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This paper is concerned with estimating a mixing density g using a random sample
from the mixture distribution f(z) = [ f(z]0)g(6)dé where f(.|0) is a known discrete
exponential family of density functions. Recently two techniques for estimating ¢ have
been proposed. The first uses Fourier analysis and the method of kernels and the second
uses orthogonal polynomials. It is known that the first technique is capable of yielding
estimators that achieve (or almost achieve) the minimax convergence rate. We show
that this is true for the technique based on orthogonal polynomials as well. The practical
implementation of these estimators is also addressed. Computer experiments indicate
that the kernel estimators give somewhat disappointing finite sample performances.
However the orthogonal polynomial estimators appear to do much better. To improve
on the finite sample performance of the orthogonal polynomial estimators, a way of
estimating the optimal truncation parameter is proposed. The resultant estimators
retain the convergence rates of the previous estimators and a Monte Carlo finite sample
study reveals that they perform well relative to the ones based on the optimal truncation
parameter.

Key words: Discrete exponential family, mixing density, orthogonal polynomials, rate
of convergence.

1 Introduction

Let Xi,..., X, be independent observations from a mixture distribution with probability law

-
1) fw9)= [ Fala(0)ds,

where ¢ is a mixing probability density function on (0,6*) and f(.|8) is a known parametric family
of probability density functions with respect to a o-finite measure v. In particular we assume that

(2) f(a:|0) = C(O)q(x)&""', Vz = 0,1, 2,0,

where 0 < 0 < 6* < 00, g(z) > 0 whenever z =0,1,2,... and v is the counting measure on the set
of nonnegative integers. In this paper we are concerned with the estimation of g using the random
sample X1,...,Xn.

Over the last few years, there has been a great deal of interest in the above problem and other
related mixture problems. Important advances have been made on the deconvolution problem by
Devroye and Wise (1979), Carroll and Hall (1988), Zhang (1990), Fan (1991) and many others
using Fourier techniques. In particular kernel estimators have been obtained which achieve the
minimax convergence rate.

In the context of mixtures of discrete exponential families, Tucker (1963) considered the estima-
tion of the mixing distribution of a Poisson mixture via the method of moments and Simar (1976)
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approached the same problem using maximum likelihood. Rolph (1968), Meeden (1972) and Datta
(1991) used Bayesian methods to construct consistent estimators for the mixing distribution.

Quite recently, two techniques for the estimation of the mixing density g, as given in (1),
have been proposed. The first was proposed by Zhang (1992) which uses Fourier analysis and
the method of kernels. The second was proposed by Walter and Hamedani (1989), (1991) which
uses orthogonal polynomials. It has been shown by Zhang (1992) and Loh and Zhang (1994) that
the first technique is capable of yielding estimators that achieve (or almost achieve) the minimax
convergence rate with respect to integrated mean squared error over various smoothness classes of
mixing density functions.

The rest of this paper is organized as follows. We shall first very briefly review the kernel mixing
density estimators and their properties in Section 2. In Section 3 we shall show that the technique
based on orthogonal polynomials is also capable of yielding mixing density estimators that achieve
(or almost achieve) the minimax convergence rate with respect to integrated mean squared error
over various nonparametric classes of mixing density functions. However even with this property,
the minimax convergence rates of these estimators are logarithmic (not polynomial). This leaves
us with the important question as to how well can these estimators actually perform in practice.

Section 4 addresses the issue of the finite sample performances as well as the practical im-
plementation of these estimators. Computer experiments indicate that the kernel mixing density
estimators (for the particular kernel used here) give somewhat disappointing finite sample perfor-
mances. On the other hand, the orthogonal polynomial mixing density estimators appear to do
much better. To improve upon the finite sample performance of the orthogonal polynomial mixing
density estimators further, a way of estimating the optimal truncation parameter is proposed in
Section 5. The resultant estimators retain the convergence rates of the previous estimators and a
Monte Carlo finite sample study reveals that they perform well relative to the ones based on the
optimal truncation parameter.

All proofs in this paper have been deferred to the Appendix. Finally we shall denote by P = F;
and E = E, the probability and expectation corresponding to g respectively, by h() the jth
derivative (if it exists) of any function h with h© = h, and the weighted LP-norm of any measurable
function h by ||h||wp = (f |h(y)Pw(y)dy)/P, V1 < p < oo. K w(y) =1, we denote ||.||wp by [|-]lp-

2 Kernel mixing density estimators

This section treats the case §* < oo and, for completeness, gives a brief review of the kernel mixing
density estimators that we are concerned with here. We refer the reader to Loh and Zhang (1994)
for the proofs and a more detailed discussion of these estimators.

