments presented in DasGupta and Studden
(1991). It would be nice to find out if the classical and Bayes D-optimal designs share
the same kinds of properties as they do for c-optimality. Although in regression designs

either theory or explicit examples seem to be lacking, there is some work on Bayesian
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D-optimality for factorial designs and also for nonlinear models. We will discuss these in

subsequent sections.

5.2.4. E-optimality. The state of the art results in Bayesian E-optimality for the canoni-
cal linear model are again in Dette and Studden (1994b). There is an equivalence theorem;
however, we do not recommend trying to use it. The useful results are remarkable in their
neatness. There are two such results: one asserts that for sufficiently large samples, the
Bayes and the classical E-optimal designs are identically supported and gives a formula
for calculating the weights. This calculation can be daunting. A second result asserts that
under two conditions the classical E-optimal design is exactly identical to the Bayes solu-
tion. In general, these hypotheses are not easy to verify. However, for the important case
of polynomial regression, they show a clean relation to an earlier result of Pukelsheim and
Studden (1993) for classical E-optimal designs. Pukelsheim and Studden (1993) showed
that the classical E-optimal design is supported at the points of peak of the pth Chebyshev
polynomial T,(z), which are {—cos(jn/p),0 < j < p} for the interval [—1, 1], where p as
before denotes the degree of the polynomial regression model. Dette and Studden (1994b)
show that the Bayes E-optimal design is supported at these same points and in addition
give an easily computable equation for the weights. This result is valid for sufficiently large

samples.

5.2.5. Implications in practice. The results we see in sections 5.2.1-5.2.4 demonstrate two
things: first, for practically every one of these alphabetic criteria, exact identification of a
Bayes optimal design is at least a time consuming process, despite the fairly good theory
that already exists. Second, if one is willing to use a conjugate prior in a Bayes formulation
of the design problem, then use of at least the same support points as the corresponding
classical design is wise. One can and probably should do a numerical search to find out
if the same weights can be used without much harm as well; the same search should
help locating better weights if indeed there are much better weights than the classical
ones. In this sense, the results described above are tremendously valuable. They show an
overwhelming structure, and demonstrate that subject to using these alphabetic criteria,
and conjugate priors, trying to exactly identify a Bayes design is not a particularly good
idea. Of course, in the case of very small samples, prior information is more important,

and the results stated earlier are not valid!
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6. Examples and other information of use to practitioners.

6.1. General examples. To get a flavor for how the theorems of Bayes optimality theory
apply under the various alphabetic criteria, one can benefit from examples described in
Brooks (1976), Gladitz and Pilz (1982), Chaloner (1984), DasGupta and Studden (1991),
El-Krunz and Studden (1991) and Dette and Studden (1994b). These are for what are
commonly called regression designs. Analogous examples for other kinds of models would

be cited in later sections.

6.1.1. Regression in a sphere: Suppose the design space is the sphere {z : }_ z? < 1}. This
can thus be regarded as an example of multiple linear regression without an intercept term.
Chaloner (1984) gives several examples of p-optimal Bayes designs in this case. El-Krunz
and Studden (1991) also consider regression in a sphere and have an example, which has a
flavor of a theorem. Brooks (1976) adjusts the spherical design space in order to entertain
an intercept term. Both Chaloner (1984) and Gladitz and Pilz (1982) address the issue
of rounding the optimal design to an implementable integer design and do real numerical

examples on the associated loss of efficiency.

6.1.2. Regression in a cube or on a discrete set of points. Multiple linear regression in
which each independent variable lies within +a for some a > 0 corresponds to regression
in a cube. Regression on a discrete set of points is an important example for many physical,

chemical and environmental experiments.

Chaloner (1984) gives an example of the application of an equivalence theorem involv-
ing optimality for regression in a cube; El-Krunz and Studden (1991) give an illuminating
example of regression on a set of three points. This example brings out all the important
features of the Bayes optimality theory: that for large samples, the Bayes design coincides
with the classical, and sometimes they are at least identically supported and for very small
samples, prior information is more important and the Bayes design is not even supported

on the same points as the classical solution. We recommend this example to everyone.

6.1.8. Polynomial regression. Certainly this is the case in which the maximum number
of worked out examples are available. DasGupta and Studden (1991) give an example of
Bayesian D-optimal designs for quadratic regression. Chaloner (1984) and El-Krunz and

Studden (1991) both give the example of estimating the coefficient of z® in cubic regression.
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There is also an example involving quadratic regression in El-Krunz and Studden (1991)
that illustrates the subtle geometry of the Elfving method for the Bayesian theory. Dette
and Studden (1994b) have a number of examples on E-optimality for polynomial regression.
In one of these examples, they apply their theorems to show a remarkable phenomenon:
although the Bayes designs are supposed to depend on the sample size for small n, in
certain instances a very small sample size may suffice for the Bayes optimal design to
already coincide with the classical design. There is another example in particular where
they obtain for quadratic regression the Bayes E-optimal design as n changes, with an

arbitrary prior dispersion matrix.

The use of these concrete examples is in two aspects: someone interested in alphabetic
Bayes designs can get a feeling for the theory by seeing it applied, and also get a feeling
for which aspects are important, namely the prior dispersion matrix or the sample size,

etc.

6.2. Exact classical designs in some important cases. Since Bayes and classical
optimal designs tend to be either exactly the same or very similar under alphabetic criteria
whenever one uses conjugate priors and the sample size is not very small, for practicioners
(Bayesian or not) it is greatly useful to know the classical optimal designs in some important
cases. Again, it is the view of most researchers in this area that optimal designs are not
intended for religious use, but are to be used as standards of evaulation for other designs.
In the following, we give the classical optimal designs for polynomial regression when the
single independent variable belongs to the symmetric interval [—a,a]. We can take a = 1

and scale the design if a is different from 1.

6.2.1. A-optimality. This corresponds to minimizing the trace of the dispersion matrix of
the least squares estimate. The optimal designs are as follows; in each case the symmetric

members of a pair have equal weight and the weights are in the same sequence as the
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points. The table is taken from Pukelsheim (1993), where more information is available.

Degree of
Polynomial Points in Support Weights
1 +1 5
2 0, £1 .25, .5
3 +.464, +1 .349, .151
4 0, £.677, £1 .29, .25, .105
) +.291, £+.789, £+1 232, .188, .08
6 0, £.479, £.853, £1 .205, .185, .148, .065

6.2.2. D-optimality. The classical D-optimal designs for polynomial regression have a
property that are regarded by some as bad and others as good: if there are k points in its
support then each point has weight 1/k. Thus a D-optimal classical design is uniform on
its support. The optimal designs are as follows; the points in support are just the turning

points of the pth Legendre polynomial plus the endpoints.

Degree of

Polynomial Points in Support Weights
1 +1 equal
2 0, £1 1/3 each
3 : +.447, £1 1/4 each
4 0, £.655, +1 1/5 each
5 +.285, £.765, £1 1/6 each
6 0, £.469, £.830, £1 1/7 each

Again, an extended version of this table can be seen in Pukelsheim (1993).

6.2.3. E-optimality. Pukelsheim and Studden (1993) proved the following general result

on classical E-optimal designs for polynomial regression on [—1,1]:
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The classical E-optimal design is supported on the points {cos(j7/p),0 < 5 < p},
where p denotes the degree of the polynomial. Furthermore, the weights {p;} are pro-
portional to (—1)P*u; where {u;} satisfy the system of linear equations Y u;(cos(j7/p))
= cj, where c; is the coefficient of 7 in the pth Chebyshev polynomial Ty (z). For instance,
the fourth Chebyshev polynomial is T4(z) = 82* — 822 + 1, and therefore the coefficients
{¢;} are respectively 1, 0, —8, 0, 8. In view of this general result, it is not difficult to

write the classical E-optimal designs for polynomial regression. They are as follows:

Degree of
Polynomial Points in Support Weights
1 +1 )
2 0, +1 6, .2
3 +.5, £1 373, .127
4 0, +£.707107, +1 318, .248, .093
5 +.309017, £.809017, £1 .246, .180, .074
6 0, £.5, £.866025, £1 218, .189, .141, .061

6.2.4. c-optimality. The classical c-optimal design can be found, in principle, by using
the Elfving method, for any given vector c. In particular, if ¢ = (1,z,22,...,zP) for
|z| > 1, one has the problem of “extrapolation” whereas if |z| < 1, one has a problem of
interpolation. Even these two cases are radically different in the corresponding optimal
designs. In the first case, regardless of the value of z, the optimal design is supported at
the points given in section 6.2.3, while in the latter case, the optimal design has only the
given value z in its support. Optimal designs for the individual coeflicients in the various
powers of z can be written down. The solution depends on whether the subscript of the
coefficient is an even or odd integer away from p, the degree of the polynomial model. Thus
there is no universal statement one can write on a piece of paper for easy communication.
One can see Pukelsheim and Studden (1993) or Pukelsheim (1993) for further information,
if needed.
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6.3. Factorial models, treatment control comparisons, elimination of hetero-

geneity and ANOVA.

