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Abstract

Since its inception, the foundations of Bayesian Statistics and De-
cision Theory have been criticised on several grounds, specially due
to the excessive precision demanded to the judgmental inputs to a
Bayesian analysis. This has led to several models allowing for some
incompleteness in those inputs. This paper provides a unifying per-
spective on this problem, giving foundations for decision making under
risk, when there is imprecision in the decision maker’s preferences, and
decision making under uncertainty, when there is imprecision in the
decision maker’s beliefs and preferences.

(KEYWORDS: Statistics, Decision Theory, Bayesian Analysis, Ro-

bustness, Classes of priors, Classes of utilities)

Robust Bayesian Analysis is an increasingly popular topic in Bayesian Statis-
tics, Berger (1994). It stems from the observation that Bayesian analysis
places excessive demands to the judgmental inputs (beliefs and preferences)
of a Decision Maker. Indeed, since its inception, this has been the main crit-

icism to the foundations of Bayesian Decision Theory and Inference, Savage



(1954). Even several criticisms of these foundations on different grounds, see
e.g. Schmeidler (1989), have as starting point the incompleteness of a De-
cision Maker’s judgments. The acknowledgment of this incompleteness has
also led to work in areas such as stochastic dominance (Levy, 1992), sensitiv-
ity analysis (Rios Insua, 1990), error modeling (Lindley, Tversky and Brown,
1979) and alternative models of Decision Making and Inference (Nau, 1992;
Gilboa and Schmeidler, 1993).

There is substantial work providing foundations for some of these mod-
els, in limited contexts, since they assume that preferences are precise, but
not beliefs, or the other way round. For example, Aumann (1962) provides
foundations leading to models of incomplete preferences by classes of utility
functions in finite consequence spaces; Giron and Rios (1980) provide results
leading to models of incomplete beliefs by classes of probability distributions,
when preferences over consequences are precise.

This paper provides a unifying and more general perspective on this prob-
lem. The general theme is that appropriate results from functional analy-
sis together with convenient separability conditions may be used to provide
foundations for the models suggested above. Section 1 discusses in several
directions some basic results in functional analysis. Section 2 deals with de-
cision making under risk; we show how to model imprecision in preferences
by means of a class of utility functions, in a very general context. Section
3 deals with decision making under uncertainty, within Anscombe and Au-
mann (1963) framework. First, we give expected utility representations with
classes of state dependent utilities, and then a representation with classes of

state independent utilities. We address also issues of modeling and updating
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beliefs.

Seidenfeld, Schervish and Kadane (1992) (SSK from now on) and Nau
(1994) provide related approaches to the problem. They obtain a represen-
tation of preferences in terms of a class of expected utilities similar to our
Theorem 2. Our setting is more general in that we allow for continuous
state and consequence spaces. Then, SSK go on to prove that preferences
are represented by a class of probability /utility pairs, where the utilities are
almost state-independent, in the presence of two axioms relating to state-
independent utility. Nau shows that adding the sure-thing principle allows
to represent one of the expected utilities as a probability/utility pair; in or-
der to get a representation with state independent utilities, an additional
condition is required. Our main result is a representation in terms of a class
of probabilities and a class of state independent utilities arbitrarily paired,
obtained with the aid of a separability condition. Qur representation is less
general but more convenient computationally. We are also able to deal with
the continuous case. It also fits better within general approaches to robust
Bayesian analysis commonly proposed, see e.g. Berger (1994).

As usual, given a relation < in a set X, < and ~ will designate, respec-

tively, the associated strict preference and indifference relations.

1 Modeling quasi orders in linear spaces

Most of the results we shall deal with may be framed into the following
lemma. We shall discuss it in detail, specially questions concerning bound-

edness, uniqueness and connections with related results. We sketch the proof.



For a full one, see Rios Insua (1992).

