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This article is concerned with a class of generalized Latin hypercube sampling U-
statistics having bounded kernels. In particular it is shown that the rate of normal

convergence of these U-statistics is of the order O(n=1/2).

1 Introduction

Latin hypercube sampling has generated considerable interest among researchers in the area of
computer experiment sampling designs since its introduction in 1979 by McKay, Conover and
Beckman [see Chapter 5 of Fang and Wang (1994) for a very nice review]. It has the property of
separately stratifying on each input dimension and has been shown by, for example, Stein (1987)
and Owen (1992) to be an attractive alternative to simple random sampling especially in high
dimensions. More precisely for positive integers d and n let

(i) m, 1 <k < d, be random permutations of {1,.. .,n} each uniformly distributed over all n!
possible permutations, ,

(i) &iy,oigjs 1 S 108 S0, 1S j < d, be uniform [0, 1} random variables and

(iii) that the &;,,...i .8 and 7i’s are all stochastically independent.

A Latin hypercube sample of size n (taken from the d-dimensional unit hypercube [0, 1]9) is
defined to be {X(m1(4),...,ma(i)): 1 <1 < n} where for all 1 < 41,...,8d <7,

X;(%1,.- Sid) = (25— £i1,---,id,j)/n’ Vi<j<d,
X (%1, .- Wld) = (X1(é1, .- vald)s e o Xa(te, .- . id)).

Let f:[0,1] > R bea measurable function. This article is concerned with the asymptotic
behavior of the following class of generalized Latin hypercube sampling U -statistics, namely for
1<k<dandn>2,

n-1 n
1) Ukn=(2/m)) > wrk(i),wk(j)h(f°X(7T1(i)a---a”d(i))afOX(Wl(j),---aﬂ'd(j)))a
=1 j=i+1
where {w;; : 1 < 4,j < n} is a sequence of nonnegative constants satisfying wi; = 0, w;j = Wj;
Vi<i,j<mnandh: R? — R is a symmetric kernel, that is h(s,t) = h(t,s) for all s, € R.

The rest of the article is organized as follows. Theorem 1 of Section 2 establishes conditions
where the rate of normal convergence of the U-statistics is of the order O(n~'/?). Section 3 gives an
example in which these U -statistics are applicable. A number of conditional characteristic function
bounds and asymptotic expansions (Theorem 2) are given in Section 4. These bounds are needed in
the proof of Theorem 1. In particular Theorem 2(b) is motivated by a result of von Bahr (1976) and
it extends his result in two ways. Firstly it essentially generalizes von Bahr’s result from d = 2 to
arbitary but fixed d. Secondly von Bahr’s characteristic function expansion is valid up to O(n—l/ )
whereas the present expansion is valid up to O(n~?!). The detailed proof of Theorem 1 can be
found in Section 5.

1 AMS 1991 subject classifications. Primary 62D05; secondary 60F05.

Key words and phrases. Characteristic function asymptotic expansions, Latin hypercube sampling, rate of normal
convergence, U-statistics.
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2 Convergence rate to normality

Let Uy, be as in (1) and for simplicity, we shall from now on write forall < i # j < m,
7(2) = (71(3),...,mqa(?)) and
goX(7(3)) = Elwe,@)meh(f o X (7)), fo X(®(HHNIX(7(9))]
— Ewn, (i) me ()P f © X (R(2)), £ 0 X (7(4)))-

Then Uf,, has the following Hoeffding-type decomposition [see Hoeffding (1948)].
Ui = 220 S g0 X3 + 5T 32 $XGO) X GO
i= i=1 j=i
where for all 1 <7 # j < n,
(X (7(2)), X (7(4)))

= Wry(i)m() B 0 X(7(9)), f o X (7(5))) = Elwny (i) mi) M f 0 X(7(3), f o X(7(5)))]
(2) —g 0 X(7(8)) — g o X(7(j))-
We further define for 1 < iy,...,i3 < m,
boiliy) = (Um0 3D Ego X(inyeonvia)y VISi<d,
k#j ix=1
d
222D g0 Xy yia) = Y- i),
=1

o2 = (1/n)*t Y. EY?(ir,...,0).