6.3.1. Factorial models. The first attempt at derivation of Bayes optimal designs for fac-
torial models seems to be Owen (1970).Work following this includes Smith and Verdinelli
(1980), Verdinelli (1983), Giovagnoli and Verdinelli (1983), Toman (1987), Hedayat,

Jacroux and Majumdar (1988) and Toman and Notz (1991). A recent important and com-
prehensive contribution is Majumder (1995). Generally, the work has derived alphabetic
optimal Bayes designs for some selected models. These models include one and two factor
models, one and two way ANOVA, and one and two way heterogeneity models. Almost
exclusively, these works have assumed multivariate normal priors in conjunction with mul-
tivariate normal observations, which are needed for analytical results. Some of these works
also consider the computational aspects, and give special cases where the computation sim-
plifies. In some of these models, there have been some work on sensitivity with respect to

the prior distribution which would be cited later.

6.3.2. A-optimality. In the two factor ANOVA model, Owen (1970) derives a general result
giving the optimum allocation of treatments given a specified blocking. Owen’s criterion
should really be called generalized A-optimality due to the general quadratic loss he has
for estimating the treatment effects. Owen shows that in certain cases, the computational
aspect simplifies. A-optimality is also considered in Giovagnoli and Verdinelli (1985) in one
way heterogeneity models and in Hedayat et al for two way heterogeneity models. Toman
(1987) derives A-optimality results in a number of models, and returns to A-optimality
in heterogeneity models in Toman and Notz (1991). Generally speaking, these articles
solve the approximate design problem, although nearly all of these works address the
issue of rounding to integer designs. Toman and Notz (1991) in particular give a new
rounding strategy by rounding the amount (in the approximate theory) of the control in a
treatment vs. control problem. They give some evidence that this rounding strategy gives

better efficiencies than the methods suggested elsewhere.

6.3.5. D and E-optimality. D and E-optimal Bayes designs are discussed in Giovagnoli
and Verdinelli (1983) and later in Toman and Notz (1991) for block models. In fact,
Giovagnoli and Verdinelli (1983) show that in a two way ANOVA model, with usual as-
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sumptions, there is a unique optimal design for fairly general criterion functions, and in
the case of one treatment, a universally optimal design exists as well (universal optimality
refers to simultaneous optimality under all criterion functions entertained). DasGupta and
Studden (1991) also give instances of E-optimal designs in one way ANOVA settings and

show that the E-optimal design coincides with an A-optimal solution.

6.3.4. Ezact classical optimal designs. Although there is no direct evidence to this effect,
results in the regression case and simple common sense suggest that exact classical optimal
designs can be approximate proxies for Bayes solutions in most instances, if multivariate
normal priors are used. In any event, if an exact classical optimal design for a problem is
known, it can be instructive for the corresponding Bayes problem. Chapter 2 in Shah and
Sinha (1989) has some general information on classical optimal designs, particularly some

advantages of using balanced designs in block models.

The major bulk of the classical theory seems to have been for the D-optimality crite-
rion. In particular, either algorithms or even catalogues of D-optimal designs for 2™ and
3™ factorial models are available for small values of m: one can see Nalimov (1982). The
two most important contributions are the continuous D-optimum designs for second or-
der models and central composite designs which proxy the theoretical continuous optimal

designs. We describe these briefly below.

(a) Continuous D-optimal designs. Farrell, Kiefer and Walbran (1967) consider a general
polynomial model in m factor experiments and describe the form of an optimal design
depending on the degree of the polynomial and the number of factors, for three impor-
tant design spaces: cubes, spheres, and simplexes. There is an interesting discussion
on the minimum number of points that must be in the support of an optimal design,
and using the methods of orthogonal arrays introduced by Rao (1946-1947), a device
to reduce the number of points in the support of a candidate design is given. For
those interested in the classic properties of designs, there is an intriguing example in

which the optimal design is demonstrated to be not rotatable.

(b) Central composite designs. The conceptual difficulty with the theoretical continuous
optimal designs in these cases is that they cannot be implemented due to their infi-

nite support. One is thus forced into some form of an approximation. The by now
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common method of approximation is to use what are called central composite designs.
It is useful to know that central composite designs provide a rational way for mo-
ment matching corresponding to the continuous optimal designs; on the other hand,
statistically they have a lot of simple appeal. To understand the structure of central
composite designs, it is useful to think of the spherical design space once again. One
can hit the boundary of the sphere by using points which have all but one coordinate
equal to 0 and the remaining one equal to y/m. Such points are called star points.
Replications corresponding to 0 level for each factor are called center points. The

remaining observations are used up in a 2P~ fractional factorial for some f > 0.

Box and Hunter (1957) is a good exposition to central composite designs. Illustrative
examples on the efficiencies of central composite designs according to the D-optimality

criterion are available in Atkinson and Donev (1992).

These classic methods are of importance to the Bayesian theory at the present time
for two reasons: first, the present state of the Bayes optimality theory is far less advanced
than the classical theory. We just do not have very good knowledge of Bayes solutions yet.
Second, it is always instructive to consider classic methods that are timetested and see if

they do an adequate job when prior information is available.
7. Critique of the optimality theory.

7.1. Model dependence. A major criticism of the standard optimality theory in re-
gression models is the severe dependence of the design on the assumed model. While it is a
clear mathematical truth that if the model of a simple linear regression is valid, then nearly
every criterion calls for taking observations only at the endpoints of the design interval,
it is rare for even the most ardent theoretician to recommend this to anyone interested in
analyzing data. This can be restated as saying that one never believes the model exactly.
In this sense, despite the undisputable structure of the optimality theory and the impact
it has had on further theory, optimal designs have not had much of an influence on people
who do design actual experiments. Indeed, it is common in regression problems to more
or less divide the observations uniformly in the interval. This has some similarity to D-
optimal designs for high degree polynomial regression (this should not be interpreted as a

weak convergence to the uniform distribution; indeed that is known to be not true). Even
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Bayes designs, by virtue of sharing the same mathematics as their classical analogs, suffer
from the same problem (in some problems, there are counterexamples to this; for instance,

see the computer experiments in Mitchell, Sacks and Ylvisaker (1994)).

Another problem with the optimality theory is that the designs can be extremely
goal specific; thus, in polynomial regression, a design which is optimal for estimating one
regression coeflicient may perform quite poorly for estimating another coefficient. The
problem is that the experimenter may have several aims in an experiment, and in some
problems other aims may arise at a later point of time (of course, it is not the design’s
fault that arbitrary aims specified afterwards cause problems). But the point remains that

orientation to one specific goal is another drawback of the exact optimal designs.

7.2. Mixture models and model robustness. Response to the criticism of model

dependence has been generally of three kinds:

(a) construction of designs that are nearly optimal in a lower order model with (good)

protection against a higher order model,
(b) construction of minimax type designs in a class of models,

(c) use of criteria which are themselves some type of mixtures or averages of efficiencies

under different models.