Lemma 1 Let X be a convez set in a normed real space Y and < a binary

relation on it. Then, the following three conditions
Al (X,X) is a.quasi order (transitive and reflezive).
A2. Fora € (0,1),z,y,2€ X, 23y < az + (1 — a)z=ay + (1 — a)z.
A3. Forz,y,z,r € X, (az + (1 — a)y=2az + (1 — a)r, Ve € (0, 1)) =y =r.

are equivalent to the existence of a set W of continuous linear functions w

on'Y such that, Vz,y € X,
=y <= (w(z) <w(y), Yw e W).

Proof. Define E = {z :z=y—=2, s,y € X, z 2y}, S={z:2 =
iy @iz, zi € E, o; > 0}. The closure of S, cl(S), is a closed, convex cone
(in a normed real space). There is a family W of continuous linear functions
w on Y such that 2z € cl(S) < (w(z) >0, Yw € W). Prove now that
for z,y € X, y—2z € cl(F) & =z <X y. Consequently, for z,y € X,
z 23y < (w(zr) Lw(y), Yw e W).

The converse is immediate. 0

Note that the result is a modification of Von Neumann-Morgestern condi-
tions (Fishburn, 1970), in that we do not require the relation to be complete

and we adopt a different continuity condition (A3). Indeed, we easily get:



Corollary 1 Under the conditions of Lemma 1, if, in addition, (X, =) is
complete, there is a function w on X such that Vz,y € X,a € (0,1),

Xy <= w(z) <w(y),
e+ (1—ay) = aw(z)+ (1 a)u(y).
In some applications, we are interested in bounded functionals. Condition

A4 in Corollary 2 is a standard assumption on the existence of best and worst

elements. SSK (1992) derive it from basic principles.
Corollary 2 Under the conditions of Lemma 1, if, in addition,

X is compact, or,

A4. There are z.,z* € X such that z, <z < z*, Vz € X,
then the linear functions w are bounded in X.

In the first case, the w’s are continuous in a compact set X, therefore they

are bounded. Under A4, it is w(z.) < w(z) < w(z*),Vz € X,Ywe W. D

It is also interesting to determine uniqueness conditions of W. By construc-
tion, W is a maximal set. There may be subsets of W representing the same
order. The following result provides relations between classes of functionals

representing <. Its proof is simple.

Lemma 2 Suppose a family W of continuous linear functions represents
(X, X), as in Lemma 1. Then, if W' is another such family, Vw' € W', there
are A1y .., Ay > 0, wy,...,w, € W and 8 such that

w' = Z Aw; + 6.
=1



Note also that if W’ is a family of linear functions representing (X, X) as
above, then [W'] and gen(W’) will generate (X, <), where [W'] and gen(W’)
are, respectively, the convex hull and the set of generators of W".

We conclude this section with two other results leading to the conclusions
of Lemma 1. Their proof is very similar. SSK use a result resembling Lemma
3, with a very different proof, to show the existence of W, in a specific
context. Giron and Rios (1980) and Walley (1991) use, essentially, Lemma
4, in a particular context, to model incompleteness in beliefs by a class of

probability distributions.

Lemma 3 Let X be a convez set in a normed real space Y and <X a binary

relation on it. Then, conditions A1, A2 and

A%’ For {z,},{yn},2,y € X such that z,—z, y,—Yy and T, = Y, Vn, it
s Xy.

are equivalent to the existence of a set W of continuous linear functions w

onY such that, Ve,y € X,
=y <= (w(z) < w(y), Yw € W).

Lemma 4 Let X be a convez, symmetric with respect to 0, set in a normed

real space Y and =< a binary relation on it. Then, conditions A1, A2 and

A8”. For {z,},z,y,z € X such that z,—z and y X z, =X 2, Vn, it is

yXz2z.

are equivalent to the existence of a set W of continuous linear functions w

on'Y such that, Vz,y € X,

=y <= (w(z) < w(y), Yw e W).



Lemmas 1, 3 and 4 differ in the continuity condition, which, in turn, is
different to Von Neumann and Morgestern’s. These continuity conditions are
essentially equivalent if conditions A1, A2 hold and the relation is complete.
This is not the case when completeness does not hold. Note, however, that

A3’ implies A3 and A3”.