Let k: R — R be a symmetric function satisfying

[ pay=1,  K@=0, Vid>1,

(3) / YEk(y)dy = 0, V1<j<ao,
and o
@ | week@)ldy < oo,

for some positive number ag, where k* denotes the Fourier transform of k, that is k*(f) =
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[ e™k(y)dy. Define

—00

(5) Ko(2,6) = %ﬁ—?—i " RiCie et

where ¢, and d,, are positive constants tending to oo, I{.} denotes the indicator function and R(2)
is the real part of the complex number z. Observing that

(6) E K. (X1,0)- C(8)g(0) 0, V-—oo< f < oo,
as (n,dn) — (00,00) along a suitable path, Loh and Zhang (1994) proposed estimating g(8) by
the kernel mixing density estimator
(7N Grn(8) =01 {Kn(X;,0)/C(0)} {0 < 0 <@z}, VO< 9 < 6.
Jj=1

where @y, cn, and d, are constants satisfying

®) ot max log(1/a(c) = fologn,  en = (076 (dn — rlogen)
and

e if C(6%) > 0,
(9) Ay, = { o — a*/cn if 0(0*) =0,

with absolute (independent of n) constants 0 < Bo < 1/2, B > 0, and 0 < a* < o0. The
performance of these estimators are investigated with respect to the following smoothness classes
of mixing density functions. Let w be a measurable function on (0,8*) with ||w]|; finite. For o > 0
we define G g«(w, M) to be the set of all probability density functions g on (0, 6*) such that

(10) 9@ () = g+ 6)llw2 < M8, V8,

where o is the integer with 0 < o = a — o <1, and M is a constant such that Gy g«(w, M) is
nénempty.
| We further assume. that there exist constants 7 > 0, C§, C3, and C3 such that

(11) sup (6*—6)"/C(0) < C7,
| 0<8<6*
(12) sup (0° — 6)'|CU)(B)|/{C(0)i'} < C5, YO<i<p,
oo o*
and
(13) IC)(8 + 6) - C)(0) < C36°", 0< 8 <8+ 6 <87,

where p’ is a nonnegative integer with 0 < p” = p—p' < 1.

Theorem 1 below shows that the kernel mixing density estimators gk achieve (or almost
achieve) the minimax convergence rate with respect to Go0+(w, M) under reasonably mild condi-
tions.

Theorem 1 Suppose o > 0 and that (11)-(18) hold with ¥ > 0 and p = a + 7. Let Jxn be given
by (7) with the kernel Kn(z,0) in (5) such that a0 2 a + 7 in (4). Let (8) and (9) hold with
B1>a+ . Then if

gz ¥z’ > 1, Ve >0,
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for some constants Yo, 71, and (3, we have

O(1)(1/ logn)* ifB=0,

E i) n - w = o ;
oo R N08m = Ol { oD iaeingny gy 70<5'<.

Furthermore
lim inf (log n)*inf sup{E,|lgn — gllz: g € Gape(1, M)} >0,
n—00 n

where the infimum runs over all possible estimators gn based on X1,...,Xn and Goox(1, M) is
given by (10) with w(f) = {0 < 6 < "}

3 Orthogonal polynomial mixing density estimators

In this section we introduce the class of orthogonal polynomial mixing density estimators that we
are concerned with and also establish upper and lower bounds for their convergence rates with
respect to various nonparametric classes of mixing density functions. Let C : (0,6*) — Rt be as
in (2) and w : (0,6*) — RT be a measurable function such that ||C?/w||1 < 00. Let {pu,,;}j=0 be
a sequence of orthogonal polynomials on (0,6*) with weight function

(14) wo(8) = C*(8)/w(6)-
In particular, we assume that these polynomials are normalized so that
J
(15) prtJ(o) = 2 k'LUOijrzez’
=0

with ky,,j; > 0forall j > 0, and Je " Dy i(0)Pup,i(0)wo(8)d6 = 6;;, where 6;; denotes the Kronecker
delta. We further assume that {puw, ;}%20 is complete with respect to ||-[lwo,2- Note that this is
always true if * < oo [see for example Szego (1975) page 40]. Next define

ky iz/q(z) H0<z <7,
)= { i) 10525

0 otherwise.
We write
(16) h(0) = w()g(6)/C(F), VO <8< b,
and assume that the mixing density g satisfies ||gllw,2 = ||Pllwo,2 < c0. Then h has the formal

orthogonal polynomial series expansion h(8) ~ 3720 P, Puwo,i(0), where

0‘
(17) hg.i = /0 B(6)Pug s (O)wo(6)d, Vi =0,1,2,--.