7.2.1. Protection for higher order models. Stigler (1971) proposed derivation of designs
that are nearly G-optimal in a lower degree polynomial model with some protection for
each model of higher degree upto a certain maximum degree (recall that G-optimality
corresponds to an average c-optimality with an averaging over c: Studden (1977) calls this
the integrated variance criterion). In Studden (1982), a D-optimal variant of Stigler’s pro-
posal is considered and designs which are most efficient at order r subject to a prespecified
efficiency for an extra m — r are derived. The results are remarkably closed form, with
clever use of canonical moments of the design measure. As a matter of fact, tables of
efficiencies are provided, and the general moral of this article is really quite encouraging:
excellent efficiency at lower order models can be obtained by sacrificing a bit for the extra.
coeflicients. It is also possible to show that the design supported on {0, +.618101, £1}
with weights .13796,.140347 and .290673 is 69% D— efficient for each of linear, quadratic,
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cubic and quartic regression. This design maximizes the minimum D-efficiency over the
polynomial models of degree p = 1,2,3,4 over [—1,1]; further information of theoretical
nature is available in Dette and Studden ( 1994a). A similar formulation is the following:
for a given design &, consider estimating the mean response at value z of the independent
variable when the degree of the polynomial is p. Suppose v(z, &, p) denotes the variance.
Then consider the design that maximizes the minimum efficiency over 1 < p < n with

o0
respect to the integrated variance criterion J v(z,&,p) w(z)dz where w(+) is a probabil-

ity density on the real line; this is the integ_r:ted variance criterion in Studden (1977). If
w(-) is taken as the N(0,1) density and the design space A is taken as [-1,1], then the
maximin design for 1 < p < 4is £(0) = 2296, £(+.7018) = .2486 and £(+1) = .1366. One
can see plots of effficiencies of this design if it is used for particular z at the end of this
article for each of p = 1,2,3,4. A perception problem with these designs is that they are

still equally thinly supported.

7.2.2. Neighborhood models. Huber (1975) suggested use of models in a neighborhood of
a given model, and subsequent use of a minimax design, treating this as if this was a game
with nature choosing a model from the neighborhood class. Of course, neighborhoods can
be defined in many ways. Huber gives as an example the case of simple linear regression as
a starting model and an L(2) neighborhood of the linear regression function as the nature’s
family of models. It turns out that the L(2) neighborhood does not quite work very well,
but clearly the suggestion in Huber (1975) is appealing.

The idea in Huber (1975) was picked up again in Marcus and Sacks (1976), where
they look at L(oco) type neighborhoods of a linear regression function and under various
envelopes for the family, derive minimax (estimate-design) pairs. But again, the designs
are thinly supported. They find that as a rule, use of an estimate with a nonoptimal design
is more dangerous than use of an optimal design with a “nonoptimal” estimate. This leads

to some qualitative understanding.

The ideas in both Huber (1975) and Marcus and Sacks (1976) need further attention.
Another recent article is Tang (1993).

7.2.8. Mizture criteria. The main idea is to take an indexed family of functionals (¢,)

and then use an average of these functionals over p- The averaging is done by using a
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subjective weight measure on p. There are two leading articles on this approach; Dette
and Studden (1994a) give a very elegant theory using D-optimality as the basic criterion
and p as the degree in a polynomial regression. In Dette (1992) similar kinds of results are
derived for polynomial regressions with missing powers. Elegant use of canonical moments

and continued fractions can be seen in these articles.

7.3. All around designs. As stated earlier, the optimality theory of experimental
design also suffers from orientation towards very specific goals. For instance, in quadratic
regression on [—1, 1], the optimal design for estimating the coefficient of 2? has efficiency
.0 for estimating the intercept. It is thus an useful exercise to investigate if designs can
be found which give good efficiencies simultaneously for a number of aims. As commented
before, it is necessary that these aims be stated before the experiment as addition of
new goals afterwards essentially makes the problem impossible. Since all the aims of an
experiment are impossible to treat or even conceive of in a theoretical study, an effort to
find all around designs has to be quite specific. Thus a theoretical study of this issue is
limited in its scope, but an investigation in some standard models with standard goals can

lead to an appreciation of the extent to which all around designs are plausible.

Lee (1988) discusses this under the terminology of constrained designs. Under the
general structure of minimizing $m+1(M) subject to ¢;(M) < ¢;,1 = 1,2, ...,m, for dif-
ferentiable {¢;}, Lee gives an equivalence theorem and in particular, cites as example a
D-optimal design in quadratic regression with an upper bound on the trace of the disper-
sion matrix. Essentially the same approach is seen under less smoothness assumptions on

the functionals {¢;} in Pukelsheim (1993).

DasGupta, Studden and Mukhopadhyay (1992) take the above functionals to be the
variances of the leastsquares estimates of individual coefficients in a general linear model
with a general variance function and derive designs that have a guaranteed efficiency
e for each coefficient. The largest e for which such a design exists is of interest. For
the corresponding Bayesian problem, they substitute posterior variance of the parameter
for variance of the estimate. Two special variance functions are subsequently used. An
interesting fact is that good efficiencies can be guaranteed if the subscripts of the coefficients

of interest are all even or all odd. The following is an illustration in the case of cubic
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polynomial regression:

Subscripts of coefficients Guaranteed largest efficiency
0,2 75
1,2 65
1,3 .93
0,1,3 .66
0,1,2 .58
0,1,2,3 .58

8. Nonconjugate priors and robust Bayes designs.

8.1. Nonconjugate priors. A major problem in using nonconjugate priors in the
canonical normal linear model is the associated loss of closed form formulae for the Bayes
risk; at a more fundamental level, unlike in the case of normal priors, now the posterior
expected loss in fact does depend on the actual observations that would be later obtained.
Thus posterior expected losses can no longer be used for minimization, and even Bayes
risks do not have closed form expressions. Some work is going on at the present time at
Purdue University on Bayes design with nonnormal priors. A combination of some theory

and subsequent computations, this work essentially follows the following line:

(a) One proves that the Bayes risk for estimation of the coefficients of the model is de-

creasing and convex in the information matrix in the Loewner ordering;

(b) For general regression functions, one uses a Caratheodory bound and for special types

one uses the Kiefer bound on the number of support points;

(c) One then uses the Brown-Stein (Brown (1986)) identity for Bayes risk, but now spe-

cialization to (a general) quadratic loss (as in Owen (1970)) is necessary;
(d) One finally does a numerical search for the optimal design.

This method has nothing to do with conjugacy or otherwise of the prior. There is some

dimensionality reduction for symmetric priors if the design space is symmetric (i.e., z e X
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implies —z €X’). One can start with other criteria functionals that already satisfy property
(a) and the same steps then follow through. The value of using nonconjugate priors stems
from two directions: ¢. in some problems, the experimenter does not want to use conjugate
priors, and ii. as a general intellectual question, it is necessary to know if conjugate
vs. nonconjugate priors really do result in significantly different Bayes solutions for small
sample sizes. For sample sizes that are large compared to the number of parameters, we
do not believe conjugacy vs. nonconjugacy matters. We do not have at the present time
a clean prescription for what constitutes a large enough sample size for a given number of
parameters, but one should consult Berger (1986) for further discussion on this issue. The
gist is that inference and design seem to behave as fundamentally different problems with
respect to fine specification of the prior if frequentist Bayes design criteria are used. We
do not have any knowledge, however, if this is the case if preposterior design criteria are

used: preposterior criteria would be discussed at length in section 10.

8.2. Robust Bayes designs.

There is now a substantial literature on robustness of Bayes methods, to various compo-
nents in a decision theory framework, although a majority of the work is on robustness
with respect to the prior. Berger (1994) and Wasserman (1992) give a lot of comprehensive
information and food for thought. All robustness work, frequentist or Bayes, fall into one
of two general categories: i. take a fixed procedure optimal under one model and ask what
it does for another (close) model, and iz). take a family of models close together and ask
what procedure(s) provide protection for all these models. There is a third way to look at
robustness: what is needed for robustness to (honestly) obtain; for example, is symmetry
essential, or is an exponential or faster tail essential, does one need a good idea of the
variance, etc. There does not seem to be much work on this view of robustness, perhaps
because there is a belief at large that NOTHING is needed and more thinking or more
data would solve the problem. We recommend chapter 1 in Huber (1981) and Staudte and
Sheather (1990) and Rubin (1977) for anyone wanting to learn about robustness.