2 Decision making under risk

Our first application will be to decision making problems under risk. In
Rios Insua (1992), we provide an expected utility representation via a class
of utility functions, in the simple case. See also related results in Aumann
(1964) and Fishburn (1970, 1982). We shall study here the general case
adopting some boundedness conditions, and a proof based on distribution
functions rather than lotteries (or probability distributions over the space C

of consequences).

Theorem 1 Let C C R, F be a convez set of distribution functions whose
support is compact and contained in C , and includes the set of degenerate

distribution functions. Let <X, be a binary relation in F . Then,
Ui. (F,=.) is a quasi order.
U2. For a € (0,1),F,G,H € F,

FZ,G <= of + (1 —a)H=X,aG + (1 — a)H.

U3. For F,G,H,L € F, (aF+(1—a)G2,aH+(1—a)L,Ya € (0,1])=G=.L.



are equivalent to the existence of a class U of real functions u on C such that
F=<.G <> (/ udF < /udG, Yu € U).

Proof. We are under the conditions of Lemma 1: F is a convex subset of

the normed space F of real fuctions on C, the norm being

[l £ = sup | f(c)l,
ceC

and Al, A2, A3 hold. Therefore, there is a family W of continuous functions
w such that

FL.G < (w(F)<w(@),YVweW),
waF+(1-a)G) = ow(F)+(1-aw(G),

for F,G € F,a € (0,1). We shall prove that w(F) = fudF for some u.

Let us fix w € W. For ¢ € C, define u(c) = w(F.), where F; is the
distribution function degenerate at c¢. Then, w(F;) = [udF,. Let F be the
distribution function associated with a simple probability distribution on C.
Then, F = Y7, p(ci) Fy;, where p(c;) is the probability at ¢;. Due to linearity
of w, |

w(F) = -zn:p(ci)w(Fc,.) = f;p(ci)u(ci) = /udF.
Note now that u is lo::_allly bounded. 'f';lis is an immediate consequence of
the fact that if a,,—1 and ¢,—c¢, since (1 — o) F,,, + an F,— F¢, we shall have
(1 — an)u(en) + anu(c)—u(c). Suppose that F' has compact support K C C.
Then u is bounded in K.
Assume that F' is continuous. For a given n, and z = 1,...,2", let

Ain = {c: (1 —1)/2" < F(c) < ¢/2"} and c;n € arginfec.a,,) u(c). Let F, =
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Y¥ . (1/2")F,,,. Then, by continuity, w(F,)—w(F). Moreover, w(F,) =
Y2 u(cin) /2" = [undF, with u,(c) = ¥F, u(cin)la,,(c), where I4,, is the
indicator function of A;,. {u,} is a sequence of simple functions such that
uy, T u. Therefore, [ u,dF— [udF, and w(F) = [udF.

When F has a finite number of discrete jumps, we may write it as F' =

aFy + (1 — a)F;, where Fj is simple, F; is continuous and « € [0,1]. Then,
w(F) = aw(F) + (1 - a)w(F) = a / uwdFy + (1 — a) / udF,

= / ud(aFy + (1 — a)Fy) = / udF.

When F has a countable number of discrete jumps, a convergence argument

follows easily. ]

The same proof applies in these two cases:

Corollary 38 The result in Theorem 1 holds when ¥ is the set of all distri-

bution functions over C if, in addition,
C is compact, or
Uj. There are F,, F* € F such that F,X,.F<,F*, VF € F.

In what follows, whenever required, we shall write p=<.gq when F,=.F, and
w(p) = w(F,), with F,, F, the distribution functions associated with lotteries
p and ¢, respectively.



3 Decision making under uncertainty

Our second application is to decision making problems under uncertainty,
under Anscombe and Aumann (1963) framework. In Rios Insua (1992), we
deal with this problem in the simple case. Here we shall deal with the general
case, using weaker conditions.

Our first result will be a representation in terms of a family of cardinal
utility functions. The basic elements will be a space S of states; a space
C of consequences, endowed with an algebra B; the set P of probability
distributions over C ; the set G of Anscombe-Aumann acts (or functions
from § into P, so that G = P%); and a binary relation < in G modeling
preferences. Given p € P, we define the constant act p € G, such that
p(s) = p, ¥s € S. In such a way, we assume that < on G induces a relation

=< on P, in a natural way, that is p=q if pIs=<qls.