Observing that

EgAu,,i(X1) = E f(z;g))‘wm(w) = hwe,js Vi =0,1,2,--+,

=0

we estimate Rug,i bY Py = 071 0y Aue,j(Xi) and g(8) by the orthogonal polynomial mixing
density estimator

(18) fora(8) = [COWON Y hunipuoi(®), YO<O<F,
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where m,, is a positive constant (truncation parameter) which tends to co as n — 0. The following
proposition gives an upper bound on the convergence rate of Gopn-

Proposition 1 Suppose ||C?/w||1 < o and ||g|lw,2 < 0. Let joPn be as in (18). Then

E,|liorn — gllwa2 < {n”" Zolgggj[kwo,j,z/‘I(x)]z + ) h2, 13,
=00s7S

j=mn+1
With ku, iz and fuy, ; as in (15) and (17) respectively.

REMARK. The motivation for (18) originates from Walter and Hamedani (1989) who proposed
a similar class of estimators. They also obtained a result analogous to Proposition 1.

We now study the performance of the estimators jop,, with respect to the following nonpara-
metric classes of mixing density functions. For positive constants o, M and m=1,2,..., we define
G(a, m, M,wo) to be the set of all probability density functions g on (0,8*) such that ||g]|w,2 < 00
and Y32, 72*h%, i < M with hy; as in (17). We note that this class implicitly depends on
the discrete exponential family of interest, in particular on C(8). This ellipsoidal class is chosen
mainly for reasons of mathematical tractability. However ellipsoid conditions can amount to the
imposition of smoothness and integrability requirements, see for example Johnstone and Silverman
(1990) page 258. In our case, we have the following characterization.

Proposition 2 Let m > 1 and {pu,,j}320 be as in (15). Suppose there exist constants Vjm,
j > m and another sequence of (normalized) complete orthogonal polynomials {Pur,i}5m0 with
weight function wy such that

(19) [Pwl,j(o)wl(a)](m) = (—1)mVj+m,meo,j+m(o)wo(o)a Vj >0,
and
(20) on < iaf Vil 5% < sup Wil /3% < a2

jzm iz>m

where o, oy and ay are positive constants. Then if h is a measurable function on (0,6%) such that
R(m) ezists,

(@) 0= Jim A IOpu OO = lm KOO @

whenever 0 < i < m, j > 0, and ||h(™||y, 2 < 00, we have

j=m

(22) a1(>: 32R2, 2 <™y 2 < @2} 72ohE M2,
j=m

where by, ; is defined as in (17). (19) and (20) are satisfied by the classical orthagonal polynomials
of Laguerre and Jacobi with a = m /2, m respectively.

For the rest of this section, we shall assume that M is sufficiently large so that G(a,m, M, wo) is
nonempty. The next two theorems and their corollaries establish upper bounds on the convergence
rate of jop,, over the class of mixing densities G(a,m, M, wo).
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Theorem 2 Suppose ||C2/w||; < 0o. Let jopn be as in (18) and

(23) max 1og([kusel/a(#)) < Solog

0<z<5<
for some constant 0 < fo < 1/2. Then
sup{E,|l§opn — 9llw2 : 9 € G(aym, Mywo)} = O(1)(m" + ml/ 2n(2Fo=1)/2),

Corollary 1 Suppose 8* = oo, w(f) = 9-5C?(0)e® and wo(f) = 9P~ with 8 > —1. Let {Pug,i}5=o
be the sequence of (normalized) Laguerre polynomials on (0, 00) with weight function wo, dopn a8
in (18) and

¢(z)107i(z) > 1, Vz 20,

for constants yo and v, > 1. Then by choosing m, = §logn with 0 < § < fo/log(271) and
0 < Bo < 1/2, we have

sup{ Eq||gopn — gllw2:9€ G(a,m, M, wo)} = O(1)(1/logn)*.
Theorem 3 is a specialization of Theorem 2 which proves to be useful when 6* < oo.
Theorem 3 Let jop,, be as in (18) and that for some constant ¢ > 1,
(24) max k2 i, < (¥, Vji>0.
Suppose further that
(25) max log(1/q(z))+ mylog( < Bologn,
0<z<mn
with constant 0 < Bo < 1/2. Then
sup{ Eyl|gorn — 9llwz2 : 9 € G(a,m, M,wo)} = O(mz®).
Corollary 2 Let jop, be as in (18) and that (24) holds for some constant ¢ > 1. Suppose
(26) g(z)yo7i(a!)" > 1, Ve 20,

for constants yo, v1 > 1 and y. Then
(a) if v = 0, by choosing my, = §logn with 0 < 6 < Bo/ log(711¢) and 0 < o < 1/2, we have

Sup{Eg”gOP,n - g“w,2 1g € g(a’m’Ma wO)} = O(l)(l/logn)a’

(b) if 0 < v < 00, by choosing m, = §logn/loglogn with 0 < § < fo/v and 0 < fo < 1/2, we
have
sup{E,||doPn — gllwz2 : 9 € G(a,m, M, wo)} = O(1)(loglog n/log n)®.

