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1. Introduction.

Let X = (X{)o<:<1 be a standard Brownian motion, and let F be an absolutely
continuous function with locally square integrable derivative f. Our purpose is to prove

the following extension of Ité’s formula:

(1.1) F(X)) = F(Xo) + / f(Xs)dX8+-;-[f(X),X]t.
0
where
(1.2) [f(X), X]e = lim > {f_(Xt1+1) F(Xe)H Xy, — Xt,)
t,GDn,t <t

- denotes the quadratic covariation of the processes f(X )and X. In partlcula.r we are going
to show that the quadratic covariation exists for any locally square 1ntegrable function f,

as a limit in probability along a sequence of partitions D,, of the time interval [0,1].
~ If f is absolutely continuous with derivative f’ then the quadratic covariation is given
by
. t .
(13) X [ s,

and so equation (1.1) reduces to Ité’s formula in its classical form. If f is locally bounded

then we have

gy [£(X), X, / f(@)da L2

- where Lg denotes the local time of Brownian motion at leval a, and so (1.1) reduces to the

formula of Bouleau and Yor [1].

The quadratic covariation in (1.2) admits the representation

) ) Xle= [ foex, - [ joax.

-~ interms of a backward and a forward stochastic integral, and this is the key to our existence
result. In fact, the existence of quadratic covariation will follow from an approximation

- of these integrals by forward and backward sums. In section 2 we motivate our approach
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by looking at the discrete version of (1.1) along a fixed partition. In section 3 we prove
the basic existence result for the quadratic covariation [f(X, -}, X} in the general time
dependent case where f(z,t) is locally square integrable in z and satisfies a mild continuity
condition in ¢. In general, the quadratic covariation will not be of bounded variation. But
we show that it is always a process of zero energy, i.e., a process with continuous paths'of
zero quadratic variation. In section 4 we derive our It6 formula (1.1). Thus, the process of
zero energy appearing in Fukushima’s decomposition of the Dirichlet process F(X) ( [4] Ch.
5) is identified as a quadratic covariation. Our formula also shows that the Stratonovich
integral can be defined on the same level of generality as the Ité integral, without additional
restrictions on the function f. In section 5 we extend these results to the time dependent
case where F'(z,t) is absolutely continuous in z and where the derivative f(z,t) satisfies

our conditions for the existence of [f(X,),X]. In this case the It6 formula takes the form

(16)  F(Xut) = F(Xo,0)+ / F(Xoy )X, + IF(X, ), X, + / F(X.,ds)
0 0

where

n—o0

4
(17) / F(Xs’ds) = lim F(Xt;'+1ati+1) - F(Xti+1’t‘:) .
) 0 ti€Dg, ti<t '

exists as a limit in probability. If F(z,-) is absolutely continuous in ¢ with derivative

Fy(z,-) then the last term in (1.6) takes the usual form

(1.8) F(Xs,ds) = [ Fy(X,,s)ds.
[ o]

In the case where f(r,t) = I[a(t),loo) (z) for some continuous function a(-), the existence
of the quadratic covariation [f(X,-), X] amounts to a construction of the local time of
Brownian motion at a continuous curve, and (1.6) may be viewed as a time dependent

version of the Tanaka formula.

The idea of using time reversal and the duality (1.5) for extended versions of the

Stratonovich integral and of Tt&’s formula also appears in recent work of Lyons and Zhang
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[7] and of Russo and Vallois [9]. Section 5 shows that, in contrast to the Dirichlet space
techniques used in (7] and (4], our approach admits a straightforward extension to the
time dependent case. Extensions to higher dimensions and applications to the existence

of solutions of Stratonovich stochastic differential equations will be discussed elsewhere.



2. Preliminaries

Let F be an absolutely continuous function of the form

@2.1) P& = FO+ [ " )y

where f is locally square integrable. In order to motivate our approach, let us first see how
the structure of our Itd formula (1.1) appears in discrete time. Let D, denote a partition

of the form 0 =ty < ... < tx = 1 and let us write |Dp| = max |t;+1 — t;|. An increment

i Xe;+1
(2.2) F(X,,,) - F(X,) = / F@)dy

i

can be written as

Xe;+1
(23) f(Xti)(Xti+1 - Xti) + /X (f(y) - f(th))dy

i

and also as

, ' : b ,
(24) f(Xt;)(Xt;+1 —Xti)+{f(Xti+1)_f(Xt_i)}(Xti-i-l ,—Xti)+A (f(y)—f(xti+1))dy-

i

Averaging both expressions and summing the increments up to time t € D,,, we obtain

t; €Dy
t; <t

(25) FX) = F(X0) = Y f(Xe)(Xuuys — Xe) + 3QF + B

with discrete quadratic covariation

(2'6) ] Q? = Z {f(Xt.H) - f(Xti)}(Xti+1 - Xt‘-i)

and remainder terms

: Xet 1 ‘ .
@7 B= Y [0 - S0+ F Ky

t; €Dy X i
t; <t

The first sum in (2.5) is the discrete analogue of the stochastic integral in (1.1), and Q7

is the discrete version of the quadratic covariation in (1.1). Let us now pass to the limit