Theorem 2 Let S be a set, C C R"™, B an algebra over C, and P the set of
probability distributions over (C,B). Let < be a binary relation in G = P5.

Then, the three conditions
V1. (G, =) ts a quasi order.
V2. Fora € (0,1),f,9,h €6, f2g <= of + (1 — a)h=ag + (1 — a)h.
V3. For f,g,h,1€ G, (af + (1 — a)g=2ah + (1 — a)l,Ya € (0,1])=>g=1.
are equivalent to the existence of a class V of functions v on G such that

f2g = (v(f) <v(g),VweV),
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v(ef + (1 - a)g) = av(f) + (1 - a)v(y),
for f,g € G,a € (0,1).

Proof. G is a convex subset of the normed space H = {g : S—AX'}, where
X is the set of additive real functions in (C,B), endowed with the norm
gl = sup,es [l9(s)]| and ||g(s)|| = supcep |9(s)(C)|. The result follows from

Lemma 1. 0

We study now expected utility representations. First, we consider state
dependent utilities, assuming there is an underlying measure y, and under
the additional condition V4. The result is partly based on Fishburn (1970,
thm 13.1), following a suggestion in SSK. Note, however, that we deal with

the more general case of incomplete preferences and infinite state spaces.

Theorem 3 Under the conditions of Theorem 2, suppose that, in addition,

A is a o-algebra on S and

V4. There is a nonatomic finite measure u on A such that, for f,g € G
p(A)=0, f=gon A°=f ~g.

Then, there is a class L of real functions | on S X P such that

f2g = ([ Us, £)duls) < [U(s,9(5))du(s), Vi € £),
whenever f,g are simple Anscombe-Aumann acts.

Proof. G is a convex subset of the space H = {g : S—X}, where X is the

set of additive real functions in (C, B). Consider the equivalence relation ~
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on 'H
fmg < f=gon A% with y(A4) =0.

H/= is a normed space with norm ||g|| = [s||9(s)lldp(s), with g € H/ =,
g € g and ||g(s)|| = supgeg |9(s)(C)|. Moreover, G/~ is a convex subset of

H/~, and the binary relation <’ in G/~
f<'g < I fef, gcgsuchthat f <g,

is well-defined and satisfies conditions A1, A2 and A3 of Lemma 1. Therefore,
there is a class V of linear continuous functions v on G/~ such that f =<’
g < (v(f) <v(g), Yv e V) For f € g, define v(f) = v(f), with
f€f Then f<g < (v(f) <vig), Vv e V). Take a constant
act p € G and define a function v’ as follows: v'(f) = v(f) — v(p), for each
v €V. Wehave f < g <<= (V'(f) < v'(g),Yv € V), v'(p) = 0 and
V(af + (1 - a)g) = av'(F) + (1 — a)v/(g), for a € (0,1), f,g € G.

Given A € A, q € P define u(A,q) = v'(gls + plsc). We prove now
that u(., ¢) is a o-additive function in A, which is absolutely continuous with
respect to . Prove first that u(., ¢) is additive in A. Choose A, B € A and
disjoint. Then,

u(A,q) + u(B,q) = v(qla + plac) + v(¢lp + plpe) — 2v(p) =

v(qlaup + pI(auBy) — v(p) = w(AU B, q).

Prove now that u(.,q) is o-additive. Let {A;}32; be a collection of mutually

disjoint sets in A. Let B, = | JA;, A = | JAi. Then,

qIBn +pIB: w qIA +pIAc,
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since

laIB. + pIBg — (¢1a + pLac)|| = ||(p — ) La\g. || =
[ 1o~ Las,Ndus) = llp—all [, , dus) < u(U 49

Since the functions v’ are continuous, we have u(B,,q) —> u(A, q). Due to
additivity, u(Bn, q) = 37 u(A;, q). Therefore, 3332, u(A;, q) = w(U2, 4;, 9)-
p-absolute continuity of u(.,q) follows immediately.