REMARK 1. The negative binomial and Poisson mixtures satisfy (26) with v = 0 and 1 respec-
tively.

REMARK 2. The classical orthogonal polynomials of Jacobi satisfy (24).

The next theorem complements the above results by establishing lower bounds on the minimax

convergence rate over the class of mixing densities G(a, m, M, wo) under the condition that (19)
and (20) hold.
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Theorem 4 Let w : (0,8*) — R* be a measurable function such that ||w||; < oo and ||wol|1 < o0
with wo as in (14) and {pu,,}320 be a sequence of (normalized) orthogonal polynomials with weight
function wo such that (19) and (20) are satisfied. Suppose there ezists an open interval such that
w is strictly positive and m times continuously differentiable. Then for sufficiently large M,

lim (log n)™ inf sup{ Egl|gn — gllw,2 : 9 € G(,m, M, wo)} > 0,
n—-00 gn

where the infimum runs over all possible estimators gr based on X1,...,Xn.

We close this section with the following consequence of Corollary 2, Remark 2 and Theorem 4.
Suppose §* < co and that there exist constants Bi1>-1,8>-1,7%>0,71>1landy 20 such
that

w(8) = CX(O)0P(8* - 6)™%, V0 <B<b",

and ¢(z)y077(2!)” > 1, for all z > 0. Then

(a) if 4 = 0, the minimax convergence rate with respect to ||-||s,2 loss is (1/logn)™ for mixing
densities g in the class G(m, m, M, wo) where wo is as in (14). This rate is attained by the mixing
density estimators gop, of Corollary 2.

(b) if 0 < 7 < oo, the convergence rate [namely (loglog n/ log n)™] of the estimators of Corollary
9 almost achieve the lower bound of (1/logn)™ obtained in Theorem 4 for mixing densities within
the class G(m,m, M, wo).

4 Finite sample performance

A key consequence of the results of Sections 2 and 3 is that both the kernel and orthogonal poly-
nomial mixing density estimators, l.e. Jx,» and gopn respectively, are capable of achieving (or
almost achieving) the minimax rate of convergence. However even with this property, the minimax
convergence rate of these estimators is logarithmic (not polynomial), This leads us to the following
problem. Typically how large must a sample be in order that the desired asymptotics of these
estimators (as described in the previous two sections) can take effect.

4.1 Kernel mixing density estimators

In order to gauge typically how well the kernel mixing density estimators perform in practice, we
focus on the problem of estimating the mixing density g of a negative binomial mixture with 8* =
and C(6) = 1 — @ with respect to integrated squared error, that is |9» — gll3. To construct the
kernel mixing density estimator jx n, we take

6.2 .
k(y) = ;Igsm(%)rl, V—o00<y<oo.

Our motivation for such a choice of k is its relative simplicity and that (3) and (4) hold with ap = 2.
We observe from (6) and (7) that an upper bound on the finite sample performance of gk can be
obtained by investigating how close

(27) 1 E;[Kn(X1,6)/C(OI{0 < 8 < an} — 9(0)2

is to 0. In this case we take g(#) = I{0 < 6 < 1} and use ERR, = (1/10) 10 {E,[Kn(X1,0.1i -
0.05)/C(0.15 — 0.05)] — 1}? as an approximation to (27).
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REMARK. The reason for such a choice of g is that we feel that the uniform distribution
is arguably one of the distributions that any reasonable estimation procedure should be able to
estimate adequately well.

Computations show that in order to have ERR, = 0.1, we need ¢, =~ 17. Since ¢, < (1/2)logn,
this implies that the sample size n must be astronomically large and is quite impossible to obtain
in practice.

This presents a disappointing setback for the practical implementation of jx . However it
should be noted that this can be due to a possibly inappropriate choice of the kernel k and that
it does not eliminate the possibilty that there exist other kernels which give dramatically better
results.

4.2 Orthogonal polynomial mixing density estimators

We observe that the integrated mean squared error of the orthogonal polynomial mixing density
estimators has a simple closed form expression. In particular, we observe as in (31) that

-
B, [ liora(6) — 9(O)w(6)d0

(29) = [ OO+ 0 3B, 00) — (n+ DIEen )

§=0

The right hand side of (28) enables us to compute the integrated mean squared error of jop, in
any given situation. We illustrate this below with two examples.