5 .



e sk T kit
3

. along a sequence of partitions Dy, such that |D,| converges to 0. Let us say that a sequence -

of processes Y™ = (Y*)o<:<1 converges uniformly in probability (in u.p.) to some process -
Y = (Yi)o<:t<1 if the supremum norm of the difference converges to 0 in probability. The

proof of our 16 formula (1.1) will involve convergence in u.p. of the following terms:

: t

(2.8) lim Z F) K = Xe) = [ xax,,
(2.9 lim QF = [f(X), X}s

(2.10) B nllrx;oR;‘ =0.

(2.11) Remark. Ineach casé, convergence in u.p. is known to 1}01(:1 under certain regularity
conditions on the function f:

1) For f € C the convergence in (2.8) holds in u.p.; ¢f. [8, p.57) _
2) For f € C! one can proceed in a strictly pathwise manner; cf. [3]. In fa.ct a.].most all |
Browman paths have the property that the discrete measures |

Z (Xt|+1 Xt )26%
t;€D,

converge weakly to the uniform dlstnbutlon on [0, 1] But for any such path one can venfy
the following facts, without any further use of probabilistic arguments: Writing ;

(2'12) . - : . Q? = Z f,(&)(XtHl - Xti)z

t;€Dp
t; <t

for some &; between X, , and X,, we get convergence of (2.12) to the covariation

(213 IA(X), X], = /0 £/(X,)ds.

Moreover, the stochastic intégra.l in (2.8) can be defined pathwise as the limit of the sums

in (2.8), and the remainder terms in (2.10) converge to 0; see (3] for the proofs.
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3) For a function f € C? the convergence of the remainder terms R} to 0 can also be seen

from the trapezoidal rule

° 1 1 3 g
(214 J 1@ - 0@+ 16Dy = - =6 -arr(0)

This implies

n 1
(215) |R ‘ S E max'f”(Xt)l Z |X¢i+1 - Xtils

t; €Dy
t; <t

hence convergence to 0 for any continuous path with bounded quadratic variation.

" The main point of this paper is to show that no such regularity conditions are needed
and that each of the three convergence statements (2.8) - (2.10) holds in u.p. for any

locally square integrable function f. Since we can write

-(2'16) Qr = Z f(Xti+1)(Xti+1' - Xti) - Z f(Xti)(Xti+l - Xt.)

t,'F_Dn t;€By
<t te<t

the existence of the Quadratic covariation in (2.9) and its reprfsentation (1.5) as the dif-
ference of a backward and a forward stochastic integral will both follow from the discrete
approximation (2.8) of the forward integral ahd from a corresponding approximation of
the backward integral by the first sum in (2.16).. Let us now recall the definition of the
stochastic backward integral.

‘We assume without loss of generality that our Brownian motion X = (X £)0<t<1 I8

-~ defined .as the coordinate process on the canonical path space Q=C [0 1] with Wiener

measure P. We will have need of the time reversal operator (RX )¢ = X1-: on Q. Note

- that the law P* of RX is the law of the Brownian bridge process with initial distribution
-.-N{0,1) and terminal value 0. Thus, the coordinate process X is a semimartingale under

 P* with decomposition

t
| . _X,
(217) Xt = XO -+ Wt+/ 11— sds
0



where W is a Brownian motion with respect to P*. For a measurable function f(z,t) on
R x [0,1] such that

1
(2.18) B[ 1700 1= 9) 41501~ 9 oLy g

- 5] / (F2(X005) 415X, 5))

the stochastic integral

s] <

t t gt .
(2.19) /0 F(Xo,1— 5)dX, = /0 F(Xs,1— 5)dW, + /0 f(Xs,l—s)li(Sds

is well defined for any ¢ € [0, 1] with respect to P*. Thus, the following backward integral

) t 1 v
(2.20) /0 F(Xo, 8)d" X, = — ( - s_)dX3> oR.

is well defined in terms of Wiener measure P.