]-Sil ,...,ids'n

(3) Y(t1y..., id)

The following theorem is the main result of this paper.

Theorem 1 Let Uy, be as in (1). Suppose there exists a constant vy such that for sufficiently large
n,

4 max{ sup n°"w;;, max w; i, sup |h(s,t)|} <7, and liminf nafb >0,
@ {1Si<§)§n I 1gignjz=:1 I s,tel;ll (s, )1} <7 im iri
where - teglogn)

ogllogn — oglogn

2 logn

Then as n — o0,

Sup{| P((Uin — BUin)/on < 1) — 8(2)| : =00 < t < 00} = O(n"/2),

where ® denotes the distribution function of the standard normal distribution.
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3 An application

Tf the observations were replaced by an i.i.d. sample and w;; = 1/(n —1),V1 <1 < j < min (1),
then Uy, reduces to the type of U-statistics of degree two most commonly encountered [see for
example Helmers and van Zwet (1982) and the references cited therein].

The following gives an instance in which the generalized Latin hypercube sampling U-statistics
of this article are of interest. Indeed it is this example which first motivated the present work.
In many computer experiments, we are interested in estimating p = f[o,1]d f(z)dz. Letting {fo
X(m1(4),...,7q(8)) : 1 < ¢ < n} be as in (1), we observe that f, = (1/n) ¥ r, f o X(7(3))
is an unbiased estimator of p. Writing gr(2x) = [oqja-1 F(2) [k dz; and using the ANOVA
decomposition

d
f((L‘) = Z gk(xk) - (d - 1)/1' + frem(z)7 Vo = (1)1, ceey xd), € [07 1]d,
k=1

Stein (1987) showed that Var(f,) = (1/n) fio 4 f2n(z)dz + o(1/n) as n — oo if fg 1 fA(z)dz <
0. The problem of estimating [lg 14 f2_ (x)dz was studied by Owen (1992). Observing that

2 (z)de = / P@)de + (d- 1) Li / " 2 (a)de
rem - [0,1]¢4 14 Z Jo 9\ Tk ks

[0,1]¢

he proposed a class of nearest neighbor estimators for 6 = o g%(t)dt and essentially showed that
these estimators are n!/2 consistent provided the following Lipschitz condition holds: there exists
a constant M such that |gi(s) — gx(t)] < M|s —t| for all s, € [0,1]. Loh (1994) undertook a more
detailed study of estimating ) under weaker smoothness assumptions on g using observations
{X(7(3)), foX(7(i)) : 1 < i < n}. In particular the following class of generalized nearest neighbor
estimators ék,n was proposed for estimating 8z where

n

O = (1/1) D2 1205 () mei) — D Do (t)ime(®) D))} © X (7)) F 0 X(7(5))
i=1 j#i I#i,j

and {w} W1 <, j < n} is a sequence of suitably chosen nonnegative constants. It was shown

in Loh (1994) that these estimators have the attractive property that under mild conditions, they

possess a smaller asymptotic mean squared error than that of any regular estimator for 6; based

on an i.i.d. sample of the same size. We observe that ék,n can be written in the form of (1) if we

define h(s,t) = st, ¥s,t € R, and w;j = w}; + wi; — Lz ; W0} ; forall 1 <1 < j<n.