8.2.1. Regression models. DasGupta and Studden (1991) consider the normal linear model
with a family of priors and take the following general approach: pick a special prior from
the family; pick a criterion functional; then derive a design that gives the best robustness

for the family of priors subject to being e-optimal with respect to the special prior. The
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article then considers various criterion functionals, various inference problems, two different
families of priors, and describes the necessary mathematics to solve these problems. The
two families of priors were respectively first suggested in the Bayesian robustness literature
by Leamer (1978) and Polasek (1985), and DeRobertis and Hartigan (1981). The necessary
mathematics mostly is convexity-invariance with some moment theory for the DeRobertis-
Hartigan family, a density band for the prior density. A companion article DasGupta and
Studden (1988) also has material directly relevant to Bayes designs that in addition uses

geometric argument. The following is one result from DasGupta and Studden (1991):

Theorem. Consider a density band for the prior with envelopes that are multiples of a
given normal density; then the design that gives the smallest confidence set with a given
posterior probability for each prior in the density band is the Bayes D-optimal design with

respect to that given normal prior density.
One can see a variety of other results in that article.

8.2.2. Other models. There is some literature on robust Bayes designs for other special
problems; almost all of this work is due to Blaza Toman and her coauthors, Toman (1992)
and Toman and Gastwirth (1993) are two important articles on ANOVA models in the
context of robust Bayes designs. The most important thing about both of these articles is
that the optimization is simultaneously over the (estimate,design) pair. There is something
to be said for this viewpoint, and therefore these two articles contribute a formulational
novelty in this area. In Toman (1992), the priors are essentially the Leamer-Polasek type,
while in Toman and Gastwirth (1993), they are finite mixtures of normals. In each article,
the ultimate criterion is an average over the family of priors, with some difference in the
details. For instance, Toman (1992) has an information theoretic criterion. The results

are basically closed form in both articles.

If one takes the view that Bayesian statistics should be robust sub jective, then clearly
much further work remains to be done. However, for sample sizes that are not very small,
one is likely to see little sensitivity to the prior because the Bayes solutions for different
priors would all be close to the classical solution and therefore close to one another. This

is not a precise statement, but only underscores the qualitative phenomenon.

As a historical point, robust Bayesians should also see Huber (1972) and chapter 10
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in Huber (1981).

9. Miscellaneous other design problems.

9.1. Quality control.

Since the late seventies, there has been a change in attitude about what process quality
control really means. While acceptance sampling and ko control limits dominated the
practice of quality control for a very long time, new thoughts emerged in the late seventies.
Thus, although the traditional methods of tolerance specification and acceptance sampling
still have some role in classroom teaching and actual process control in the US, offline
production control appears to have taken over in other parts of the globe, in particular
Japan. We recommend the articles Kackar (1985) and Pukelsheim (1988) for excellently
presented expositions on this topic. Also see Ghosh (1990).

The idea of offline production control is the design or adaptation of the process param-
eters such that the target is attained more or less exactly, and variance is minimized sub ject
to target attainment. This is in contrast to the traditional method of estimating process
capability vis-a-vis tolerance limits. A short but pertinent article on Bayes design with
normally distributed observations with normally distributed parameters in the context of
offline process control is Verdinelli and Wynn (1988). One should also see Sarkadi and

Vincze (1974) for a systematic presentation of mathematical problems in quality control.

9.2. Engineering design and reliability.

There is a fairly substantial amount of work on Bayes design relevant to reliability, which is
comprehensively covered in Chaloner and Verdinelli (1994). We are not aware of any kind
of a Bayes optimality theory in Engineering design problems; however, the monograph of
Wilde (1978) followed by Papalambros and Wilde (1988) give well written introductions

to a wealth of really interesting problems.

9.3. Spatial designs.

Generally speaking, spatial design corresponds to problems of prediction or otherwise of
a response when the input variable is spatial. Thus the design set may be a finite set of
points with three coordinates each, identifying each point with the geographic location of an
experimental station. Problems in multivariate numerical analysis such as approximation

of an integral or evaluation of other linear functionals by averaging over a discrete set of
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points also go by the general name of spatial optimal designs.
There are two intrinsic features that stand out in these problems:

1. depending on the exact criterion used, the fundamental nature of the design such as

thickness of the support and high density regions can change and

ii. significantly more than standard problems, computation of the optimal design becomes
an issue. In fact, it seems that development of computing algorithms may even be the

most dominant issue.

The general tendency in these works seems to have been to take the viewpoint that
the response behaves like the path of a Gaussian process with spatial time variables.
‘The experimenter’s belief about the smoothness of the response is incorporated into the
autocorrelation structure of the Gaussian process. We recommend Sacks and Ylvisaker
(1970), Diaconis (1987) and Sacks and Schiller (1988) specifically for reading on spatial
designs. Diaconis (1987) in addition takes the reader along a fascinating path on the
history of intellectual efforts to connect probability and statistics with numerical analysis

problems.
10. Conditional formulations and sample size choice.

10.1. Conditional formulations.

Traditionally, experimental design is regarded as one area in which even the strict believer
in conditional Bayes has to resort to an integration on the sample space. The reason is
obvious: at the design stage, there are no data, and so design criteria necessarily have to
average over potential data that may arise, which corresponds to frequentist integrations
on the sample space. Thus, for instance, Bayesian A-optimality calls for minimizing the

Bayes risk, a double integral on the joint probability space.

However, conditional or preposterior formulations of the design problem are possible,
although even this formulation has a frequentist flavor. In other words, even in the pre-
posterior formulation, considerations of the totality of the samples cannot be completely
ignored. DasGupta and Vidakovic (1994) and DasGupta and Mukhopadhyay (1994) give
detailed discussions of this; we will give a sketch of the preposterior formulation in these

articles.
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Consider the canonical normal linear model, with some prior on the parameters. Sup-
pose we accept posterior A-optimality as the criterion, again for specificity. Given a design,
and once the actual data arrive, there is a posterior density for the parameters. The desir-
able goal is to minimize the trace of the posterior covariance matrix. However, this cannot
be done since in general the posterior covariance matrix certainly depends on the data. In
the preposterior formulation, one specifies an upper bound on the trace of the posterior
covariance matrix and chooses a design that satisfies this upper bound, with a prespecified
large predictive probability. In other words, for data that are likely to arise, the design
already gives a desired accuracy. For very ambitious upper bounds on the trace, no such
design may exist, but the mathematics of the problem will say so if that is the case. In
certain cases, the upper bound can be satisfied for all possible samples, i.e., with a predic-
tive probability of 1. Naturally, the predictive probability is with respect to the predictive
distribution conceived from the given prior. Alternatively, this preposterior formulation

can be written in a minimax type of statement:
Min Mazx tr(V(y|M, 7)),

where the maximum is over a set of samples y with predictive probability 1 — €, the
minimum is over the information matrix (i.e., design) M, and V(y|M, w) denotes the
posterior covariance matrix for given y and M. Note that a SPECIF IC set of predictive
probability 1 — ¢ has to be used; but this specific choice should usually be an obvious

natural choice (for instance, a high density set of the predictive distribution).

There has not been any work with the preposterior formulation other than for Bayesian

sample size choice, which we consider next.
10.2. Minimum sample size.

10.2.1. The formulation. The general formulation of the minimum sample size problem
is the following: one specifies a measure of accuracy for the particular inference problem
at hand, and asks what is the minimum sample size n for which the accuracy requirement
is met. For instance, for estimating a binomial proportion, it is standard to use the
expected length of a 95% confidence interval and seek a sample size that makes it smaller
than a given upper bound. Bayesian considerations automatically enter into such classical

calculations, because the expected length is a function of the unknown proportion and
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therefore an apriori guess value needs to be used to arrive at a sample size not overly
conservative. As another example, in testing problems, it is standard to seek a sample
size that ensures a given power for some standard 5% test at a value of the parameter
thought to be practically different from the null value. One can dispute the correctness of
these formulations; but we are only making the point that this is how it is traditionally
done in classical statistics. There is absolutely no doubt that minimum sample sizes are
taken seriously by people who deal with data, and this topic has assumed the status of
textbook material in traditional statistics. Students are told about it. There are a large
number of monographs, books, tables and charts of classical minimum sample sizes. We
recommend Odeh (1975) and Selected Tables in Mathematical Statistics (1975) as two

particular sources for further exposition and actual numbers for possible use.