3. Existence of quadratic covariation

Qur purpose is to show that the quadratic variation

31 P00 Xe= Jim 57 (i) = S Ky = X)

£ €Dyt <t

exists as a limit in u.p., beyond the usual cases where f(X) is a senuma.rtmgale In order'
to illustrate the basic idea we begin with the followmg preliminary result:

-~

- (3.2 Proposition. Let f be a continuous function. Then the quadratic covariation

[f(X), X] ezists as a continuous process, and it satisfies

t. t ’

(3.3) £, X = [ fX)aX, - /0 f(X.)dX,.
: 0
Proof. Since X is a semimanmgale and f(X) is an adapted continuous process, we know
that
' ' . ¢ '
(34 dm 3 )X —Xe) = [ 7Gx,
| t:€ Dy t: <t 0



with convergence in u.p.; cf. [7, p. 57]). On the other Land we have
hm Z f(th+l)(Xtt+l Xt ) - hm{ Z f(X1 t|+1)(X1 —tiy1 T Xl ti )}OR

c,eD,. t;€Dy
e <t e <t

=n—+oo-{ Z fXS;)(Xs.+1 X‘,‘)}OR

4;€EDy
"+1>1 t

Since the time reversed process X o R is also a semimartingale (a.s shown by (2.17)), we

have convergence in u.p. of the above sums (again by [8, p. 57]) to

1 t
(] xyixyer= [ socax,
1—t 0 :
hence ' 7
, t
(3.5) dm ST K ) Ky~ Xe) = [ KX,
t:€Dn,t:<t 0 )
If we now subtract (3.4) from (3.5) we obtain the existence of [f(X), X ] as a limit of sums
in u.p., as well as its 1dent1ﬁcat10n as the difference of two stochastic mtegrals Since both

stochastic integral processes are continuous, so also is [f(X), X].

(3.6) Remark. The process [f(X), X], while continuous a.s., need not be of bounded
variation as it is in the usual theory when f is taken to be C1. Indeed if f is continuous
but ﬁot of bounded variation, then its primiti{re F is not the difference of two convex
functions, and thereforé F(X) is not a semimartingale. Theorem (4.3) will show that
F(Xy) —%[ f(X),X]: is a local martingale. Thus, [f(X), X] cannot have path of bounded
variation if f is not a function of bounded variation. However, theorem (3.45) will show

that the quadratic covariation is always a process of “zero energy”.

Let us now show that the quadratic covariation [f(X), X] exists for any f which is
locally square intégrable. The idea is quite simple: As in the proof of (3.2), it is enough
to. show that the forward and the backward stochastic integral can both be approximated
by thé simple sums in (3.4) and (3.5), without any additional smoothing. The existence

of quadratic covariation then follows by subtracting these sums.
(3.7) Proposition. 1) Let f be a square-integrable function on R'. Then

. t
(38) nlglgo Z f(Xti)(Xti-i-l - Xt.') = / f(Xs)dXS
’ 0<t; €Dy, t: <t 0
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in L2(P) and

n— oo

t
(3.9) fm, 3 K )X = %) = [ XX,
t€D,t: <t 0
in L1(P).
2) If f is locally square integrable then convergence in (8.8) and (3.9) holds in u.p., and

so the quadratic covariation ezists in u.p. and satisfies

(3.10) [F(X), X], = /0 FX)d" X, /O F(X,)dX,.

Instead of proving proposition (3.7), we pass directly to the time-dependent case and -
prove the corresponding general version. Let f(z,t) be a measurable function on R'x[0,1].
The following proof shows that the analogue of part 1) holds if f(-,t) is square integrable
and weakly continuous in ¢ as a map from [0,1] to L?(R!). The analogue of part -2)
involves weak continuity of f(-,¢) as a map from [0,1] to L?_(R!) in the sense that the
integral [ f(z,t)g(z)dz is continuous in ¢ for any square integrable function g with compact
support. ‘ | | |

(3.11) Theorem. Suppose that f(-,t) -is locally square integrable and that
(3.12) | f(,t) is weakly continuous in ¢

as a map from [0,1] to L}, (R) . Then the quadratic covariation

@13) X Xe=lim Y (X ta) - F(Ke )} (K — Xe)
) - €D, 0<t:<t

erists as a limit in u.p., and
t ¢, -

(3.14) F(X,.), X] = / F(X,, 8)d" X, — / £(X,, s)dX,.
0 0 ,

Proof. By the usual localization argument, it is enough to consider the case where f(-, ).
is square ihtegrable and weakly continuous in ¢ as a map from [0, 1] to L?(RY). It is also

enough to consider the case ¢ = 1.
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1) Consider the processes ¢ and ¢, defined by