EXAMPLE 3. This example deals with the problem of estimating a mixing density g of a negative
binomial mixture with 8* = 1 and C(#) = 1 — 0 using integrated squared error loss. In this case the
orthogonal polynomial mixing density estimators are given as in (18) where {puy,; }32o corresponds
to the Jacobi polynomials with weight function wo(d) = (1 —6)%, V0 < 8 < 1.

Tables 1, 2 and 3 give the integrated mean squared error of jop,s for sample sizes n = 1000,
10000 and 100000 as well as for truncation parameters 0 < m, < 4.

TaBLE 1. g(0) =1
truncation parameter my,

sample size n 0 1 2 3 4
1000 0.251 0.128 0.330 5.186 110.752
10000 0.250 0.113 0.089 0.555 11.100
100000 0.250 0.111 0.065 0.091 1.135

TABLE 2. g(6) = (7/2) sin(76)
truncation parameter my
sample size n 0 1 2 3 4
1000 0.48445 0.02041 0.32504 6.16375 128.20208
10000 0.48378 0.00333 0.03352 0.61638  12.82021
100000 0.48371 0.00162 0.00437 0.06164 1.28202
TABLE 3. g(6) = exp(0)/(e — 1)
truncation parameter my,

sample size n 0 1 2 3 4
1000 0.558 0.291 0.431 5.701 126.007
10000 0.558 0.277 0.184 0.660 12.663

100000 0.558 0.275 0.159 0.156 1.329
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EXAMPLE 4. This example deals with the estimation of the mixing density g of a Poisson
mixture with #* = oo using integrated weighted squared error loss ||gn — gll2, 2 where w(6) = e 9,
V8 > 0. In this case {pu,,;}2o corresponds to the Laguerre polynomials with weight function
wo(#) = e~?. Table 4 gives the integrated mean squared error of the estimator jop, when g(8) =

e~?, V8 > 0 for sample sizes n = 1000, 10000 and 100000 as well as for 0 < m, < 6.

TABLE 4. g(f) = exp(—6)
truncation parameter my,

sample size n 0 1 2 3 4 5 6
500 0.08383 0.02271 0.01030 0.01426 0.03335 0.08570 0.22609
1000 0.08358 0.02177 0.00775 0.00778 0.01684 0.04289 0.11305

10000 0.08336 0.02093 0.00546 0.00195 0.00198 0.00436 0.01132
100000 0.08334 0.02084 0.00523 0.00137 0.00049 0.00051 0.00115

REMARK. Examples 3 and 4 (plus other unreported ones) indicate that jop, perform well for
sample sizes n > 1000 as long as h, defined as in (16), can be reasonably approximated by a low
degree polynomial and that the optimal truncation parameter is used.

5 Estimating the optimal truncation parameter

In this section, a way is proposed to estimate the optimal truncation parameter m, for the orthog-
onal polynomial mixing density estimator jopn, given as in (18), where m}, is defined to be the
value of the truncation parameter m, which minimizes Egllgopn — 9||w,2. We write

(29) lnj = n_l{EgAz;o,j(Xl) ~(n+ 1)[Eg)‘1Uo,j(X1)]2}-

We observe from (28) that Z?L:;‘O tni < 2=0tn,s for all m > 0. This implies that m} can be
determined if the sign of Zg___a tn,; is known for each a < b. Let t,; be the unbiased estimator
of ¢,; based on Xj,..., Xn, fn,,-,j = Z{;i fn,z, V0 <7< 7 and &2(7?”,5,]-) be the unbiased estimator
of the variance of #,;;. Let 0 < o* < 1 and By, be the largest possible constant satisfying the
inequalities

(30) 02225 Jog([kun,isl/4(2)) < folog, By, < By logn,

for positive constants fp < 1/2 and B;. Our algorithm for estimating m; is as follows:

1. Set 7 =0 and ny = np = 1.

2. Compute Y = fn,nl ng + Za* &(tAn,n1 ny ), where ®(zo+) = 1 —a* and @ denotes the distribution
function of the standard normal distribution.

3. Casg 1. fY < 0 and ny < B,, set ™} = ng, n; = ny + 1 and then set ng = ny. Let
Y = tnmymy + 206 (Enmg my) and return to the start of Step 3.

CASE 2. If Y > 0 and ny < B,, increase ny by 1, compute ¥ = fn,nl np + za*&(fn,m ) and
return to the beginning of Step 3.

CASE 3. If ng > B, the estimate of the optimal truncation parameter m} is given by my,.
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REMARK 1. The above algorithm can be thought of as a successive sequence of hypotheses
tests each at level o* where the null hypothesis always has fewer terms than the alternative.