The corresponding Bayesian formulation can be of two possible types: a preposterior
formulation of exactly the kind we described above, and a frequentist Bayes formulation
in which one seeks a sample size that ensures that the Bayes risk in the problem at hand is
smaller than a given number. The preposterior formulation is more Bayesian in the sense of
not integrating on the sample space and is also by leaps and bounds mathematically more
challenging. However, this itself can be a negative aspect of the preposterior formulation,
in which case the frequentist Bayes formulation can be adopted. We must admit,however,
that the frequentist Bayes formulation can lead to a completely trivial problen;, though

not always.

10.2.2. Normal theory. A large spectrum of normal (univariate and multivariate) problems
with the preposterior formulation and associated theory and in some cases actual sample
sizes are available in DasGupta and Mukhopadhyay (1994) and DasGupta and Vidakovic
(1994). In DasGupta and Mukhopadhyay (1994), a theory of Bayesian s%nple sizes is
provided for two problems: 3. testing for a normal mean, with conjugate priors, and
seeking a sample size that either makes the posterior risk uniformly small or makes the
posterior risk uniformly robust if one takes a family of priors instead of one specific prior.
There are nontrivial asymptotics in these problems; in this same article, DasGupta and
Mukhopadhyay (1994) also give some actual Bayes sample sizes, although their practical
adoption in the forseeable future is at least doubtful; 2i. constructing a confidence set for a

multivariate normal mean, for conjugate priors, and seeking a sample size that gives a set
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with a prespecified posterior probability uniformly over future data and simultaneously for
every prior in the family under consideration. Table 1 in the same article gives some actual
sample sizes for this as well. A previous longer version DasGupta and Mukhopadhyay
(1992) had a number of other problems in which the preposterior formulation was discussed
and a theory presented; among the other problems in this longer version was the nonregular
case where the sample space depends on the parameter and there is also some consideration

of an uncertain loss function.

The widely used one way ANOVA model is considered in DasGupta and Vidakovic
(1994). The problem is testing for no treatment differences, and the approach is purely
Bayesian. That is, a prior probability is given for the hypothesis, and a normal prior density
used as the conditional density of the parameters given that the null hypothesis is not true.
Then testing is regarded as a decision problem with 0-1 loss, i.e., the quantity they try to
keep small is the posterior probability of the wrong hypothesis being picked. Again, some
actual sample sizes are given, but now a complete Mathematica code is provided for use

by the specific user with his/her particular inputs.

10.2.3. Binomial proportions. The approach taken for determination of Bayesian sample
sizes in this case has generally been the interval estimation approach. That is, one seeks a
sample size that ensures a posterior confidence interval of a specified probability such that
its length is smaller than a given number. Again, the length is a function of the data, and
either the expected length (under the predictive distribution) or the maximum length (over
all possible data) are substituted for the actual length. A conceptual difficulty with the
expected length is that there is no guarantee at all that by using the sample size produced
by this criterion, the accuracy goal one started out with would be satisfied when data do
arrive. One then feels the exercise was useless. Therefore, although more conservative, the
maximum length criterion is preferable. So far the work has assumed conjugate Beta priors.
This is just fine, because in this case, Beta priors can approximate any prior whatsoever
on [0,1] by simply allowing mixtures. So any generalization, if at all, that is needed is
consideration of some Beta mixtures. The work on Bayesian sample sizes for Binomial
proportions is due to Lawrence Joseph and his coauthors; one should in particular see
Joseph, Wolfson and Berger (1994) and Joseph and Berger (1994) and an earlier work
Bock and Toutenberg (1991) in the context of clinical trials.
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10.3. Optimal sample sizes.

10.3.1. Cost vs. accuracy. Statistical theory often has the pretence of being able to
choose as many samples as it takes to ensure a given accuracy. This of course is far from
the truth in many real problems. The impediments are many: cost of sampling is the
most prohibitive factor; in some situations, sampling may be a time consuming process or
simply a difficult human exercise. Optimal sample sizes try to balance the tradeoff between
accuracy of inference which (generally) increases with increasing sample size and sampling
and other human costs which also increase with increasing sample size. Theoretically, it is
assumed that all of these costs are considered together in a single cost function although
quantifying extraneous costs like the value of time does not appear to be an easy task.
The optimal sample size is only to be taken as a guideline; it is certainly not intended as
a rigid prescription. There are also some conceptual debates whether abstract (and often
unitless) quantities such as inference accuracy and dollar amounts for cost of sampling can

be just added to form the overall cost; one can see Chernoff (1972) for a discussion of this.

10.3.2. Estimation. Suppose one has a loss function for accuracy, L(6, a), and a cost
function C(n); then an overall cost is the sum total of the two., Suppose it is decided
to use a rule d(X), which should be just the Bayes rule for the given loss function and
a given prior in a Bayesian framework, and would be some classical estimate like an mle
or a best invariant rule otherwise. Then the total average risk is R(8, d(X)) + C(n),
where 6 denotes the generic parameter. Minimizing this with respect to n would entail
a solution that depends on (part of) the unknown parameter. It is therefore natural to
take the Bayes risk in place of the risk function R(6, d(X)) and minimize the resultant
quantity with respect to n. If no prior distribution is used, one can use a guess value
for the parameters present in the solution or alternatively use sequential versions which
estimate the parameters at each stage, use the estimated parameters in the formula for
the sample size, and use the first n satisfying appropriate constraints. Details of such an
approach can be seen in Starr and Woodroofe ( 1969), Ghosh, Sinha and Mukhopadhyay
(1976) etc.

10.8.3. Testing. The steps in determination of an optimal sample size are the same in

any decision problem; however, for testing problems, the loss functions associated with the
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two actions when there are two hypotheses are different from standard losses one sees in
estimation. 0-1 types of losses where there is no loss in accepting the correct hypothesis and
a constant loss in accepting the wrong hypothesis are probably the most used, although
appear to be severely unrealistic. If by chance or due to any other reason, a seriously
wrong hypothesis is accepted, the penalty should be more than accepting a hypothesis
which is false only on paper. For instance, for deciding the sign of the mean of a univariate
normal distribution, the loss in deciding the wrong sign could be reasonably taken as a

nonconstant monotone nondecreasing function of the absolute value of the mean.

Berger (1986) and Chernoff (1972) both give a nice normal theory example by taking
the absolute value of the mean as the loss for inferring the wrong sign and derive a Bayesian
optimal sample size using a conjugate prior. Chernoff (1972) also does the case of a simple
vs simple hypothesis and shows the qualitative difference between simple and nonseparated
hypotheses. One should also see Antelman (1965), a charming article, which has much to

offer to people interested in Bayes experimental designs as a whole.
11. Nonlinear problems.
11.1. Introduction.

Nonlinear problems can arise either for nonlinear functions in a linear model, or in
models where the response function is itself nonlinear; these latter class of models is more or
less universally known as nonlinear models. We recommend the beautiful yet encyclopaedic
book due to Seber and Wild (1989) to anyone interested in nonlinear models. Of particular
value for workers interested in experimental design are chapters 1, 5, 6, 7, 8, 9 and 10;
section 5.13 gives a short but excellent historical account of optimal design theory in
nonlinear models, complete with early examples from Box and Lucas (1959), early criteria,
and discussions about thin designs. Our discussion of nonlinear functions and nonlinear
models would be short due to a second article on nonlinear models. In addition, Chaloner
and Verdinelli (1994) give a fairly complete account of the current bibliography on Bayes

optimal design for nonlinear models.
11.2. Nonlinear functions in linear models.

An early example of an interesting nonlinear function is the example of calibration
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in simple linear regression: estimating the value of the indepenent variable at which the
mean response is zero or some other constant; this is usually known as Fieller’s problem.
Also see Rao (1973) for a clever description of how to construct confidence intervals in
this seemingly impossible problem. Silvey (1980) gives an elementary but very insightful
account of optimal design for this problem. Another example essentially the same as
Fieller’s is estimating the value of the independent variable at which a quadratic response

function has a zero derivative. This is commonly known as the turning point problem.