(3.15) $(w, t) = f(Xe(w),t)

and
(316) . ¢n(wa t) = Z f(Xt'i (w)7ti)I(ti,ti+1](t)'
O<t;eD,

In order to prove

(317) | hm Z f(Xt y i )(Xtt+l Xt ) - /1 f(XS)s)dXs,

O<tg€D

in L2(P), we have to show that

1 1
16 — Bullz = Ef / (6(0,8) — (e, £))2d]

converges to 0. Let us use the notation

2
pi(z) = Jgﬁ exp(- 7).

Then |
' 1 - 1 '
(3.18) 191 = 51 / Pona= [ [ P onEie at
1
1 20 VoL 2r = 1 F12
< = /0 / £(a, s dt = 113
and - '
l6all2 = / PP (2)de (tin — )
' 0<t‘€D
fz(x t‘)dz (tz tt)a
T2, / vl
hence
(3.19) i a3 < 71

11
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a

due to the continuity of [ f(z,t)%dz in t. Now take a continuous function gon R x [0,1]
with compact support such that ||g — fll2 < € and define the corresponding processes P
and ¥y, as in (3.15) and (3.16). Then

16— dullz < 6 — b2 + 1% — Bullz + [ — bulla.

Since lim ||%) — ||z = 0 by continuity of g and by Lebesgue’s theorem, the two preceding -
estimates (3.18) and (3.19) applied to f — ¢ imply

lm |6 ~ gnfl2 < 2]1f — gll2 < 2,
hence
(3.20) lim 6 - gull2 = 0.
2) The convergence

(3.21) P i) (K — Xe,) = / F(Xyy5)d'X

t.eD,.,t,<t

in L1(P) for t = 1 is equivalent to the convergence

. ) v 1 ’ »
(3.22) i 32 fXul ) Ky = Xe) = [ F(Xe 1= 00,

0<t;€D,

. in LY(P*), where P* is the dlstrlbutlon of the time reversed process X o R. Recall the

decomposmon (2 17) of X under P*, and let us first check that

(3.23) lim Z F( Xty 1 = ) (Wigr — W) ==/ f(Xe, 1 - t)dW,;
" 0<t:€Da | - °

in L2(P*). But (3.23) is equivalent. to the convergence of

B U1 -0 Y [~ 8Os

0<t; €D,

':E[/; [f(Xs, s) — Z f(X8i+1 ,‘3,-4_1)[[3‘.’3‘.+1)'(s_)]2ds],

1>8:4 1€D,
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to 0, and this follows as in part 1). In order to prove (3.22) it remains to show, due to
(2.17), that

tipy

im Y f(Xy,1 t)/ Xs ds—/ f(Xe,1 - dt
™ 0<t; €D, -
in L(P*) or, equivalently,
8i41 1 X
(3.24) lim ) Xosins Sit1) / 22 ds = / f(X,,s) 22 ds

1>8;41€D,

in L}(P). For a measurable function 1{(w,t) on € x [0, 1] we introduce the norm

1 .
(3.25) =B e Z g

. For the fgnction ¢ defined in (3.15) we get
1
Iolh = E( [ (o, o) 52! ds
1
< / —E[ﬂ(xs,s)le[xﬁ]
0
- / = £z, pale)da)? stds
< () /0 ([ Pe9antsias= 1

Simila,rly, we see that

¢;(’w, 8) = . Z f(XsH.l)3i+1)I[si,3i+1)(s) .

1>s;11€Dy
satisfies
' | x|
6= Y B sl [ Za
1>9;41€D, 85
. Si41
<Gt ¥ ([ Pasnaisat [ s
i 1>s;€D, 83
1.1 ~1 .
5(.2_7;) f(z, s,+1)dx s,+ls (Si+1—si),
‘ 1>s €D,
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hence

1
(3.26) W i < F [ ([ Fesatstas = i

Now we choose a function g € C(R! x [0, 1]) with compact support such that lg—flli < €
and conclude as in part 1) that

(3.27) | lim ¢ — gl = 0.

This implies (3.24), and so we have shown (3.21).

3) Subtracting (3.17) from (3.21) we obtain (3.13).