4 Characteristic function bounds and asymptotic expansions

This section investigates the behavior of the characteristic function of Y7_; Y(7(j))/on, with
Y (7(j))/0on as in Section 2, under conditions in which certain values of 7(j) are held constant.
We start with some notations. For 2 < m < n, let Ay = {1,...,m}, Te(4m) = {m(j) : € Am},
V1< k < d,and 7(An) = {7(J) : € Am}. Also let E7(Am) denote the conditional expectation
given 7(A,,) and define for i) € T(Am), 1 <k < d,

d

(6) p o= U/m)3?Y. >, EY(ir,....0)

k=1iyemi(Am)
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(7) p_j(iy) = (/m)* Y. Y EY(i,....ia), Vi<j<d,
k#j ip€mr(Am)

d
V(iy,..nia) = Y(in,-..,da) = 9 0—3(i;) + (d = 1)7,
Jj=1
d
(8) 52, = (Um)ty ST EYR(iy,...,da).

k=1i €mi(Am)

Theorem 2 Suppose (4) holds and B is an arbitrary but fized positive constant. Then there exists
a constant o > 0 such that
(a) as n — oo, we have

E{explit 3° Y (7(3)/onll(An)} = O(1) exp(~Bmi? 4n),

i=1

uniformly over [t| < an/? and over all subsets T(An), 2 < m < n, satisfying 62 /o2 > Bm/n.
(b) for m = n, we have

Eexp[itiY(f(j))/Un]
© = ey

2 BV, ia)] + O((LA ) A,

1<i1,0002a80
as n — oo uniformly over |t| < anl/?,
(¢) for m = n — 2, we have

n—2
E{explit ) Y (7(5))/onl|7(An—2)}

i=1

it3 . . _ 6y — -
el S EY3(i,..., i)+ Ot + (1 A )= /4n7),
607n® i<

as n — oo uniformly over [t| < an'/? and over all subseis T(An_2).
ProoOF. For ix € mt(Am), 1 <k < d, let

Blit,...,ig;t) = EexplitY(sn,...,10)], VtER,

b(i,...,iq) = €nCIPMAg(G, .. dgt/on) - 1.
Observing that -7, [Y(7(5)) — E*Am)Y (7(5))] = L7y Y (7(5)), we have
ot 1205 B (Am) exp it Y [V (7(5)) — EFA™Y (7(4))]/0n}
Jj=1

= (/m)? Y IR Pmond(ai(s), -, 7i(5);t/0n)

L ey §=1
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m — s)1]¢!

= 1+Z[(3,(m,)d -
(10) X > 3 f_[ b(is,ks - -2 Ba,k)s

11,15--411,a €1 (Am),all distinct 8d,1yeeerbd,s €ma{Am),all distinct k=1

where for each 1 < k < d, 7 denotes a permutation of the set Tx(Am).

To proceed, let P, denote the set of partitions of the set {1,2,...,s},ie. @ € P, if @ is a class
of disjoint subsets (blocks) whose union is {1,2,. .,8}. @ is sa,1d to be of type 1%12% . st if Q
consists of A\; blocks of cardinality 1, Az blocks of ca,rdma.hty 2, etc. We note that 23—1 JA; = s
and Y 5y A; = (@), the number of blocks in Q. Now it follows from a lemma of von Bahr (1976),
page 134, that the r.h.s. of (10) can be simplified to

(11) 1+Z[(m‘3)']d1 Y K@) -KQ)M Q1. .., Qa),

3'(m')d ' Q11~~'1Qd€ps

s=1

where for each 1 < j < d, K(Q;) = (—=1)=@(2N) s ... ((s — 1)) if Q; is of type 1Yt ... N,

(12) M(Q1,--Qa)= Y, 0 2 Hb(hk, »3dk)s

il,ly"'ﬂ.l s Zd 19e- 1zd s k=1

and 327 ;. denotes summation over %;y,. .. ,ijs € m;(Am) such that the 4;4’s are equal within
the same block of Q;.

To evaluate M(Q1,...,Qq), consider an d X s matrix. For each 1 < j < d, select Aj elements
(without replacement) from row j. Now let mx(j1, - .-, Jk), with1 < jy <--- < jr<dand0<k < d,
denote the number of columns of the matrix such that elements (in these columns) in TOWS J1,...,Jk
are not selected and all elements in the remaining rows of those columns are selected. ertlng

d
o= S0 b(in,...ia), boi) =Y. Y, B(in...ia), VI<i<d,

| k=1ix€my(Am) k#j ix€mi(Am)
f

weé observe from (12) that
=

5 : Njs—mo—Y o, m(k)
(13) % ‘LkEﬂ'k(Am) 1<k<d Ib(7/17 zd)l = )

d
|M(Q1,...,Qa)| < lj,olno{HmT(Q:‘)—(d-l)m(J’)-no em%ﬁ )|b (35 )I"l(’)}
€T\ Am

. Next using Taylor expansions for b, I;_j and bg, we observe from (3) that there exist positive
constants oy and C; (which depend only on liminf, . no?, v and d) such that for sufficiently
latge n, |bo| < Cy|t[Pmin=3/2,

