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ABSTRACT

We give nontechnical proofs of the predictability of natural processes and the Funda-
mental Theorem of Local Martingales. Some arguments are shortened through a novel
use of an elementary inequality known as “Chebyshev’s Other Inequality.”

1. INTRODUCTION

Stochastic integration has become an important tool in the applied sciences and
engineering. Familiar examples of this are the famous Black and Scholes option pricing
formula and the continuous-time version of the Kalman filter in control engineering. As
the techniques of stochastic integration become more integrated into science and engi-
neering curricula, it becomes important to develop approaches to the subject matter
that encompass the most important ideas for applications with a minimum of math-
ematical background. Such an approach was set out in [12], where a deep and fine
analysis of martingales in general was avoided. Our goal in this note is to further
simplify the development presented in [12].

When P.A. Meyer proved what is now known as the Doob-Meyer decomposition
[7, 8], he used the notion of a natural process in order to obtain uniqueness of the
decomposition. Natural processes were indeed natural, as they arose intuitively from
a limiting argument applied to Doob’s discrete-time decomposition. Doléans-Dade
showed in 1967 [3] that an increasing integrable cadlag process is natural if and only if
it is predictably measurable. This gave rise to elegant, but much less intuitive, proofs of
the Doob-Meyer decomposition using the dual predictable projection (see, e.g., [2, 6]).

In [12], the idea of natural processes was resurrected as part of an attempt to keep
proofs technically simple and intuitive. A simple proof that a bounded natural process
is predictable ([12], p. 121) circumvented the need for some technical theorems of Meyer
that were used in Doléans-Dade’s proof [3]. There does not, however, appear to be a
simple way to extend this proof from bounded to integrable natural processes.
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In this note we give a simple proof that natural processes are predictable. The key
idea of our proof is an elementary inequality known as Chebyshev’s Other Inequality.
Our approach may be explained most easily in the context of the following theorem of
Meyer:

Theorem 1 (from VIL.T49 of [9]): Let A be a natural process. Then
(P1) AAr = 0 a.s. for any totally inaccessible stopping time T', and
(P2) AAr is F(T—)-measurable for any predictable stopping time T'.

(See Section 2 for notation and terminology.) We take the following course. In The-
orem 4 below, we show that if an adapted, cadlag, finite-variation process A satisfies
conditions (P1) and (P2) then it is predictable. Then we use “Chebyshev’s Other
Inequality” to prove that a natural process satisfies conditions (P1) and (P2). This
proof, which may be seen as an alternative to Meyer’s proof of Theorem 1 or to Doob’s
proof that “natural implies predictable” (Theorem 2.IV.7(a3), pp. 486-487), has two
attractive features. First, it does not require A to be increasing. Second, it does not
require an approximating sequence of continuous processes for A. The second point is
what makes both Meyer’s and Doob’s proofs technical and unsuitable for the devel-
opment in [12]. While such approximating sequences are needed in the proof of the
Doob-Meyer decomposition, in an elementary development it is desirable to be able
to set aside the details of the proofs of basic theorems as one progresses. Another
feature of the approach presented here is that it leads naturally to a simple proof of
the Fundamental Theorem of Local Martingales [11, 12].

2. BACKGROUND

We presuppose the material of [12] up to Section 3 of Chapter 3. Here we give some
standard setup, definitions, and results.

We are given a filtered probability space (€, F, (i, t > 0), P), satisfying the usual
hypotheses. An adapted cadlag process A with Ao = 0 is said to be natural if it is of
integrable variation and if for every bounded martingale M we have E[A, M loo = 0,
where [A, M] denotes the quadratic covariation of A and M. By an FV process we
mean a cadlag process with finite variation on compacts. A process X is said to be
predictably measurable (or simply predictable) if the function X(¢,w): Bt x @ — Ris
measurable with respect to the o-field on R* X () generated by the a.s. left-continuous
adapted processes.