Even though f(X,-) is in general not a semimartingale, the existence of quadratic

covariation {f(X,-), X] implies the ezistence of the stochastic integral

(3'28) /(; Xsd._f(Xsa S) = nILHOIO Z Xti{f(Xti+1vti+1) - f(tht‘i)}

t; ED,, ,0<t; St

and the following iﬁtegmtion by parts formula:

(3.29) Corollary. Under the assumptions of theorem (3.11) we have

(3.30) f(Xt,t)Xt=f(Xo,0)Xo+/0 X df(X,, s) + /0 F(Xa, $)dXs + [F(X, ), X]e.

Proof. This follows from the relation
f(Xt¢+u-ti+:1)Xt,-+1 = F (Xt 8:) X, = Xe, (F( Xty tir1) — F( X, 1))
F F X t3)) Kes — Xe)
+ (f(X;i+1,ti+1) —= (Xt ) (Xeiyy ~ Xi,)

and the com}ergence in (3.17) and (3.13) .

(3.31) Remarks. 1) If we average (3.17) and (3.21) and use (3.14) then we obtain

] 1
(332) nll{%o Z E{f(Xti+17ti+1) + f(thti)}(Xti+1 - Xti)
. tiEDn)tiSt

= ‘/O‘t f(Xsas)dXs + %[f(X, -)’X]t‘
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in u.p.. This will be used in our definition (4.18) and (5.12) of the Stratonovich integral.
2) Suppose that f, converges to f in the norm | - |2 of (3.18). The proof of (3.11) shows
that the corresponding forward and backward stochastic integrals converge, and so (3.14)

implies
(333) [f(Xa ’)1X]t Zn%[fn(xv '),X]t-

3) If f(-,t) is absolutely continuous with derivative f;(-,t) then

(3:34) 1,0, = [ (X 9)ds
0

For a smooth function f € C'(R! x [0, 1]) this is well known (cf. [8, p. 75]) and can be
checked directly from definition (3.13). The extension of (3.34) to the absolutely continuous
case follows by approximating f with smooth functions f,, in the norm |- ll2 and applying

the preceding remark; see the proof of (4.3).

(3.35) Example Let a(t) denote a continuous function on {0, 1]‘. The function

_ (336) : f(zylt) = I[a(t),oo) (l‘)

satisfies the conditions of (3.11), and so the (madratic covariation in (3.13) exists. Let us
define the local time of Browm'ah motion at the continuous curve a(-) as the continuous

process L*(") given by
(3.37) | LY =[f(X,), X]..

In order to motivate this definition, we take a sequence (e,) decreasing to 0. By (3.34) the

function
1 el
fnl(z,t) = % / L(a(s)—en,a()+en) (V)Y
n JO .
has quadratic covariation

1 1] .
[fn(X,), X]e = -26_,-,/(; I(a(S)—en,a(3)+sn)(Xs)ds-

15



But f,, converges to f in the norm || - || used in (3.18), and so (3.33) implies -

a) _ p. 1
(338) Lt() = lim — 0 I(a(s)—en,a.(s)+e,.)(Xs)ds

n—oo 2¢,

in u.p.In particﬁlar we can conclude that the continuous process L*() has increasing paths,
and that the corresponding random measure on [0, 1] is a.s. concentrated on times where

the Brownian path intersects the given function a(-):

1
(3.39) / I Xota()y e Li) = 0.
0

If the function a(-) assumes a constant level a then

(f(Xti+11ti+l) - f(Xiuti))(Xt;H - Xti) = !Xt;+i - Xt-;IIC'-n,e

where .
Cn,i = {Sign(Xt¢ - (Z) 7‘4 Sign(Xti-H - a’)}

with t; € D, denotes the set of paths which exhibit a crossing of the level a if checked
at times ¢; and ;7. Thus the existence of the quadratic covariation (3.13) implies the-
identity

(3-40) L(tl = ILIEO Z lXti+1 - XtiIICn.-i
’ tieDn,tiSt
for the local time of Brownian motion at a constant level a.

" Let us now return to the general situation of theorem (3.11) and let us show that

quadratic covariation is a continuous process of zero energy:

(3.41) Definition. For a process Y = (Y:)o<t<1 with continuous paths we define the

quadratic variation

(342) Yh=lm Y (e -Y)?

n—00

L eDﬂ;ti S"'

whenever this limit exists uniformly in probability. If Y:1=0 P- a.s..,vt'hen Y is called

a process of zero energy.

16



(3.43) Remarks. 1) Any process with continuous paths of bounded variation has zero
energy.

2) A local martingale of the form.

t
n=/ﬂ&mu;
0

has quadratié variation
t

(3.44) [Y], = / fA(X,,s)ds.
0

(3.45) Theorem. The quadratic covariation [f(X,.), X)] is a continuous process of zero

energy.