14 b | < tln~ 1?2 b < Ci2mi-! —1
(18) zkEWk(Am)1<k<dl(zl’ Hid)| < Gt %, 'Jenﬁﬁm)l i(3)] < Cy

wll1e11ever |t| < aynl/?. Substituting (14) into (13), we get

(11'5) IM(Qh ey Qd)' < mT(Q1)+m+r(Qd)(ClItln’—l/z)s(|tln_1/2)m(1)+"'+"71(d)+2no7
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whenever |t| < a;n!/2. Letting N(Xjz2,...,Ajs-2,,) denote the number of partitions of the set
{1,2,...,5 — Xj1} of type 2%2...(s — Aj,l))‘j's'*i,l, it follows from (10), (11) and (15) that for
sufficiently large =,

|75 t/20% ER(Am) explit S ¥ (7(§))/0n] — 1 — bom™ ()]
j=1
= (lm— e, ;
< = <~ (Chft
< X gmyet G 2 A (@)@ (1,2 L2 )

d
(16) X(ltln—l/z)m(1)+...+m (d)+2m0 2 H{lK(Q1)|N()\l,2a N )m}‘l,l'l'""")‘l,s}
X ki1<5<d,2<k<s =1

whenever [t| < @ynl/?, where Y, .. 5, denotes summation over all possible realizations of
Me(f1ye-rd8), 0 < k< d, 1 < j1 < +++ < Jr £ d, Q1 denotes a partition of {1,2,...,s} of type
11"12’\112 ...8*s whenever 1 < I < d, and finally 35, .1<j<d,2¢k<s0 denotes summation over all
possible nonnegative integers \;1’s satisfying Y j-o kAjx = s — Aji forall 1 < j < d.

| We observe as in von Bahr (1976), page 136, that there exists a constant C > 1 (which depends
0]%1)’ on d) such that

d d
2 TL{E@DIN M2y -5 Moo Jm et} < O3 TT (ms)em 25202,
/\j,k:ISde,ZSkSs—)\jJ =1 j=1
We further observe that A1 = ELO Y jiAl1<i<k n%(J1, - - -, k) and hence

d

d
Sha=y@=k) 3 mlieede).

k=0 1< < <jp<d
Thus it follows that the r.h.s. of (16) is bounded by

_ s)!]d—lmds/z

= [(m —1/2\s s
szzz s{(m!)F 1 (C1Cylt|n 1/2) Z " (ﬂo,---,ﬂd(l,---,d))

70y---0d(1ye
w gdls—mo—m(1)—-m (d)-772(112)—"'—%(11---1‘1)]/2(|t|31/2m(d—1)/2n-1/2)771(1)+'-'+n1(d)

d . .
X(thd/2,n—1)’r]0 H [m(d_k)/zsk/2]zlsj1<"'<jk5d 77k(.711---1.7k)
k=2

m _\Nd—1,,,ds/2
an < 2 Sf,)?;]od-?” (CLCACsltin™ /)" (om0 4 m(-2/25%)
s=2 . *

whenever || < ayn!/?, where C3 > 1is a constant depending only on d. Since (m—s)!/m! < (e/m)?
and s! > (s/e)® for 1 < s < m, the r.h.s. of (17) is bounded by