Recall that a cidlag process X is called a quasimartingale if E(Xo) < 0o and the
supremum over all partitions 0 = to < t; < t; < ... < #; of the quantity

B (z B (X (tira) — X(23) | f(t.-))l)

=1

is finite. Here is Rao’s theorem on the decomposition of quasimartingales:



Theorem 2 (Rao). A quasimartingale X has a unique decomposition X = M + 4,
where M is a local martingale and A is a natural process.

If X is also an FV process, the process A of Theorem 2 is called the compensator of X.
We will use the following lemma on continuity of the compensator of certain simple
processes that jump only at totally inaccessible stopping times.

Theorem 3. Let T be a totally inaccessible stopping time, and let V' be a bounded
F(T)-measurable random variable. Let U; = V<) and let U = M + A be the de-
composition of U given by Theorem 2. Then A is continuous.

This is a minor extension of Theorem IIL.11 of [12]. The proof is a bit technical, and
involves energy inequalities.

3. PREDICTABILITY OF FV PROCESSES

Theorem 4 below is an elementary condition for predictability of FV processes. It
is a consequence of Proposition 7.7 of Métivier [6]. In the proof presented here, we will
need a simple result on predictable stopping times.

Proposition 1. Let S and T be predictable stopping times, and let R be defined

by
Rl S il S#T
1o if S=T.

Then R is again a predictable stopping time.

Bass [1] gives an elementary proof of this, and points out the following useful conse-
quence.

Proposition 2. Let (T},) be a sequence of predictable stopping times. Then there
exist another sequence of predictable stopping times (S,) with disjoint graphs, such
that the union of the graphs of the T},’s is the same as the union of the graphs of the Sy’s.

Let us write AX(t) for the jump in a cadlag process X at time t. Then we have
the following theorem, which echoes the theorem of Meyer quoted in the introduction.

Theorem 4. Let A be a FV process. Then A is predictable if
(P1) AAr = 0 a.s. for any totally inaccessible stopping time T', and
(P2) AAr is F(T—)-measurable for any predictable stopping time T'.

Proof: Let A be a FV process satisfying (P1) and (P2). In the proof, we carefully
exploit the elementary fact that the pointwise limit (in ¢ and w, except for an evanescent
set) of a sequence of predictable processes is predictable. We will not comment further



on evanescent sets in the proof.

We write A* for the process formed from the jumps of A of magnitude greater than
1/k:

Af = Y AAJganl>1/k)-
0<s<t

Thus A — A* has no jumps of magnitude greater than 1/k. Since Ais FV, A— A¥ con-
verges as k — oo (for all ¢,w) to an adapted continuous process, which is predictable
by definition. (That A* is adapted is elementary; see [9], IV.44.) Thus to prove that
A is predictable, it is enough to prove that A* is predictable. Let (T5,) be the sequence
of jump times of A* in increasing order. Since the jump of A at time T, is nonzero
on the the entire set (T, < 00), (P1) implies that T is accessible. Let (Tyk) be an
enveloping sequence of predictable stopping times for T;,. By Proposition 2 there is a
sequence of predictable stopping times (S,) with disjoint graphs such that the union
of the graphs of the T;’s (over n and k) is the same as the union of the graphs of
the S,’s. As AF is then the sum of the processes AA¥(S,)I(s,<t), to show that it is
predictable it is enough by (P2) to show that the process VI(s<y) is predictable for S a
predictable stopping time and V € F(S—). Since such a process is a limit of a sequence
of processes of the same form with V bounded, we can assume that V is bounded. Let
(R,) be a sequence of stopping times announcing S. Let V, = E(V | #(R.)). Then
V., — V by martingale convergence and the fact that F(S—) = V F(R,). Thus VI(s<,
is the limit of the left-continuous adapted processes V,I(g,<y). It follows that VIis<y
is predictable. This completes the proof. a

4. THE MAIN REsULT

The main contribution of this note is a simple proof of the following theorem. The
proof of Lemma, 2 below is a little long, but the idea is very elementary and so perhaps
a simpler proof along the same lines will be found.