Proof. 1) The quadratic covariation Y; = [f(X, -}, X]¢ is of the form
(3.46) Y. =v® 4y
with

¢ t
O = [ 190K, ¥ =~ [ X, 9%,
0 ' ' 0
The process Y has quadratic variation
¢ .
(3.47) Y®), = / £(X,, 8)ds.
. 0 ' .
‘Since
1
Y= [ a1 sax,
1—t |
has quadratic variation .
)= [ £1-5)ds
1-t
under P*, the process Y1) = Y* o R has quadratic variation

1 . t
(3.48) ' YD) ={ | f2(Xs,1—s)ds} o R= [ f3(X,,s)ds
1—/t' | ' 0/ '

17



under P. Thus, the decomposition (3.46). implies the a priori estimate
¢
(3.49) Y] <2(YW) + [YP),) < 4. / FA(X,, s)ds
‘ 0

if, for the moment, we define [Y], as the lim sup of the sums in (3.42).

2) Take a sequence of functions f, € C 1(R! x [0,1]) such that f, converges to f in the

norm || - |2 used in (3.8). The process

Y™ = [fa(X, ), X]: = / (Fu)e(Xe, 5)ds

has continuous paths of bounded variation and therefore has zero energy. Evaluating the

squares in the definition (3.42) for [Y — Y], and using Cauchy-Schwartz, we see that
(3.50) | [Y - Y™ = [y,

Applying our a priori estimate (3.49) to the difference f — f.., we get
. ) | . N
(3.51) Yl =1 =YL <4 [ (7= 270X, 5)as.
: : 0

But the expectation of the last term converges to 0 due to our estimate (3.18). Thus we
have E[[Y];] =0, hence [Y}; =0 P-—a.s.

4, An'Extensio_n of Ité’s Formula

In this section we prove the time independent extension (1.1) of It8’s formula. For

f € C! the quadratic covariation takes the well-known form

(1) X1 = [ Fc

which appears in It6’s formula,
: ’ t 1 [t
(42) PO = (o) + [ 1eax,+ 5 [ rxas
0 ‘ 0
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for F € C? and f = F'. Thus, the following formula is an extension of [t&’s formula to the

case where f is locally square integrable:

(4.3) Theorem. Let F be absolutely continuous with locally square integrable derivative
f. Then

(44 F(X) = F(Xo) + [ f(X)dX, + 31700, Xl

Proof. The quadratic covariation process [f(X), X] exists as shown in Proposition (3.7).
By the usual localization argument we may assume that f is square integrable. Take a

sequence f, € C! such that f, converges to f in L2. The estimates in the proof of (3.11)
show that

t t
(45) im [ fax)ax. = [ ee)ax
noe Jo 0

in L?(P) and |

. t t
(4.6) lim [ fu(X,)d" X, = / F(X,)d X,
in Ll(P). By (3.10) and the usual It6 formula (4.2) applied to the functions
(4.7) F@=FO+ [ )y
we obtain

200, Xl = lim 2im(x), X)

- Jim (R0~ (o) - [ Fu(X)aX,),
and this is equal ;co _ )
F(X) - Foxo) - | f(xax,,
again by (4.5).

(4.8) Remark. For t € D, we can write

' ' Xe;41 .
@9)  FX) - FO0) = 3 ()X = X+ [ (70) - (X))

t;€Dp th-
t; <t
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P <

and also

x‘i+1
@10) PO - PO = 3 1K) (Kiers — Xu) + [ 00 - £ ).

t; €Dy X i
<t

Equation (4.9) together with (4.4) and (3.8) implies

X‘H—l |

(4.11) S0, X)e = m Y /X (Fy) - F(Xo)dy.

On the other hand, equation (4.10) together with (4.4), (3.9) and (3.10) implies
Xeg

(112) SU(X), X, = lim Z / ' Kea) = F)

If we subtract (4.12) from (4. 11) we obtaln the rema.rka,ble relation
Xeoy

(413 I3 [ ) - M) + f Ky =0

t;€Dp tg
t; <t

uniformly in probability for any loca.lly square integrable function f

(4.14) Example. Let us return to example (3 35) in the _case where the functlon a()

assumes a constant level a. The functlon f (z) = Ijp,00) () is the derxvatlve of the absolutely

- continuous function F(z) = (z - a)+ Due to (3.40), our Ito formula (4.4) takes the form