Then, by Radon-Nikodym theorem, see e.g. Ash (1971),

u(4,) = [ Us,0)dn(s),

for some function [(.,q) in S.
Let f : S—P be a simple Anscombe-Aumann act, i.e., f = >, pila,,
with p; € P and the sets A; forming a measurable partition of S. Then,

n

f + (n - 1)p = Z(piIA.' +pIAf)7

=1
and

n

(1/n)o(f) + ((n = 1)/n)v(p) — v(p) = (1/n)v(3_(pila; + pLsg)) — v(p),

=1

that is

n

v'(f) = D' (pila; + plag)

= ulop) =3 [ Hoopdduts) = [ U, 5(5))duts)

1 =1

k2

[
The extension of the results to, say, continuous acts, require the adoption of

some boundedness condition, as follows:
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Proposition 1 Under the conditions of Theorem 3, suppose that, in addi-

tion:
There are constant acts f., f* such that f, X f X f*, Vf€q.

Then, if S is compact, the conclusion of Theorem 8 holds also for continuous

Anscombe-Aumann acts.

Proof. Before dealing with the proof, we shall provide some é,dditional
facts about functions u(A,q). Assume ¢, — ¢; then, since ¢,1a + plac —
qla + plac, we have u(A,q,) — u(A,q), since v is continuous. Therefore,
4 l(s,qn)du(s) = [41(s, q)du(s). Since this holds VA € A, we conclude that
I(.,q,) = 1(., q), in measure p.

Let f : S—P be continuous. For each s,n define A,(s) = {t : ||f(¢) —
f(s)]| < 1/n}. These sets form an open cover of S: then, there is a finite
subcover {An1,..., Aumn}. Let By = An, Bni = Ani \ Uj;ll By, 1 =
1,...,m,. Choose s,; € cl(By;) arbitrarily and define f, = X%, f(sni)IB,,;
Then, f,—f, so that, by continuity, v'(f,)—v'(f). By Theorem 3, v'(f,) =
[ 1(s, fa(s))du(s). Now, since fu(s) — f(s),Vs, uniformly, I(s, fu(s)) —
[(s, f(8)) in measure.

Then, taking into account the boundedness condition, we may appeal to

an extended dominated convergence theorem so that

[ s, ful))duts) = [ (s, £(s))du(s)

Consequently,
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v(f) = [Us, £(5))du(s)

Combining the two previous results, we may provide a state-dependent utility

representation for a wide class of Anscombe-Aumann acts.

Corollary 4 Under the conditions of Theorem & and the boundedness condi-
tion of Proposition 1, the result holds for Anscombe-Aumann acts which are
continuous in a compact set and simple outside, and for conver combinations

of those acts.

We look now for subjective expected utility representations. First, we
show how to model incomplete beliefs by means of a class of probability
distributions. These are updated applying Bayes’ theorem to each of the
distributions in the class. Our first result models beliefs through a class of
finitely additive probability distributions, with the help of a weak version of
the sure-thing principle (V6) and a nontriviality condition (V5). We may

view (V6) also as a monotonicity or dominance condition.

Theorem 4 Under the conditions of Theorem 2, suppose that, in addition,

A is an algebra on S and there are constant acts p, q such that
Vs. p<gq.

V6. For AABe A, AC B, plyc + ql4 < plg: + qlp.
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Then, if we define,
A= B < plse +qls 2 plp- + qIB,

for A,B € A, there is a set P of (finitely additive) probability distributions
r such that
A=, B < (r(A) <r(B), Vr € P).

Proof. Under the conditions of Theorem 2, there is a family V of additive

functions v such that
A=< B < (’U(pIAc + qIA) < ’U(pIBc + qIB), Yo € V)

Let V' be the set of functions such that v(p) < v(g), which is nonempty, due
to V5. Define V" as follows; for each v € V', define v’ € V" according to
o) = o(p)

v(g) — v(p)

We have, therefore, A X; B <= (v'(plac+ql4) < v'(plp+4qlp),Vv' € V").