REMARK 2. The constant B, can be chosen in the following manner. Under the conditions of
Corollary 1, take B, = fologn/log(271). Under the conditions of Corollary 2(a) and (b), we take
B,, = Bologn/log(71¢) and (Bo/7)logn/loglogn respectively.

REMARK 3. The closer a* is chosen to 0, the more likely it is that 7}, will underestimate mx,.
The previous section (see Tables 1 to 4) indicates that the risk of Jop, is asymmetrical about mﬁ‘t
and that there is a distinct possibility that the risk increases very dramatically with overestimation.
As such we recommend that o* be chosen to be 0.01, 0.05 or 0.10, which are in line with the usual
values of a* for classical hypotheses testing. ,

Let §5p,, be asin (18) with my, replaced by ;. T he following theorem gives an upper boun
to the convergence rate of §5p -

Theorem 5 Let ||C?/wl||; < oo and By, be the largest possible constant satisfying (30). Then
SUP{Eg||§5P,n - g“u),Z (g€ g(a,m, M’ ’wo)} = O(B';L_a)

REMARK. By choosing B, = m, in Corollaries 1 and 2, we observe that the estimators §op,
essentially retain the convergence rates of gopn-

TABLE 5. g(f) =1
_ truncation parameter my,
sample size n | IMSE 0 1 2 3 4

1000 0.231 [0.84 0.16 0.00 0.00 0.00
10000 0.110 {0.00 0.98 0.02 0.00 0.00
100000 0.072 | 0.00 0.29 0.71 0.00 0.00

TABLE 6. g(0) = (7/2)sin(76)
truncation parameter m,
sample size n | IMSE 0 1 2 3 4
1000 0.0552 | 0.08 0.92 0.00 0.00 0.00
10000 0.00320 | 0.00 1.00 0.00 0.00 0.00
100000 0.00158 | 0.00 1.00 0.00 0.00 0.00
TABLE 7. g(0) = exp(d)/(e — 1)
truncation parameter m,
sample size n | IMSE 0 1 2 3 4

1000 0.360 | 0.30 0.70 0.00 0.00 0.00
10000 0.263 | 0.00 0.94 0.06 0.00 0.00
100000 0.142 | 0.00 0.00 1.00 0.00 0.00

EXAMPLE 3 CONTD. Here we have applied the above algorithm to Example 3. In particular
the algorithm is used to determine 7}, using a* = 0.05 and B, = [(1/2)logn]. For convenience
we use 50 bootstrap replications to approximate each (% n,,n,). The second column of Tables 5,
6 and 7 give the average value of

10
(1/10) [§5p(0-1i — 0.05) — g(0.1i — 0.05)],

=1
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for 100 independent replications of X1,...,X,. These values approximate the integrated mean
squared error (IMSE) of the mixing density estimator

Horn(8) = [CO)/ (O] huospuoi(®), VOIS

We recall that in this case, we have 6* = 1, w(d) = 1 and C(6) = (1—#6). The remaining 5 columns
of Tables 5, 6 and 7 give the proportion of the time 7y, takes the values 0 to 4.

EXAMPLE 4 coNTD. The above algorithm is now applied to Example 4 with o* = 0.05,
B,, = 0.71ogn and 50 bootstrap replications to approximate each 6(tnng np)- As in Example 3, the
second column of Table 8 gives the average value of

500
(1/10) Y e~ ©1=009) 55 (0.1i — 0.05) — g(0.1i — 0.05)}?,
=1
for 100 independent replications of X1, ..., Xy. These values approximate the integrated weighted
mean squared error (IMSE) of the orthogonal polynomial mixing density estimator §§p,,, namely
Egllgp.n— 92,2 with w(d) = e~?, V0 > 0. The remaining 5 columns of Table 8 give the proportion
of the time 77, takes the values 0 to 4.

TABLE 8. g(#) = exp(—9)
truncation parameter my,
sample size n | IMSE 0 1 2 3 4
1000 0.0190 | 0.00 0.75 0.24 0.01 0.00
10000 0.00455 | 0.00 0.00 0.71 0.29 0.00
100000 0.00111 { 0.00 0.00 0.00 0.66 0.34

Both of the above Monte Carlo studies indicate that the risks of the orthogonal polynomial
mixing density estimators §5p,, compare well to the ones based on the optimal truncation param-
eter.

We conclude with the remark that in general the following two conditions do not hold: §&p,(0) =

0,V¥0 < § < 6 and fg g pn(0)dd = 1. As such the accuracy of estimate g5 p, can be further
gauged by how close the above two conditions are to being satisfied.