(18) S {(C1CaCae tlnY2)° + (C1CaCae? [tPmn~3/2) [sl},  Vit| < oyn/?,

3=2

Let 8 > 0 be an arbitrary but fixed constant. Choose 0 < az < og such that ClC2036d|t|n—1/2 <
1/2 and C1CoCael|tPmn=3/2 < fmi?/8n whenever [t| < apn!/2. Observing that 355, 2°/s! < z2e”
for all > 0, we conclude that (18) is bounded by

(19) O(£2n~1 + t8m2n—3ePmt* /By,
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as n — oo uniformly over |t| < a,n!/? and over all subsets T(4,), 2 < m < n.
ProoF oF (a). We observe from (14), (16) and (19) that

m
| E(Am) exp[itZY(Tr(j))/onH =0(1)(1+ t6m2n'36ﬁmt2/8”)e_&?nt2/2"% = O(l)e'ﬁmtz/‘m,
j=1
as n — oo uniformly over |¢| < azn!/? and over all subsets (A ), 2 < m < n, satisfying 62 /o2 >
Bm/n.
Proor oF (b). Taking m = n and 8 = 1, we observe that 62 /g% = 1. Using a Taylor series
expansion, we have
. it . : -
lbo + 5 Y EY3(i,...,i4) < O()tn 72,

7 1<% oSN
as n — oo uniformly over |¢| < asn!/? for some positive constant az < @z. (b) now follows from
(16) and (19).
ProOF OF (c). Taking m = n — 2, we observe that there exist constants C4 and 0 < o < a3
(depending only on lim inf, ..o no2, v and d) such that for sufficiently large n, we have

Ie‘&3—2t2/2"721—e't2/2] < 04(t26—t2/2n—1)’

. i3 ) . -
bot oz 3 EY(n...il < Calltf +1hn"
On 1<iy i<

n—2
|explit S ET A2y (7(4))/on] = 1| < Caltln™2,
Jj=1

whenever |t| < an!/2. (c) now follows from (16) and (19) by taking § = 2. This completes the
proof of Theorem 2. d

5‘ Proof of Theorem 1

Writing
40) Tn=Y Y(#(a)), Ax(m)=(2/n)Y Y ¥(X(7(a)),X(7(b))), V2<m<n,
a=1 a=1b=a+1
and A,, = A, (n—1) for short, we observe that Uk — EUk,n = T+ An. Let ¢,(t) = Eexplit(Urn—
EUgpy)/on].

CAsE L. Suppose |t| < n(2e»~1)/4, Using Lemma 1 below, we have
(21) ¢n(t) = EeT/on(1 + ito;  An) + O(2052A2) = EeTn/on(1 4 ity  An) + O(8 [n"),
as n — oo uniformly over |t| < n(2e2~1)/4, We observe from Theorem 2(b) that
(22) |EeitTr/on — ¢=12| = O((1 A t8)e=n=1/2),
as n — oo uniformly over |t| < anl/?. Also

Bitry el = (2fmBiter! 3 Y $OKH@) X (O)
a=1 b=a+1

(23) Xeit[Y(Tr(a))+Y(7‘r(b))]/vnE[e”Ez;ea,b YD) on|7(a), 7(b)].
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Writing B,(t) = e‘t2/2[1 — 360308 1) 7 Yiciy, g EY3(iy,- - ., 1a)], it follows from (2), (23)
and Theorem 2(c) that

- i
n n
|Eito 1 Ane'T [on|

n—1 n

on 0T Ba() Y 3 E(X(7(a)), X(R(3)))e O]
a=1 b=a+1

1Ot + (jt] + [tMe " a2

(24) = O(tzn'l+(|t|+|t|7)e"t2/4n_1/2),

IA

as n — oo uniformly over |t| < anl/?. We conclude from (21) to (24) that
(6 (t) = =212 = 00~ + (It] + [t1)e™4n12),

as n — oo uniformly over || < n(?*»~1)/4 and hence

n(2en—1)/4 _ —t2/2
(25) / 2= g = o,

'. —n(2en-1)/4
as n — 00.
Caskg IL. Suppose n(Zen=1)/4 < || < anl/? with o as in Theorem 2. We first observe that for
2 as in (8), there exists a constant C7 2 1 (depending only on liminfn_.co no?, v and d) such
that for sufficiently large n,