() =

Define, for each v’ € V",
ro(A) = '(plac + qla),
and P = {r: r = ry, for some v’ € V"}. Then,
A=B < (r(A) <r(B), Vr € P).
Moreover, Vr € P, and A, B € A which are disjoint,
r(S) =v'(g) =1.
0 = v'(p) < V'(plac + qla) = r(A).

16



r(AU B) = v'(pliauB)- + qlauB) + v'(p) =

v'(plac + qla) + v'(pIpe + qIg) = r(A) + r(B).

A possible criticism is that <, depends on p,q. Ways of overcoming this

include
¢ Add as an axiom a definition of <, independent of p,q such as
plac + qla 2 plpe +qlp <= p'Ipe + q'I4 < p'Ip-+ ¢'I,
whenever p < ¢, p’ < ¢/, similar to Savage’s (1954) fourth axiom.

¢ Admit that, due to incompleteness in judgments, the above condition

might not hold and modify the definition of <, as follows:
A=y B <> (plgc+qla 2 plgc + ql,Vp,q: p < q).

This second alternative requires slight modifications in the proof of

Theorem 4.
¢ Replace V6 with a stronger dominance condition such as
f(s) 2g(s),Vs = f<yg.

Schmeidler (1989) shows that, in the presence of completeness, this
condition is equivalent to the sure-thing principle. See our discussion

below on this principle.
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Since information evolves in time, we need a procedure to update beliefs.
By imposing an additional condition, we may do it applying Bayes’ formula

to each distribution in the class. B|D will represent event B, given event D.

Proposition 2 Under the conditions of Theorem 4, let D € A such that
0 <¢ D. Suppose that, in addition,

V7. For B,C € A, B|D=,C|D <> BnD=,CnD.

Then, there is a family P of probability distributions r, such that

B=,C <= (r(B)<r(C),VreP),
B|D=,C|D <= (r(B|D)<r(C|D),¥re P:r(D)>0).

Proof. Build P as in Theorem 4. Then,
B|D=X,C|D <= BNDX,CND < (r(BND)<r(CNnD)VreP)

< (r(BNnD)/r(D) <r(CND)/r(D),VreP:r(D)>0) <

(r(B|D) < r(C|D),Vr € P : (D) > 0).

Clearly, those r € P such that r(D) = 0 are irrelevant in the case above,
since r(BND) =r(CND)=0. Also, {r € P:r(D) > 0} # 0, since § <, D.

We might wish to have a class of o-additive probability distributions
representing =,. Proposition 3 deals with such question. Its proof follows

combining ideas from Theorems 3 and 4.
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Proposition 3 Under the conditions of Theorem 2, suppose that A is a
o-algebra on S and (G, =) verifies V4, V5 and V6. Then, the probability
distributions v in P modeling <; are o-additive, and absolutely continuous

with respect to .

Once solved the issue of modeling beliefs, we may go back to subjective
expected utility representations. Note first that the representation in The-
orem 3 uses the underlying measure u for each v'. Under the conditions of
Proposition 3, we have a natural family of probability distributions modeling

beliefs and we may attain subjective (state dependent) expected utilities.

Corollary 5 Under the conditions of Theorem J and Proposition 3, there is
a class W of pairs of probability distributions r and state dependent utilities

u(.,.) such that

f2g = ([ uls, f6)dr(s) < [us, g())dr(s), Yir,u) € W),
for acts f, g as in Theorem 3.

Proof. Let p,q be as in Theorem 4. Suppose that v(p) < v(g). Define
r as in Theorem 4; we have r(A) = [, m(s)du(s). If m(s) # 0, define
u(s, £(5)) = I(s, f($))/mls). Tt m(s) = 0, define u(s, £(5)) = I(s, /(5))
If v(p) = v(q), define r = u/p(S), u = 1. 0

We may consider whether adding a sure-thing principle to axioms leads
to state-independent subjective expected utility representations. Proposition

4 below provides a partial answer to our enquiry, in the sense that expected
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utilities are represented as convex combinations of state independent ex-
pected utilities. Actually, Nau (1994) proves that, in the finite case, one of
the expected utilities in gen(V'), see Theorem 2, is state independent and
that to attain separability of all generators we have to add a stronger condi-
tion. SSK (1992) provide an almost state-independent representation, in the
presence of a sure-thing principle and a stochastic dominance condition.
For this result, we assume finite set of states and space of consequences.