Theorem 5. For A natural, the conditions (P1) and (P2) are satisfied. Thus A is
predictable.

Our proof is based on Chebyshev’s Other Inequality [5]. More precisely, it is the con-
dition for equality that we need. One version of this inequality is

Lemma 1 (Chebyshev’s Other Inequality). Let X be an integrable random
variable, and let F' be a bounded nondecreasing function. Then

E(XF(X)) 2 E(X)E(F(X)). (1)
Moreover, equality holds if and only if F(X) is a.s. constant.

Proof (following [5]): Let X1, X» be i.i.d. with the same distribution as X. Because
F is nondecreasing, (X1 — X2)(F(X1) — F(X2)) 2 0. Take expectations on each side
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of the inequality and multiply out to get (1). Equality in (1) forces the product to
be zero a.s. which forces F(X;) = F(X3) a.s. since F is nondecreasing, which in turn
implies that F(X) is a.s. constant. O

Inequality (1) says that X and F(X) are nonnegatively correlated for F' increasing.
We need a version of Lemma 1 for conditional expectations. The extension of the in-
equality (1) to (2) below is immediate for finite o-fields G, and martingale convergence
gives the general case (at least for G countably generated). The awkward part of the
extension is in proving the condition for equality, and so we take a different approach

to the proof.

Lemma 2 (Conditional expectation form of Lemma 1). Let X be an inte-
grable random variable, and let F' be a bounded nondecreasing function. Let G be a
sub-o-field of F. Then

E(XF(X)|G) 2 E(X | G)E(F(X)|9) a.s. (2)
Moreover, equality holds if and only if F(X) is G-measurable (up to a null set).

Proof: Suppose F is right continuous. Since replacing F in (1) by oF + 8 with
a > 0 and B € R yields an equivalent inequality, we suppose w.l.o.g. that F is in fact a
distribution function. Expand the probability space so that we can assume that there
is a random variable Y with distribution function F' that is independent of F. Let us
write F' to denote the expanded o-field. Analogously let G’ be the o-field generated by
G and Y (i.e., the smallest o-field containing G with respect to which ¥ is measurable).

Then we have
XIix>y) 2 YIix>y) and XIix<y) < YIix<y).

Take conditional expectations with respect to G', writing W for E(I(x»y) | ') and
noting that E(X | ') = E(X | G) a.s., to get

E(XI(XZY) | ¢)>YW and E(X | G) — E(XI(XZY) | g’) <Y(1-W) a.s. (3)

Multiply the first of these inequalities by 1 — W and the second by W, and subtract

to get
E(XIix>y) |G > E(X | G)W a.s.

Taking conditional expectations given G, noting that G C G, gives
E(XIixsv) | 6) 2 E(X | G)E(Iix>y) | 9) a.s.

Now

E(Ixsy) | 6) = E(E(Ixzyy | F) | G) = E(F(X) | §) a.s.,

and similarly

B(XIxsy) | 6) = E(XE(Ixsy) | F) | §) = E(XF(X) | §) a.s.

5



Substituting these expressions into the previous inequality gives (2).
Suppose now that we have equality in (2). On the set (W > 0) we must then have
a.s. equality in the second inequality of (3), but this implies that

E((X — Y)I(X<y) I g’) =0 a.s. on W > 0.

This in turn implies that on the set (W > 0) we must have P(X <Y | G') = 0,
or equivalently W = 1, a.s. We conclude that W is an indicator function, and since
W = E(Iixs>y) | '), we must have W = [(x5v) a.s. But since W is G’-measurable, it
follows that the event X > Y differs by only a null set from some element C of G'. For
this C' we have
PC|F)=P(X2>2Y |F)=F(X) a.s.

But since C is in G’ and Y is independent of F, the function P(C | F) is G-measurable,
and it follows that F(X) is G-measurable as required.