6 Appendix

ProOOF OF PROPOSITION 1. We observe that

g* mn

E{ 09*[§0P,n(0)—9(0)]2w(0)d0}1/2 = E,{ /0 >~ hwg,iPup,i(8) — h(6)]Pwo(6)d8} 2
§=0
J=0 j=mn+1

The last inequality follows from Jensen’s inequality and the completeness of {pu,,;}52o. Since
Bagi = 7L 321 Awo,i(Xi), the r.hus. of (31) is bounded by

¢ Tt E D0+ Y BN < et Y max [huee/a(e) + D0 R 32
=0 3=0

. 0<z< .
=mn+l = j=mn+1
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This proves the proposition. a
PROOF OF PROPOSITION 2. We observe from (19), (21) and repeated integration by parts that

[ B @ sOs0)is = ) [ OB O 018

9#
= Vitmm [ 1(O)pun,im(8)wo(8)d8
= Vj+m,mhwo,j+m7 VJ 2 0'

From the completeness of {pu,;}i2o, we get B2, 2 = Yiem vimhi, ;- Now (22) follows
immediately from (20). To prove the second statement of Proposition 2, we argue as follows.

LAGUERRE POLYNOMIALS. Suppose wo(f) = 6%e~?, with § > 0 and 8 > -1, is the weight
function of the normalized Laguerre polynomials

pos® =8 +1 ()52 (EEE vize

j —\j-z

For j > 0 and m > 1, we write w1 () = go+me=0

J z=0

and

Vivmm = (—1)’”%"’—”[1“(“1)(“

B+ m\.y0 m J+B+mY. 12
it )] [T(8+ +1)( i )] ~

m

Then (19) follows from the Rodrigues’ formula for Laguerre polynomials and (20) holds for & = m/2.

JACOBI POLYNOMIALS. Suppose wo(f) = 6%:(6* — 6)%, with 8 > ~1, 2 > —1 and 0 <
@ < §* < 0o. Then the orthogonal polynomials with wo as the weight function correspond to the
normalized Jacobi polynomials

Puo,i(0) = Cj,81.6. (J -;ﬂz) (0*)_j ZJ: =1 ot 1 (] * ﬂl) oj_a;(o - 0%),

(Be+1)(B2+2): - (Ba+2z)\ =

z=0
where
B [(2j + 61+ B+ TG+ IG+ B+ 62+ 1)]1,2

o .
Cisnior = (GBI + B+ DIG + B + 1) izt

and is equal to

[ F(ﬁl + ﬂ2 + 2) ]1/2
(6*)Pr+BH1T(By + 1)I(B2 + 1)

For m > 1, let py, j, j = 0, denote the set of normalized Jacobi polynomials with weight function

if § = 0.

wi(f) = T8 —0) ™, VO <O <67,
and
Vigmm = (0" + m)'Cj gr+m.pr+m/[5'Citm,81,82]-

Then (19) follows from the Rodrigues’ formula for Jacobi polynomials and (20) holds for o = m.
(]
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PROOF OF THEOREM 2. We first observe from (23) that

j=005=S

We also observe that

(33) sup{ E thO,j :9 € Gla,m, M, wo)} = O(m;2*).
j=mn+1
Nbw the theorem follows from (32), (33) and Proposition 1. O

 PROOF OF COROLLARY 1. From the properties of Laguerre polynomials, we have

kupie/a(®)] < 7ovf(w!)"-1(§ff)[r(ﬁ+1)(j jﬁ)]-m

| = 203 (’) [ TT 1+ PP + ) TT+ i)

i=z+1

(34) < izl TT (14208 + 1) TI(+ B2,

L i=z+1 i=1

1=

f%re we follow the convention that [[?2, (1+ 8i~1) = 1 if z1 > z2. We further observe that there
eflist positive constants ¢} and cj such that

J
it <J[A+Bi7Y) <ezgy Vi1

1=1

Tlims it follows from (34) that

 max  Tog(lkul/a(#)) = a1+ o(1) log(271) < A1+ o(1)) logrn
LzLj<mn
This proves (23) and the corollary follows from Theorem 2. a
Proor oF COROLLARY 2. If ¥ = 0, we observe that

max_log(1/a(x)) + malog ¢ < ma(1+ o(1) o(1C) < Ao(L + o(1))log
This proves (25) and (a) follows from Theorem 3. The case of 0 < v < oo is similar and is omitted.
O

PROOF OF THEOREM 4. Let a, o, 61, 82 and 63 be fixed constants satisfying 0 < 0y < 61 <
a < 0y < 03 < 6* such that w is strictly positive and m times continuously differentiable on [6p, #3].
Define hy, ,(8) = v*8* e /T(u) and