. t
(4,15) . (Xi—a)t = (Xo -~ a)+ + /I[a,oo)(X,,)an +_§L§
: 0
where
(416) Lta = nlglolo Z ,Xt¢+1 - Xti lICn.i' )
: ‘ ti€Dn,t; <t R

| ‘Comparing (4.15) with the well known Tanaka formula (see, e.g., 8] p.169), we see that

L{ coincides with Lévy’s local timé at level a. Note that (4.10) and (4.12) 'mely the

alternative descriptions

. 1 _
(4.17) =L{ = lim E | X, — allc, ,
' 2 n_’w_ £} .3
- €D <t . .
= lim lXti+1 - a’IICn.i'
n—oo -
tieDn;tiSt .-
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K. Ité ([5], [6]) proposed defining the Stratonovich integral by the following formula
(4.19) when the quadratic covariation [f(X), X] exists (see also [8, p. 216}). Proposition
(3.7) shows that this definition makes sense for any locally square integrable function I,

and (3.31) shows that the Stratonovich integral can be described as well as a limit of sums:

(4.18) Definition. For any locally square integrable function f the Stratonovich integral
is well defined by

1)

(419 | sxeax.= [ secax + Jis00,x1,

and it can be computed as

@) [ ftyedx = tm 3 L)+ FKue)}H ey - Ko,

With this definition, the Ito formula (4.4) can be reformulated as:

(4.21) Corollary. For an absolutely continuous function F with locally square ih,tegmble'

derivative F' = f,

(4.22) F(Xy) = F(Xo) + /0 F(X,) 0 dX,.

Note that this is an improvement upon [5] and 8, Pp. 222-224], where F is required
to be C2. Note also that fot f(Xs) 0 dX, need not be a semimartingale, but that it is a

, Dirichlet process in the sense of the following remark.

(4.23) Remarks. 1) In order to compare (4.3) with the extension of Itd’s formula obtained
by Bouleau and Yor (see [1] or alternatively {7, p. 179]), let L2 denote the local time of
our standard Brownian motion X at level a. Let F be absolutely continuous with a locally

bounded Borel measurable derivative f. Using a vector valued measure approach Bouleau

and Yor show

(4.24) F(X,) = F(Xo) + /0 sxaax.—3 [ .z
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Comparing the Bouleau-Yor formula (4.24) with our formula (4.4), we see that if f is Borel

and locally bounded, then

(4.25) [F(X), X}, = - /R f(a)daLs

2) A general result of Fukushima in the context of Dirichlet spaces implies that, for an
absolutely continuous function F on R! with locally square integrable derivative f, the

process F(X) is a “Dirichlet process®, i.e., F(X) can be represented as the sum

(4.26] FOX) = PO+ | FX)AX, + A,

of a local martingale and a continuous process A of “zero energy”; cf. [4, Ch. 5]. Thus,
our It6 formula (4.4) together with theorem (3.45) identifies the process of zero energy A

in the Fukushima decomposition (4.26) as a quadratic covariation:
o . ‘
(427 Ac = S[7(X), X]..

Note that in our approach the process A is computed directly on the paths of Brownian
motion, without any smoothing of the function f as it is usually done in the theory of

Dirichlet spaces.

The following section shows that, in contrast to the Bouleau-Yor formula (4.24) and
to the Fukushima formula (4.26), our version (4.4) of the It6 formula for locally square

integrable functions f admits a straightforward extension to the time dependent case.

5. The time dependent case

Let f(z,t) be a measurable funcﬁon on R! x [0,1] such that f(-,t) is locally square
integrable and assume that

(5.1) f(,t)  1is weakly continuous in

- as amap from [0,1 to L. Under this assumption, the existence of quadratic covariation

(5'2) [f(X7 ')1X]t = f}glgo Z {f(_XtH—l ) ti+1) - f(th ti)}(XtiH - Xti)

tiEDn ,tist
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was already shown in the proof of (3.11). Let us now establish the corresponding time

dependent version of Itd’s formula:

(6.3) Theorem. Suppose that F(z,t) is absolutely continuous in = and that the partial
derivative f(-,t) = Fo(-,t) satisfies the preceding assumptions. Then It6’s formula holds

in the form

(54)  F(Xu.t) = F(Xo,0) + f f(Xs,s)dX3+%[f(X,-),X]t+ / F(X,, ds)
0 0

where

n—o0

¢
(5.5) / F(Xeds)= lim Y F(Xu,,, tir1) ~ F(Xups,t)

1] tieD'ntiSt . »
exists uniformly in probability.