If F is not right continuous then it may be expressed as the sum of a right-continuous
function and a left-continuous function. The general result follows through a similar

treatment of the left-continuous part. ]

One final lemma concerning martingales and stopping times will be needed in the
proof of Theorem 5. It is well known (see [10], for example), but we provide a proof
for the reader’s convenience.

Lemma 3. Let T be a stopping time, and let Y be a bounded F(T')-measurable
random variable. Let Z denote Y — E(Y | F(T-)), and let M; = ZI(7<s). Then M is
a cadlag bounded martingale.

Proof: That M is cadlag and bounded is obvious. To see that it is a martingale,
let B € F,, and suppose that ¢ > s. We must prove that E(M;Ig) = E(M,Ig). We
have

E(MIp) = E(ZIir<yIp) = E(ZIx<s)Ip)+E(ZLs<r<18) = E(ZLi1<5)IB) = E(M,1p).

The next-to-last equality is because E(Z | F(T—)) = 0 a.s., and the event
(s<T<t)yNnB=(T>s)NB—-(T>t)NnB

is in F(T'-). o

Proof of Theorem 5. Let A be a natural process. We must prove that A is
predictable. Since a natural process is an FV process, we may use Theorem 4. We
treat the two conditions in turn.

Proof of Condition (P1): Let T be a totally inaccessible stopping time. Let F' be a
bounded nondecreasing function on the reals, and let V = F(AA7). Let U and M be
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as defined in Theorem 3 for this T and V, but denote the compensator of U by B here
to distinguish it from the given natural process A. Thus U = M + B. By Theorem
3 the martingale M is continuous except for a jump of size V at T. Let M™ denote
the martingale M stopped when its magnitude first reaches or exceeds n. Then, like
M, M™ is a martingale and is continuous except for a jump at time T' of magnitude
V,, = V1, where I, is the inducator function of the event that the magnitude of M
has not reached n before time T'. Naturality of A then gives E[A, M™] = 0 since M™
is bounded. But by elementary calculation (see [12], Section II.3)

[A, M"] = AATAM} = (A A7)V,

Now we take the limit as n — 0o, observing that V,, — V a.s., to conclude by dominated
convergence that E[(AAr)V] = E[AATF(AA7)] = 0. The choice F(z) = sign(z)
implies that E(|AAr|) = 0, and it follows that AAr =0 a.s.

Proof of Condition (P2): Let T be a predictable stopping time. Let F' be a bounded,
strictly increasing function, and let X denote AAr. Let Y = F(X), and let Z and M
be as in Lemma 3 with this choice of T and Y. As M is a bounded martingale and A
is natural, we have E[A, M],, = 0. Since M has only one jump, at time T, it follows

that [A, M]o = XZ, and so
E{X[F(X) - E(F(X) | F(T-)) ]} = 0. (4)

Consider inequality (2) with F(T'—) playing the role of G. Equation (4) implies that the
unconditional expectations of each side of (2) agree, and so we must have equality a.s.
in (2). Lemma 2 now tells us that F(X) is F(T'—)-measurable. Therefore X = AAr is
also F(T—)-measurable, since F was chosen to be strictly increasing. This establishes

(P2). o

It is pleasing that conditions (P1) and (P2) are established in a similar way: by
constructing a martingale that allows us to extract information from the condition
E[A, M] = 0. Theorem 5 is one half of the following theorem, which states the equiv-
alence of the concepts of naturality and predictability for processes of integrable vari-
ation. It is an immediate consequence of Theorem 5 and Theorem III1.23 of [12].

Theorem 6. Let A be an adapted cadlag process of integrable variation with
Ap = 0. Then A is natural if and only if it is predictable.



5. THE FUNDAMENTAL THEOREM OF LOCAL MARTINGALES

Our proof of this basic result follows Jia-an Yan’s [11], as presented in [12]. Several
technicalities may be bypassed when Theorem 5 above is on hand.

Theorem 7 (The Fundamental Theorem of Local Martingales). Let M be
a local martingale. Then M is the sum of a local martingale N having bounded jumps
and a local martingale L of finite variation on compacts.