&2, né2
(26) mIE —1|+ m <Cq VYV2<m<om.
mo? o2

Next take 8 = 1/2 in Theorem 2(a). We observe from (26) and Markov’s inequality that for all
0<u<l,

52 52
TLO‘m eum B—EnéZ,[(mo?, N0
P <A < & [mol E exp|- o))
~2
9 < um(B~1)+uCr (um) noy, 25
( 7) < (1+ 2C7um)e .; (25)! E(m0'2 ma.z)
Using Stirling’s formula, we have
(um)Zs h2 2s
<
(28) .9>2Zeg7m ( 5)' E(maz m0'2) b
We further observe that with # and P_;(i;) as in (6) and (7),
né2, 52 .
E( mo? Emaz)
d
< (d+2) ZS{E[ Z 3 EY(i,...pie) — B 2md Z 3 EY2(iy,.. i)l
n =1 i, Emx(Am) k=14iemp(Am)

(29) +(d- 1)23E[a (* — Ep?)|*

> ) - B 2 2200

i;Em;(Am) mdjem(Am)
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Now it follows from Lemma 2 below that for 0 < s < 2eC7m and m/n — 0 as n — oo, the r.h.s. of
(29) is bounded by C§(2s)!/(s!m?) for some constant Cg > 1 which depends only on lim infy, o no,
~ and d provided n is sufficiently large. Thus we conclude from (27), (28) and (29) that by taking
u = (1 — §)/(2Cs), there exists a constant Cy (depending only on lim inf,—c no2, v and d) such
that for sufficiently large n,

=2
(30) P(fn‘ff”; < B) < (14 2Crum)(1 + ¥ m™)eem(P-1+u07 < Coe~™(1=8)*/(5Cs)

for all 2 < m < n. Let
(31) m = [(20a2Cs V 8)nt ™% log n].

Then for such an m, it follows from (30) that for sufficiently large n,

ng2

(32) P( ma”; < B) < Con™t.

n

Finally observing that
¢n(t) — Eeit(Tn+An—An(m))/Un[1 + ita‘;lAn(m)] + O(t2m/n1+€n),

as n — oo uniformly over |¢| < anl/? and conditioning on whether or not 62,/02 > fm/n, it follows
from (5), (31), (32), Theorem 2(a) and Lemma 1 that

(33) 2B = o2,

L(Zan—l)/4sltlsan1/2

as n — 0o. We observe from (5) and (33) that

(34) 200 - et |dt = O(n™1/%),

\/,;(2:,1,—1)/45|tlsan1/2

as n — oo. Theorem 1 now follows from (25) and (34) by the smoothing lemma of Esseen (see for
example, Feller (1971), page 538). ad

Lemma 1 Let A,(m) be as in (20) such that (4) holds. Then there exists a constant Cs (depending
only on v and d) such that EA%Z(m) < Csm/n**er for all1 <m < n.

Proor. Define for 0 < s, < 1,

1 if |ns| = [nt],
bn(s:t) = { 0 otherwise,

where [t] denotes the greatest integer less than or equal to t. We observe from (20) that
EAY(m) = (4/)E{}) ] >, P*(X(7(ir)),X(7(5))
i1=1 j1=i1+1

t i Zn: > P(X (7(i1)), X (7(51))) (X (7(32)), X (7(41)))

i1=1 j1=11+1 1<iz<mA(j1 —~1)i2 £41
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+i Xn: Yo (X (7 (i), X (7(1)(X (7(i1)), X (7(52)))
11=1 j1=t14+1 i1 <2 <n,2#f

+2m— i i: (X (7(51)), X (7(51))) (X (7(41)), X (%(42)))
11=1 ji=i1+1 ja=j1+1

+3 0> > Yo w(X#(0), X(7(51)))

i1=1 j1=t1+1 1<ia <m i #i1,01 2 <d2 <nyj2#i1.01

(35) X (X (7(12)), X (7(j2)))}-

We further observe from (2) that for i1, %9, j1, j2 all distinct, there exists a constant Cg, depending
only on v and d, such that