We need first a definition of a non-null state.

Definition 1 State s € S is non-null if
P < pls\(sy + 4l
whenever p < q.

Proposition 4 Assume the conditions of Theorem 2, with finite S and C,

the nontriviality condition V5 and a sure thing principle like:
Ifh € G,p,q € P are such that
hls\(sy + plisy 2 hls\(s) + ¢l
for s non-null, then
hIs\(sy + plsy X hls\(sy + qlin
for any other s’ non-null.

hold. Then, there is a class of expected utilities representing the order and
those expected utilities can be represented as convexr combinations of state

independent subjective expected utilities.
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Proof. Under the conditions of Theorem 2, and S being finite, a standard
argument, see Kreps (1988), leads to the state-dependent expected utility
representation
f=2g = QD u'(s,9)f(s)(e) <D0 u"(s,0)9(s)(c), Vv € gen(V)),
s€s ¢ ses ¢
where f(s)(c) is the probability of obtaining the consequence ¢ under state s
for act f, and u”(s, c) is the utility of consequence ¢ under state s, associated

with expected utility v. Assume that s,s’ are non-null. Then, for h € G

Zu (s,e)p(c) < Zu (s,¢)q(c),Yv € gen(V)) =

hls\{sy + plisy = hls\(sy + ql(sy <
hlssy + Ly = hlsyey + Iy <=
O_u¥(¢,e)p(e) < Z u”(s', ¢)q(c), Vv € gen(V)).
Thus, first and last inequalities define quasiorders in P, <, and =<y, which
coincide. We appeal now to Lemma 2 and its ensuing discussion. Fix a
non-null state sg. Then, each u¥(s,.) may be written
u”(s,c) Zavz 'uz 307 _I_b'u
=1
Therefore, we may write, for v € gen(V), after some algebra,
Z(ZG’ . Zuuz S0, C +st,
s€S =1 sES
so that
fRg &=
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(ZZa“ Zu“ s0,¢)f(s)(c) <D Za’” Zu’” (s0,€)g(s)(c), Vv € gen(V)).

s€S i=1 s€S i=1

Define u®(sg,c) = u(c), &Y = ¥ ,csa and pi(s) = a¥?/)\?, since we may

assume that A} > 0. Then, interchanging the summations, we get
fRg < (Yvegen(V),

SN Y wils) > (@) (s)(o <N T uis) ) S u(E)a(s) ()

=1 SES =1 SES

If required, we may normalise the weights A?. a

Nau (1994) shows that, for one v € gen(V), we may assume that m, = 1,
but this does not happen in general.

We shall provide a state independent representation assuming a strong
separability condition (V8) below. We use the concept of probability distri-
bution z(f,r) induced by a probability distribution r over ($,.4) and an act
f € G defined by

2(£,r)(C) = [ F(s)(C)dr(s),

with C' € B, see Fishburn (1982). Essentially, we convert the decision making
problem under uncertainty into one under risk, by appealing to the class
of probability distributions deduced from the preferences, as in Theorem
4. Since there is imprecision about beliefs, we associate with each act f
under uncertainty the corresponding set of acts {z(f,r)},cp under risk. A
minimal requirement for consistency of preferences under risk and under
uncertainty seems, therefore, (V8) below. Note also that, in decision analysis

and statistical decision theory, it is often the case that beliefs and preferences
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are assessed separately. Therefore, the previous model is adequate for that
case. It also corresponds to general approaches to robust Bayesian analysis
outlined in Berger (1994). Also, note that for a constant act f = plg,
z(f,r) = p,Vr € P, so that (V8) introduces no inconsistency in this case.
Similarly, when f = plac + qla, z(f,7) = (1 —r(A))p+r(A)g, so, again (V8)
introduces no inconsistency with <,. Moreover, for an Anscombe Aumann
act f such that f(s) is degenerate for every state, also called pure horse
lottery, we have z(f,r) = r o f~! and (V8) is completely natural. We should
mention that (V8) is redundant when preferences are complete, assuming the
sure-thing principle. Nau’s (1994) example suggest that this is not the case

in the incomplete case.