The major conceptual problem with experimental design in nonlinear problems is that
the optimal design depends on the very parameters one is trying to learn about. It has
been suggested that one uses a guess for the value(s) of the parametric functions that enter
into the design, much as it is customary in most elementary texts to use a guess for the
value of a Binomial proportion in order to construct sample sizes for learning about the
same proportion. This is also conceptually akin to construction of locally most powerful
tests where one maximizes the derivative of the power at the null value; see Lehmann
(1986). This approach to design has been called local optimality; see Chernoff (1972) and
Atkinson and Donev (1992). The locally optimal design is exactly optimal if the true value
of the parameter happens to be equal to the guess value. However, use of locally optimal

designs can subsequently lead to amusing problems: see Chaloner and Verdinelli (1994).

Other examples of nonlinear functions in linear models include estimating the prob-
ability that a future observation belongs to a specified set, say a bounded interval; other
linear models in which standard problems cause nonlinear functions to arise are models in
which the variance is a function of the mean. One should also see Wu (1988) for treat-
ment of optimality theory for estimation of similar nonlinear functions in quantal response

models.
11.3. Nonlinear models.

11.3.1.  Basic tool. Any statistical model in which the mean response E(Y) is a
general function f(6,z1,2,...,2,) of p independent variables and a (possibly vector val-
ued) parameter 0, is a nonlinear model. The goals of experimentation in such models may
vary, as in linear models. A persistent common feature of optimal experimental designs

across these models is that the design depends on the unknown parameter; some isolated
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counterexamples to this statement are known - in particular, one can see Silvey (1980).

A key tool for the optimality theory in nonlinear models is a general equivalence
theorem in Whittle(1973). As is the case with any equivalence theorem, the optimality of
a candidate design can be either disproved unambiguously or established subject to the
accuracy of the computations by using Whittle’s theorem. This is because any equivalence
theorem is a statement of the following kind: a design £ is optimal if and only if an
appropriate functional F(&,z) < 0 for every z in the design space and is = 0 for exactly
those points in the support of £. Now, by using only calculus and numerical optimization,
it is usually feasible to find the best design with k points in its support, for a given k. This
candidate design can then be tested for optimality by using the equivalence theorem. The
difficulty might be that for points in the support of this candidate design, the functional F
may give values which are small negative numbers. One is then forced to make a Jjudgement
if this is only an accuracy problem or the design is not the exact optimal one. In any event,
such an use of the Whittle equivalence theorem is clever and was initiated by Chaloner and

her coauthors : one can see in particular Chaloner and Larntz(1986) and Chaloner(1993).

11.3.2. State of the art. The current inclination in the choice of a criterion for optimization
seems to be to take an information approach, most likely influenced by Lindley (1956).
Typically, one takes the Fisher information matrix I (8,€) for a given design £ and takes
the logarithm of its determinant as the starting step: the logarithm just happens to cause
a great amount of algebraic simplicity in many problems, and is therefore justified on the
basis of the rewards it produces. But one still has the parameters in the criterion and
therefore it seems natural to take an average of it with respect to a weight function, which
may or may not be a prior, but operationally acts like a prior. As a matter of fact, this
is the only place where the prior has anything to do with the problem and therefore even
those averse to use of priors can pragmatically adopt this approach if local optimality is
not regarded favorably. One can see Chaloner and Verdinelli (1994) for some additional

discussion on use of the Fisher information as a basis for optimality.

A disappointing but apparently unavoidable feature of the optimality theory in nonlin-
ear models is that general complete class theorems about admissible designs in terms of the

number of points in their support seem very difficult, and probably impossible. However,

46



some fairly unexpected advances have been made in the last few years; foremost among
these surprising and hard works are Dette and Neugebauer (1993) and Dette and Sperlich
(1994a, b). The typical tone of these papers is the following: given a prior distribution on
the parameters, they characterize situations when an optimal design with a given number
of points in the support exists, and if one does, identify the points and the weights more
precisely. There is also an attempt to establish analogs of Caratheodory type bounds on
the cardinality of the support. Despite the fact that these advances are model specific,
they are distinctively strong results. Earlier, Mukhopadhyay and Haines (1993) also took

similar approaches in an exponential model.

It is very important to be aware of a fundamental phenomenon that is emerging as a
unified character of the optimality theory in nonlinear models: an opinionated prior results
in an optimal design similar to the corresponding locally optimum design, and a flat prior
results in thickly supported designs. However, as of this time, the optimality theory still
suffers from the same drawback as for linear models: it produces designs that are unlikely

to be adopted in practice.

11.3.3. Linearization of a nonlinear model. Atkinson and Donev (1992) describe a method
for linearizing a nonlinear model by using a Taylor series expansion, thereby producing
polynomial models, and iteratively fitting the model in the approximate form. The general
idea of linearizing a nonlinear model seems to have some potential; however, there are
subtle points in using such a method. One possibility is to find a uniform approximation
to a given degree of accuracy for the true response function by using response functions
we know how to handle, say polynomials, find an optimal design in the linearized model,
estimate the parameters in the linearized model, and finally transform these estimates back
to the initial model: THIS LAST STEP IS SUBTLE, because the parameters that appear
as coefficients in the linearized model would not be the parameters for which a prior was
elicited, but functions of those parameters. So the retransforming may have to be done by
an inverse function method, or a pure Bayes method, though the pure Bayes method is
the harder one to use. As for linearizing a function to produce uniform approximations in
a compact design set, many methods are available. Expansions in Chebyshev polynomials,
exchange algorithms and others are common tools with theoretical properties; one can see

Powell (1981) and Rivlin (1990). We will return to this topic from a technical angle in
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section 13(appendix).
12. Future of Bayes design.

It seems as though the future of Bayes experimental designs lies in nonstandard prob-
lems, as opposed to standard linear models or even standard nonlinear models. Bayes
optimality theory can succeed as a useful theoretical development only if it is seen that
the resultant theory does not reproduce the classical solutions either exactly or practically
exactly. We have seen a few examples of Bayes optimal designs which differ remarkably
in their character with usual optimal designs which are embarrassingly thinly supported:

instances of these are Mitchell, Sacks and Ylvisaker (1994) and Sacks and Schiller ( 1988).

There are innumerable interesting problems in various branches of science where op-
timal design is a very viable scientific issue; it seems imperative that subjective prior
information is available in many of these problems, and thus Bayes design should have a
useful role to play. It may turn out that the Bayes solution would once again track classical
methods closely or exactly. We believe such findings, although negative in a sense, would

be intellectually valuable.

Examples of areas where optimal designs can be explored and promise to be interest-
ing scientific exercises are indeed numerous: inventory control, tracking a moving target,
design of neural networks, random variate generation, structural and engineering design,
construction of histograms, survey sampling, combinatorial algorithms such as the travel-
ling salesman problem, clustering, markov decision processes, and so on. We are aware of

some work relating to design in progress on a few of these areas.
13. Appendix.
13.1. Moment methods.

13.1.1. Markov moment problem and its geometry. Moment theory enters into the con-
siderations of optimal design through the concept of admissible designs, as discussed in
section 6. The problem there is to find a. probability distribution that maximizes the 2pth

moment for given values of the preceding moments.

Example. Suppose one is interested in finding the maximum value of the fourth moment

of a distribution on [—1,1] with the first and the third moment equal to zero and the
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second moment equal to some given c.

The idea then is to construct a polynomial of degree 4 of the form
P) = &% (¢ - 1) (z + 1),

which has the property that P(z) < 0 for every z in [~1,1] and is equal to zero if z = 0, —1
or +1. Thus, for any probability distribution, the fourth moment cq4 satisfies ¢4 < ¢, and
for the particular distribution which assigns probability ¢/2 at +1 and —1 and 1 — ¢ at
zero, equality obtains because E(P(z)) = 0 if the underlying distribution is supported on
the roots of P(z); alternatively, in this simple case, equality can as well be seen by trivial

direct verification.

Karlin and Studden (1966) and Kemperman (1968) give very careful accounts of such
geometry of moment problems; the general version of a moment problem, which sometimes

goes by the name of the Markov moment problem, is the following:

One has a general set, on which are defined k+ 1 functions fo, f1,-.., fr. The problem
is to determine a distribution £ and £ that respectively maximizes and minimizes the

integral ffkdﬁ' among all distributions satisfying ffidé' =¢,0 <: <k —1.