(36) EyA(X(7(i1)), X (7(j1))) < Con™" ",
|E(X (7(i1)), X (7(51))$(X (7(62)), X (7(F1))l

e, w(3))¢($(2), 2®)

n2d
(n—1)4(n - 2)‘1' /[0,1]3"

d
x{I] II [i- 5n(:c§k1), a:?kz))]}dz(l)da:@)dz@)l

I=1 1<k <k2 <3
(37) S Ce’n_z_e" )

and in a similar manner,
(38) | Ep(X (7(i1)), X (7(j1))$(X (7(32)), X (7(j2)))] £ Con™>"".
Lemma 1 now follows from (35)-(38). o

Lemma 2 Suppose (4) holds, 0 < s < 2eCym and m/n — 0 as n — oo. Then there exists a
constant C1o depending only on liminf, .. no2, v and d such that for sufficiently large n,

T n2 ~ 21128 Cio(2s)!
—((P° - F < AoTT/
‘E[o_% (V v )] —_ S!ms ?
n 2 n 2 C1o(20)!
E[O'Zm Z VEJ(ZJ) - ‘E0_2m Z V_j(’lj)]2s S —%‘W—-
*ijEmi(Am) T iemi(Am) :
and
LIRS 2(; , n_ < 2 s _ Cio(29)!
E[UZde Z EY (Zl’°"7zd)—EmZ Z -EY (Zl,-.-,zd)] S——s'7ns—',
T k=1igeni(Am) n k=1 i €mg(Am) !

ProoF. The proofs of the three inequalities of Lemma 2 are similar (though the first two are
somewhat longer) and as such we shall only give a proof of the third inequality here. Without loss
of generality we assume that s > 1. For simplicity we write EY?*(iy,...,%q) = W(i1,...,iq) and
Ch1 is some constant (depending only on iminfn .o no2, v and d) such that

Ci1 > max{1,lim sup{no; 2|W(i1,...,4a)| : 1 < 41,...,0a < n}}.
n—od
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Also let {J;x : 1 < j <d,1 <k < 2s} be a sequence of i.i.d. random variables each uniformly
distributed on {1,2,. n} and are independent of all previously defined random quantities such
as T(Am). Let Py denote the set of partitions of the set {1,2,...,2s}. If @; € Pa5, 1 < j < d, let
XQJ(J 1s- Jj2s) denote the indicator of the event that Jj1,...,Jj2s are equal within the same
block of Q j and are distinct in different blocks of );. Then

02 7 > EY*(iy,.. i)~ B dz S EY%(iy,...,i)]%

=1 zkErk(Am) oam k=1ix€mk(Am)

= E Z [H xQ; (S5« +» Ji2)]

Q1,.. 1Qdep2s Jj=1

(39) L1 S Ut el U ) € 74} = G

where I{.} denotes the indicator function. To proceed, suppose @; is of type 1%312%.2 ,, (2s)*d2e
and consider an d x 2s matrix. For each 1 < j < d, select A;; elements (without replacement)
from row j. Let mj1,...,51), with 1 < j3 < --- < ji < d and 0 < I < d, denote the number of
columns of the matrix such that elements (in these columns) in rows jy,. .., are not selected and
all elements in the remaining rows of those columns are selected. Also let Hy, denote the set of
columns of the d x 2s matrix which have all its elements selected. We show next by induction that
there exists a constant Cj, (depending only on liminf,_,o no2, 7 and d) such that for sufficiently
large n,