0 i 0<8 < by,
lun(60)/C(8) if 86 <0< 61,
gu,v(e) = hu,’u(e)/c(o) if 6; <0 <0,
lg,u,v/C’(()) if 65 < 0 < 83,
0 if 85 < 0 < 6,
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where 0y, § = 1,2, are (2m + 1)th degree polynomials such that gu. is m times continuously
differentiable. Let go be a probability density in G(a, m, M —€1, wo) for some small positive constant
€1 and define

gon(8) = 9000) + 57 (1) 0unon ()~ 0n80(0)

Un

91n(0) = gon(0) + ;;ﬁ (—%) [sin (une—#) - %;ﬁ] Guna(0);
€ 02 \™ f—-a Won

g2n(0) = gon(0) + ;71-1/—; (_1;;) [COS (un—§;—> - _1;5;] Gunon(0);
where the constants wj, are given by f(f ) gin(0)d0 =1,¢ is a small positive constant, Uy = bplogn,
and v, = u,/a, with
02/(83 — 02) 2 1 1 )
log(fs/62) *log(1+ a2/62) 01/a—1— log(8i/a)’ O2/a—1— log(f2/a)”
The rest of the proof is almost identical to Steps 1 to 3 of the proof of Theorem 3 of Loh and

Zhang (1994). As such it suffices only to verify that g;jn € G(a, m, M,wo) for j = 0,1,2. Define for
0<0<0%,

8o = max{

0) = 320000/ CC).

Then using Leibniz rule we have |||y 2 = €0(1), where the O(1) term does not depend on €.
Since (19) and (20) hold, we observe from Proposition 2 that (3°72, j2h2, ;)2 = eO(1), where

hag.i = J& P(0)Pup,i(6)wo(8)df. Writing
0*
donn = [ COGnOpuni(O)d8, Y3z m,

it follows from Minkowski’s inequality that (_5Zm j2°‘g(2,n’w0’j)1/ 2 < M —e1 +¢0(1). Thus we
conclude that gon € G(a, m, M,wo) for sufficiently small €. Likewise we have gjn € G(a,m, M, wo),
j=1,2. O

PRrOOF OF THEOREM 5. Let g € G(a, m, M, wo) and huy, ; be as in (17). Define for each § > 0,

so(gy = [ i 0SS Bl > (o8 n)B}, if {j:0 << Bayhd, ;> (logn) ™} # ¢,
n 0, otherwise.

We shall first show that

(35) sup{ P, [ < 75(B)] : g € G(a,m, M, wo)} = O(1)(log n) X +FnPe=1,

Since (35) clearly holds when jz(8) =0, it suffices to assume that ji(8) > 1. Let tn;; = {___i tn,

and o(f,; ;) be the standard deviation of fni;. We observe from (29) and the definition of Awg,;
that sup{tn,j iz (s) : 9 € G(o, M, M,wg),0 < j < in(B)} < —(log n)~# /2 for sufficiently large n. Also

Pylny, < 3n(B)]

in(B)—1
< Y Bylingsnie + 2 0(nirine) 2 0
j=0
-7:1.(10)—1 ~E . . _t . ™ a’ 'E N -k t y e
_ Z Pg[ n)J+11.7nSﬁ) na.7+11.7'n,(16) + za*( (An1.7+11.7n(ﬁ)) _- 1) ->_ "'Za* _ 7}1J+11Jn(ﬁ) ]
i=0 o (tn,i+1,32(0)) o(tn,j+1,i4(9) o(tn,j+1,356))

(36) < 8(1+ o(1))Ba(l + 422 )(log n)* sup{0”(tn.j+1.35(0)) : 0 S 7 < Fn(B)}



’
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uniformly over g € G(c, m, M, wp). (35) now follows from (36) and the observation that
Sup{a2(£n,j+17jﬁ(ﬁ)) /S g(a’m7M’ ’UJo),O i< J:L(/B)} = O((log n)ZnZﬁo—l)-

In a similar manner, we have
m—1 )
(37) sup{z thO,ng(ﬁz; < j):g € G(a,m, M,wo)} = o(B,**).
ot

Next as in (31), we observe that

-
By [ Gopa(0) ~ 9(O)Pu(0)dd

B, ) B, m—1
(38) < Ey{n' Y maxlhuosa/a@)l + 3 Bungt Do byt D hu il <3
=007 §=Bn+1 j=(hy+1)vm =1

Conditioning on whether or not ;> j%(8), we observe using (35) that for sufficiently large 3, the
third term on the r.h.s. of (38) is bounded by

(39) MP, 1, < jn(8)] + Ba(logn) ™ = o(B;*),

uniformly over g € G(a, m, M, wg) as n — co. The theorem now follows from (37), (38) and (39).
O
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