(5.6) Remark. If F(z,-) is a,bsolutely-_ continuous in ¢ with derivative Fi(z,-) and if
(5.7) Fi(-,t) is weakly continuous in t

as a map from [0, 1 to Lj,, then the last term in our It formula (5.4) takes the usual form

(5.8) o | / F(X,, ds) = / Fy(X,, 5)ds.
. 0 0

Proof. 1) Let us write

F(X.,t) ~ F(Xo,0) = A? + B}

where

A? = Z F(Xt,'+1)ti+1) - F(Xti+1’ti)
t:€ D, <t

and

B? == Z F(Xt,-+1)ti) - F(Xti,t'i)'
t:€Dn,t:<t :
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By the time-homogeneous It6 formula (4.4),

F(Xe, 1) = F(Xeots) = / F(Xet)dX, + = ([f(Xt)X]:m [£(X, t:), X]o.)

tita tig1

=%{/ f(Xt,t.-)d‘Xt-i-/ f(Xt,ti)dXt}

t;

due to (3.10). But under our continuity assumption (6.1), the arguments in the proof of

(3.11) show that the sum B} of these terms converges to

—0Q0

t t )
lim BP = %{ / £(X,, 8)d X, + / F(X,,5)dX,}
0 0

_ / 7o, 9)dX, + LF(X, ), X),
J o

uniformly in probability. Thus, also the sum A} converges uniformly in probability, and S

/ F(X,,ds) = lim A7
= F(X;,0) — F(Xo,0) - / F(Xs,8)dXs — E[f(Xa s Xl

This shows that the limit in (5.5) exists and that (5 4) holds. i
2) In view of (5.8) suppose that F(z,) is absolutely continuous in ¢ with derlva,tlve Ft (z, ).
For t € D, we have ‘

tita

¢ :
A;‘: Z i/ Ft(th‘+;1s)ds=‘/ Ft(xgn)’s)ds
.0 .

t,‘EDn,t,’St t;

~ where X = Xty for s € (t;,t;11). Under an additional continuity assumption on F; we

see that

lim A7 = / Fi(X,,s)ds
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uniformly in probability, and this implies (5.8). For example, the arguments in the proof
of (3.11) show that it is enough to assume condition (5.7).

(5.9) Remarks. 1) Our It6 formula (5.4) shows that the process
t

(510 Pt~ [ Flds)  0st<)
0

is a Dirichlet process in the sense of (4.26.). Under the additional assumptions in (5.6) the
second term has continuous paths of bounded variation. In this case the process F(X,, t)

is itself a Dirichlet process.

2) In analogy to the previous section we see that, under the assumptions on f in (5.3), the

Stratonovich integral is well' defined by

G [ isedx,= [ 069X+ 51069, X,

and that it can be computed as

t .
612 [ f9)0dX, = lim 3 LU+ F Ky i — Xo).

t;€Dyp
1<t

Thus, the It6 formula (5.4) takes the form
| t ¢
(5.13) F(X:,t) = F(Xo,0) + / f(Xs,s) 0odX, + / F(X,,ds).
- o 0

3) The time dependent version of the argument for (4.12) shows that

- X“'+1
619 GPEAX= S [ K~ 10,00

t;€Dqn
<t

(5.15) Example. Let us return to the situation in (3.35) where f(z,t) = Ija(z),00) () is the
partial derivative F; of the function F(z,t) = (z — a(t))*. Itd’s formula takes the form

(.16) (X, ~a)* = (X0 ~aO)* + [ ot (X)X, + 3120+ [ F(X,, ).
0 0
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In the special case where a(-) is a function of bounded variation we get

t

t
(5.17) / F(X,,ds) = — / Tiato) 00y (Xs)da(t),
0

0
and so (5.16) reduces to

t
(5.18) (X — a(t))* = (Xo - a(0))* + / Ta(s),00)(Xa)d(X — a(")) + %L;‘“.

0
In this special case, the process X — a(-) is a semimartingale, L*() may be viewed as
the local time of this semimartingale at level 0, and (5.18) is the corresponding Tanaka
formula. Thus (5.16) is an extension of the Tanaka formula to the general case of a
continuous function a(-).

As a special case of (5.14) we obtain the following identity for the local time at a

continuous curve, in analogy to (4.17):

: 1 a0y . -~
(5'19) ' ELt( ) = nh_{rgo Z |Xti+1 - a(ti)lICn.i
‘ C €D, <t - .

where

Cﬂ,‘i = {Sign(xti - a(ti))' 7é Sign(Xti+l - a(ti))}
denotes the set of paths which e_xhibit a crossing of the level a(t;) if checked at times ¢;
and t;41.
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