d
d
4011(607)1/22 (Z)(8e07)"1 < Chg,

d C
(40) E ( ) 11 )l+12(31 1)/2(260 )(l 1)/2 < 1,

I=1
and for all subsets H, C Hy,,

= m.q
|E] H W(J1 by o Ja)I{(Tis -5 Jap) € F(Am)} = () TH{TI{Tap € Ta(Am)},

keHy,

d
(41) Jop:1<a<dbe{l,...,2s}\H, }, H xQ;(Jits -+ Ji2s) = 1] < C"°( )77 o/2,

where 7{ denotes the cardinality of H, . Here we use the convention that the product over an
empty set is 1 and hence it follows that (41) holds for 7y = 0. Now suppose that 75 > 1 and that
(41) holds for all subsets strictly smaller than H, . Let r(Q;) denote the number of blocks of @;
and {J;x;, : 1 <1< r(Q;)} represent the d1st111ct values of {J;x : 1 <k< 25} Without loss of
genera,hty we also assume that {kjy1,...,kjq} = Hyy and {kja, ...,k } = Hy forall 1<j <d,
and write k; = k;; whenever 1 <[ S 770. By conditioning on {J,, b,I{Jab € 7ra( m)}il1<a<
d,be {1,...,2s}\{k1}} and H?=1 xq@;(Jia,- -+ Jjz2s) = 1, we observe that the Lh.s. of (41) is equal
to

d
n
\B{ W (ks Jap) Do Lin+ 3 Lilip+-o+Li..Ld]
i s=1 1< <j2<d
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x I dm W (s JaiI{(Frs s Jak) € F(An)} = () IHT{Tap € a(Am)},
keH \{k1}

d
(42) Jup:l<a<d,be{l,....280\H, 1 I x@;(F51,-- > Tizs) = 1},
=1

where
(Q;)

T 1) Z I{Ji € mj(Am)} - _]a Vi<ji<d.

n
m(n —(Q;)
From the induction hypothesis and (40), we observe that (42) is bounded by

Lj=-

d
> ((zi) Cri(ds/m) < Cra(28/m)*?,  if 75 = 1,
=1

or
d

Z ( )Cﬁ-l( ) Cno—l 1(28)(,70_1 1)/2 < C'ﬂo( 3),,,6/2, if 776 > 2,
=1

for sufficiently large n. This proves (41) and we observe by taking H} = Hy, in (41) that the r.h.s.
of (39) is bounded by

2s 2s
Cﬂo il 7]0/2 20 2s5—n0
> d)(%,,_ __,d)) B()™3(2Cn)

70+ 1yeems - Md(1,

d
1.5, et (25=A; 1—~1) A5
(43) 23 | SR DD [CYPRUNT P (-

j=1 A_] 21"'1>‘j 23—Aj 1

where Zno,---m a(1ynd) denotes summation over all possible realizations of mi(j1,...,41), 0 <1 < d,
1<ia<---<i<d, Z,\] 2reej2emh; denotes summation over all possible nonnegative integers

Ajx’s satisfying Zk 2’\“ kXjr = 25— )\J jforall1<j<dand N(/\J 25+ ++yAj25-);,) is the number

of partitions of the set {1,...,2s} of type 2%2 .--(2s — ;1) Aj2e=3j1, We now observe from the
definition of N(Aj2,...,Aj2s—);,), see von Bahr (1976) page 136, that (43) is bounded by

Z 5 (no,_ 2s )) )no/2(2C )2s no H (23 . 11}12) (1 ) Aj1/2

00 yeeusd(1yeees e "]d(l,

5-9—/\;),1 /2 25— AJ 1
44 X E (- Z)Aj,l/Z.
(44) 2 O 7 T T VP e A,l)(m)

Aj2reAg2a—2;

We further observe that

Ss—/\j’l /2 223 A1
(1=2)A;1/2
2 @97 (25 = )T 5 Aigl - Chgzsrg)! (m) = "

A_7',21---1/\1',2.‘;—,\-7',1

(45) < [exp(e¥C7)]*, V1<j<d.

Since s/m < 2eCr and 2s(d—1) > Y0, (d—1) Yi<ii<e<i<d M{JLs - - Ju), using Stirling’s formula,
we conclude from (45) that (44) is bounded by C7y(2s)!/(stm?). This proves the third inequality
of Lemma 2. O
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