Example. Suppose X has a density on R of the form

s

flzln) = /\/;_ e~ 71dG(s).

In other words, the density of X is a normal scale mixture. Consider the interval [z —
1.96,z + 1.96), which as a confidence interval for K, has a 95% confidence coefficient for
normal data. The object is to determine the smallest confidence coefficient of this interval

if the underlying distribution has standard deviation 1.

It is immediate that one thus wants to

1.96 :

minimize /Cb(——)dG(s) subject to / sdG(s) = 1.
Vs

This is therefore a special kind of a Markov moment problem.

To find a solution, one can show that there exists a straight line with equation y =

a+ bs, such that this line always lies below the graph of the function &( %) for s > 0 and
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touches the graph at s = 0 and another point s = s > 1. If one now takes a distribution
Go supported on {0, so} such that it indeed satisfies the constraint J sdGo(s) = 1, then,
by virtue of the geometric property of the above straight line, it indeed follows that for
any distribution with the stated restriction, [ @(Lj_f)dG(s) > a + b, and in particular for
the distribution Gy, it is equal to a + b, because at the points of support of Gy, the linear

function a + bs and the function (P(l%) are exactly equal!

The value of sg, and the constants a, b can be found by easy geometric considerations,

and are all given in Basu and DasGupta (1994).

The technique given in these two above examples forms a key step in solution of
moment problems: identify linear combinations kil a; f; which either lie below or above the
function fi, depending on whether the Markoxizrgloment problem is one of minimization
or maximization, and find a distribution which is supported on the points at which the
graphs of these two come into contact, and appropriately adjust the weights so as to satisfy
the given moment constraints. Notice that the task involves finding just the right linear
combination with the given geometric property; one should not be misled that there is one

such linear function only.
Example. Does there exist a unimodal distribution on [0,1] with variance equal to .2?

The question is meaningful, because one can attain a variance between 0 and .25 if all
distributions on [0, 1] are allowed. To answer this question, it is helpful to turn it into a
moment problem on writing the underlying unimodal random variable X as X=a+UZ,
where the mode ‘a’ is between 0 and 1, U is uniformly distributed on [0, 1], Z is independent
of U, and is between —a and 1 — a with probability 1. Of course, the mode 'a’ is not fixed,

and has to be varied between 0 and 1 as well.

It is clear that marginally, any mean between 0 and 1 can arise from a unimodal
distribution; furthermore, all point masses are unimodal, and therefore the lower boundary

of the relevant moment set for unimodal distributions is given by pg = p?.

The upper boundary can be found easily after proving the following fact: a given mean
p1 can arise only if the mode 'a’ satisfies: maz (0,2u; — 1) < a < min (2u1,1). Indeed,

the upper boundary of the moment set is piecewise linear, given by 1, = %,ul if up <1/2,
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and % H1 — % if 1 > 1/2. From this it follows by calculus that the maximum variance is
1/9, which is much less than .2. Thus, no variance larger than 1/9 can be attained by a

unimodal distribution.

Notice that the geometry shows that the moment set for unimodal distribution is not

convex.

We recommend Krein and Nudelman (1973) and Akhiezer (1965) for anyone interested
in learning about moment methods, a very useful tool in many branches of mathematics and
mathematical statistics. We also recommend Diaconis (1987) for a very lively account of
the history of moment methods and also some simply interesting facts of inherent scientific
interest: for example, suppose we have a CDF F on the real line which has exactly the
same first n moments as those of a N(0,1) distribution; how accurately does this determine

the CDF itself?

Characterizing distributions which are determined by their moment sequences is also
a celebrated problem in the history of moment theory and probability. The normal distri-
bution is determined by its moment sequence, but alas, the lognormal distribution is not!
Convolutions of determined distributions may be undetermined - see Berg (1985). On the
positive side, any distribution which is boundedly supported is determined by its moment
sequence. In fact, there is a peculiar generalization to this which really is a result from

analytic function theory stated in the language of a probabilist.

Theorem. Let {n;} be a subsequence of the positive integers such that ) L = oo;
then the sequence of moments E(X ") determines a distribution supported on a bounded

interval [a, b].

There are indeed characterization theorems which, in theory, can tell which distri-
butions are determined and which are not by their moment sequences. They are not

particularly useful in general; there is a remarkable exception to this, a pretty theorem:

Theorem. Suppose an absolutely continuous distribution has a density f(z) on R. Then

b
it is determined by its moment sequence if and only if [ % dz = —oo.
a

This theorem has a counterpart for measures supported on Rt in the following sense:
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Theorem. Suppose an absolutely continuous distribution supported on R* has a density

f(z) such that f _\1/0_%1_gf(+_zd > —o0. Then there is at least one more distribution supported

on R* with the same moment sequence as that of f.

Although it does not appear to be well known, there is a striking connection of this
result to Hardy functions: f is undetermined if and only if it is the absolute value of the
Fourier transform of an L, function vanishing in the negative half line. A recent description

can be seen in Berg (1995).

Whether or not a particular distribution is determined by its moment sequence can
sometimes be useful in asymptotic theory; in general, convergence of all moments does
not imply convergence in distribution. However, if the suspected limit distribution is
determined by its moments, then convergence of moments does indeed imply convergence
in distribution. One can see Billingsley (1986) for more on this; in particular, certain
astounding results in probabilistic number theory which otherwise require very intricate
sieve and truncation arguments, can be proved by moment convergence and by using the
fact that the normal distribution is indeed determined by its moment sequence. If one is
interested, the sieve arguments can be seen in Elliott (1979), who describes the proof of

limiting normality of the number of factors of a random integer.

13.1.2. Canonical moments. In general, the first n moments of a probability distribution
on a bounded interval [a, b] satisfy complex inequalities; more precisely, if one defines a set

in R™ as
My ={(c1, c2,...,¢n): ¢; = E(X*) for some probability distribution on [a, b]},

then M, is a complicated convex set in R™. It usually goes by the name of the moment

set.

Canonical moments are a device for transforming the moment set into the cube [0,1]™;
thus, each canonical moment p; varies freely in the interval [0, 1] as opposed to the moments
¢; which form a complex set. This transformation from moments to canonical moments
is 1 — 1 onto. Thus, it is quite common in optimal design theory to work out an optimal
design in terms of its canonical moments, and the added bonus is that the structure of the

, optimizing canonical moment sequence even gives the number of points in the support of
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the optimal design. One can see numerous evidence of the utility of this technique in the
works of William Studden. Canonical moments are also obviously useful in any numerical
optimization scheme over the moments, because the optimization can be done for freely

varying variables, which cannot be done with the moments themselves.

The exact transform to take moments to canonical moments and vice versa is best

described by a recursive algorithm; we recommend Skibinsky (1968) for this.

Example. Consider the Uniform distribution on [0,1]. The moments of this distribution

are given by ¢; = H_Ll; the canonical moments are seen to be py;_; = 1/2,ppi = i/(2¢ + 1).

Example. Suppose X ~ Bin(n,p); the moments of X /n can be calculated by calculating
the factorial moments, E{X(X —1)...(X —i 4 1)}. The canonical moments are seen to

be pyi—1 = p and py; = i/n.

Example. We saw previously that admissible designs in polynomial regression models
have the property of maximizing the 2pth moment subject to given values of the preceding
moments. Such “upper principal representations” have a clean property with regard to

their 2pth canonical moment: the 2pth canonical moment equals 1.

There is a wealth of information on canonical moments and connections to optimal

designs in Lau and Studden (1985).
13.2. Orthogonal polynomials.

13.2.1. Relation to optimal design. The close relationship of various systems of orthog-
onal polynomials to optimal designs was seen in section 6.2. Generally, the points in the
support of classical and Bayes optimal designs according to some alphabetic criteria coin-
cide with the points of peak of various orthogonal polynomials. Thus it was seen that for
extrapolation problems in polynomial regression, the c-optimal design is always supported
at the peaks of the pth Chebyshev polynomial T,(z), the D-optimal design is supported
at the turning points of Legendre polynomials plus the endpoints, and E-optimal designs
concentrate on the turning points of Chebyshev polynomials as well. We will later give a
list of the first few standard systems of orthogonal polynomials, and also a general algo-
rithm for producing the entire sequence, which can be used on a computer to evaluate the

turning points for any particular order p; note that p in this context coincides with the
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degree of the polynomial regression model.