Theorem 5 Let GC G such that its elements are convexr combinations of
functions which are continuous in a compact set and simple outside it. Sup-
pose that (G, <) satisfies the conditions of Theorem 4 and let P be the cor-

responding family of probability distributions. Suppose that, in addition, for
f9eG

V8. fjg Aand (JZ(f,T)j:E(g,T’),VT € P)
Then, there is a set W of functions w such that
f'<g<:)(/w drs)</ g(s))dr(s),Vr € P,Yw € W).

Proof. Let W be as in Theorem 1, with =<, the restriction of < to the set
of constant acts in G. We have f<Xg < (w(z(f,r)) < w(z(g,r)),Vr €

P,Yw € W). Suppose that f is a simple Anscombe-Aumann act, i.e., f =
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Z?:l piIAi' Thena
z(fyr) =Y r(A)pi

=1

and

w(e(f,7)) = w3 r(49p0) = o r(Au(p) = [ w(f(s)r(s).

Let f be continuous in K C S (compact) and simple in K¢. For z € K,
define

An(z) = {y € K : ||f(z) = f(y)Il < 1/n}.
These sets form an open cover of K: there is a finite subcover A,(zn1), ...,

An(zpm, ). Let Bpy = Ap(zn1) and By = An(zn:) \ Uj-;?l B,;. Define

fo =S5 F(v)In, + e,
=1

where y; is an arbitrary element of B,;. Then, f,—f, z(f.,r)—z(f,r), and

W(z(fn,r))—w(z(f,r)). Moreover,

w(a(fuyr) = [w(fals))dr(s).

We apply now the dominated convergence theorem. First, due to continuity,
w(fa(s)) — w(f(s)),Vs. Moreover, w is linear and continuous, therefore
it is bounded, and since ||f.(s)|| < 1, Vn,s, the function g(s) = |[w|| is a

dominating integrable function. Thus,

[ wlta()dr(s)> [w(f(s)dr(s).

Therefore,

w(f) = [w(f()dr(s)
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Similarly, for convex combinations of these functions. O

Of course, as in Theorem 1, we may associate to w € W the correspond-

ing u € U so that

/w(f(s))dr(s) =/S/cudf(s)dr.

We conclude this section with two corollaries:

Corollary 6 Under the conditions of Theorem 5, if the restriction of < to

the set of constant acts is complete, there is w such that

f29 = ([ulfs)dr(s) < [wlgls))dr(s),¥r € P)

Apply Corollary 1, Theorem 1 and Theorem 5. O

Essentially, this is the type of representation in Giron and Rios (1980) and
Walley (1991), and the type of model used in conventional robust Bayesian
analysis, see Berger (1994).

Corollary 7 Under the conditions of Theorem 5, if <, is complete, there is
r such that

F2g = (Julf()dr(s) < [wlgls)dr(s),Yw e W)

Apply Corollary 1, Theorem 4 and Theorem 5. O

This is, essentially, the type of model used in stochastic dominance prob-

lems, see Levy (1992).
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4 Conclusions

We have provided axiomatic foundations to model incompleteness in a DM’s
judgments by means of a class of utility functions and a class of probability
distributions, arbitrarily paired. We have analysed the cases of decision mak-
ing under risk and decision making under uncertainty. In this latter case, we
have considered both state-dependent and state-independent utility models.
With our results, we unify and support many streams of recent research, spe-
cially in the areas of robustness and sensitivity studies in Bayesian Statistics
and Decision Theory. We believe that a main consequence of our approach
is that there should be a shift from ’conventional’ robust Bayesian computa-
tions to the type of computations discussed in Rios Insua and Martin (1994).

Of course many issues remain unsolved. For example, it would be inter-

esting to provide similar foundations in Savage’s framework.
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