13.2.2. Basic properties. Orthogonal polynomials arise out of the following familiar ap-
proximation problem: there is a continuous function f defined on an interval [a,b], and
there is a finite dimensional subspace A of C|a, b, and one wants to find an element p*¥in A
giving the smallest value of [(f(z) — p(z))? w(z)dz, where w(.) is a fixed weight function
on [a,b]. By a weight function, one usually means a nonnegative integrable function. This

is the usual leastsquares problem.

It is natural to write the solution p* using the elements of a basis for A; orthogonal
polynomials essentially correspond to an orthogonal basis for A. Thus, if A is of dimension
n+1, then a sequence {¢;,0 < ¢ < n} is an orthogonal basis if {#:} are linearly independent,
and satisfy the inner product condition [ ¢i(z)¢;(z)w(x)dz = 0 whenever i # j. Using

elementary linear algebra, one can see that then the solution p* has the representation

n

pi(z) =) cidi(z),

=0
where ¢; = (¢:, f)/]|¢il|?

where (,) denotes inner product in the L?(w) space and ||g||? = (9,9).

There is another way to look at this; regardless of the least squares problem, one can

form the expansion
n

fn (:E) = Z Cifi(:c)a

i=0
with ¢; as above. One would intuitively expect that as subspaces of larger dimension are
used, i.e., as n increases, the function fn should approximate f more closely. There is
a rich and long history of this method, variously known as orthogonal or Fourier expan-
sions. Although Fourier expansions need not in general converge or converge to the parent
function everywhere even if they do themselves converge, fairly general L, approximation

results are indeed valid for the Fourier expansions.

Theorem. Under the assumption of completeness, the finite Fourier expansion f, of f

converges in Ly to f; in fact,

o0

a— 1P = 3 &,

i=n+1
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o0 o0
and 3° ¢} < oo,s0 that Y. ¢ — 0.
=0 i=n+1

13.2.3. Recursions and roots of orthogonal polynomials. The points at which certain
orthogonal polynomials have zero derivatives are often the points in support of optimal
designs. Therefore, it is important to know how orthogonal polynomials are found. A
straightforward method would be to take an arbitrary basis and use the familiar Gram-
Schmidt orthogonalization process. This, however, is unnecessary due to a remarkable

recursion relation orthogonal polynomials satisfy.

Theorem. Define the first orthogonal polynomial as ¢o(z) = 1;
define ap = [ zw(z)dz / [ w(z)dz.

Define ¢1 () = ¢ —ap . Forj > 1, define recursively

a; =(¢;,26;)/116;]%,
Bi =llill*/ll¢i-11I%,
and ¢jy1(2) = (z - a;) 4i(2) - Bipj1(a).
Then {¢;} is a sequence of orthogonal polynomials with respect to the inner product
(f,9) = [ f(z)9(z)w(z)dz.
This three term recursion considerably simplifies the calculation of orthogonal poly-
nomials for large values of n. Of course, in practice, relatively small n and standard weight

functions w(z) may be used, in which case the corresponding orthogonal polynomials are

widely available. We will see such examples in the next subsection.
We close with two facts about the roots of orthogonal polynomials.

Theorem. Suppose {¢;} is a system of orthogonal polynomials in an inner product space
L*(w,[a,b]). Then ¢; has exactly k roots which are real, simple, and in the interior of

[a,b]. Furthermore, between two successive roots of Pk—1, there is one root of ¢y.

13.2.4. Special orthogonal polynomials. The system of orthogonal polynomials {¢r} are
determined by the weight function w(z); a special important case in applications is when
the (n+1) dimensional subspace in the general theory is the set of algebraic polynomials of
degree n. In this important case, the orthogonal polynomials for certain standard weight

functions are explicitly known and have been studied in great depth for their properties.
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(@) a = -1, b =1, w(z) = 1/,/(1 - 2?);

in this case, the orthogonal polynomials are Chebyshev polynomials {To(z)}; T, (2)

also has the trigonometric interpretation that 7}, (cosb) = cos(nb).

The coeflicients of the various powers of  in any Tn(z) are explicitly known; one can

see chapter 1 in Rivlin (1990). The first few Chebyshev polynomials are as follows:

n T, (z)

0 1

1 x

2 2z? — 1

3 4z3 — 3z

4 8z — 822 +1

) 162° —20z% +5

(b.)a = -1,b = 1, w(z) = 1;

in this case, the orthogonal polynomials are the Legendre polynomials {Pn(z)}. Again,
the exact coefficients of the various powers of z are known: one can see Rivlin (1969). The

first few Legendre polynomials are as follows:

n P, (z)

0 1

1 x

2 3z2 ~1

3 52 — 3z

4 35z* —30z% +3

5 63z° — 70z° + 15z
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in this case, the orthogonal polynomials are the Laguerre polynomials {L,(z)}. One
can see Gradshteyn and Ryzhik (1980) for the exact coefficients for the general degree.

The first few Laguerre polynomials are as follows:

n L(z)

0 1

1 T

2 r? —4x +2

3 z® —9z% +18z —6

4 zt —162° + 7222 — 96z + 24

) z® —25z* +2002° — 60022 + 600z — 120

(d) @ =— 00, b =00, w(z) =e=*;

in this case, the orthogonal polynomials are the very familiar Hermite polynomials.
The exact coefficients are again available in Gradshteyn and Ryzhik (1980), and the first

five Hermite polynomials are the following;:

n H,(z)

0 1

1 x

2 222 —1

3 223 — 3z

4 4z* —122? 43

5 4z5 — 202% + 152

Other important cases include the symmetric Beta function w(z) = 2711 - z)*,
for & > 0, in which case one gets the Ultraspherical polynomials, and the general Beta

¢ function w(z) = z*71(1 - z)#~1 for o, 8 > 0, and one gets the Jacobi polynomials.
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There is a unifying feature regarding all of these cases: it is that there is a function

u(z) such that the nth orthogonal polynomial ¢n(z) admits the representation

¢n = uM(z)/w(z),
where u(™ denotes the nth derivative of u. This is sometimes called Rodriguez’s formula

and the correct choice of u(z) is known for each case.

13.2.5. Linearization of nonlinear functions. A major use of orthogonal polynomials is
in approximating complicated functions by linear combinations of orthogonal polynomials.
Note that the L? theory only assures close approximation in L2 norm, but in optimal
design, one may need an assurance of uniform approximation in the design space. Some
very interesting results are indeed known, and we think they are useful in linearization of

nonlinear models. We mention two of these results.

Theorem. (Dini-Lipschitz). Suppose f is a continuous function on a bounded interval
[a,b] and let w(f,.) denote its modulus of continuity. Suppose s,(f) is the nth partial sum
in the Chebyshev expansion of f; if w(f,1/n) log n —» 0 as n — oo, then sn(f) = f

uniformly.

Corollary. If f is Lipschitz (a) for a > 0, then the Chebyshev expansion of f uniformly

converges to f.

In addition to the above theorem, for purposes of deciding how many terms one should
use, estimates of the error are useful. There are several results known; we find the following

useful.

Theorem. Let E,(f) denote the error in the approximation of f by s,(f) using supnorm,
and let E}(f) denote the same error by using the best polynomial approximation to fin

supnorm. Then
[

En(f) < 41+ -22) B3(f).

The suggestion in Atkinson and Donev (1992) is to linearize a nonlinear model by using

its Taylor expansion; we believe that Chebyshev expansions can estimate more efficiently

with a smaller number of terms. One reason is the following theorem:

Theorem. Consider the expansion of a continuous function in terms of ultraspherical

, Polynomials defined in section 13.3.3. Then, the choice a = 1/2 always gives the best
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approximation in sup norm if the coefficients {ai,i > n} in the ultraspherical expansion

of f are nonnegative for that given n; in particular, a Chebyshev expansion corresponding

to a = % is better than a Taylor expansion which corresponds to a = co.
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