Proof: Suppose w.l.o.g. that My = 0. By stopping, we can further suppose w.l.o.g.
that M is a uniformly integrable martingale. Let # be a given positive constant. We

set

Ci= Y [AM,|Ijam,i>p)-

0<s<t
We show that C is locally integrable. Define

R, =inf{t : C;>nor |M| > n}.

Then |AM(R,)| < |M(R.)| + [M(R.—)| < |M(R,)| 4+ n. So C(Ry) < C(Bn—) +
|AM(R,)| < |M(R,)| + 2n, which is in L'. Since R, 1 oo, C is locally integrable. By
stopping, we can now further assume w.l.o.g. that C is integrable: E(Cs) < oo.
Now define B by
By= ) AM,Ijam,|>p)-
0<s<t

In fact, C is the total variation of B, and, since it is integrable, it is elementary that
B is a quasimartingale. Therefore B has the decomposition

B=L+A,

where L is a local martingale and A is a natural process. Since |B;| and |A;| are both
bounded by the total variation of B, namely Co (Theorems IIL.7 and IIL.8 of [12]),
which is integrable, it follows that the local martingales L = B — A and

N=M-L=(M-B)-A (5)

are in fact uniformly integrable. We have identified the required decomposition M =
N + L. L has integrable (and therefore finite) variation.

It remains only to show that the jumps of N are bounded. Let T' be any stopping
time. If AAr = 0 a.s. then |ANr| < B. This is because of (5) and the fact that the
jumps of M — B are bounded by § in magnitude. Suppose on the other hand that
P(A) > 0 where A = (AAr > 0). Let R = Ty, which is to say that R =T on A and
R = oo elsewhere. R is a stopping time as A € F(T'). Decompose R into its accessible
part R; and its totally inaccessible part R,, with R = Ry A R;. Since A is natural, it
cannot jump at a totally inaccessible time by Theorem 5, whence R; = oo. Let T be a



sequence of predictable stopping times enveloping R;. It suffices to show that AN (Tw)
is bounded by 28. We show that in fact ANg is bounded by 243 for any predictable
stopping time S. Let S be predictable, and let (S,) be a sequence of stopping times
announcing S. Then we have

5 (M1 U #(50)) = lim BN | 7(5.)) = fim N(S.) = N(S-),

n=1
so that E(ANs | F(S—)) = 0. It follows that

ANs = ANs— E(ANs | F(S-))
— A(M — B+ A)s— E(A(M — B + A)s | F(S-))
= A(M - B)s— E(A(M — B)s | F(S-)) + AAs — E(AAs | F(S-))
A(M — B)s — E(A(M — B)s | F(S—)).

The final equality is due to Theorem 5 (P2) and naturality of A. Thus AN is bounded
by 28, since |A(M — B)| is bounded by B by construction. This implies that all the
jumps of N are bounded by 28, and completes the proof. ]

6. REMARKS ON ACCESSIBLE STOPPING TIMES

In [12], p. 122, the reader is referred to Doob [4], pp. 483487, for a proof of what
is here Theorem 5. Unfortunately, there is an error in the last step of that proof. The
error is in the claim that, for T' an accessible stopping time, the process t — Ijz,00)(t)
is predictable. To draw this conclusion, T' must itself be a predictable stopping time.
The error appears on pp. 430-1 and 487 of [4].

Here is a classic example. Let T be a random variable taking values 1 and 2 with
equal probability. Let X () = Ii7,00)(%), t > 0, and equip the process X with its natural
filtration. Then 7 is the jump time of X, and is thus a stopping time. It is accessible,
since T is either 1 or 2, and constants are predictable stopping times. To see that T
is not predictable, let S be a stopping time with S < T a.s. Then P(S < 1) > 1/2,
and so for some a < 1 we have P(S < a) > 0. But the event (S < a) is in F,, which
is the trivial o-field for @ < 1. Therefore P(S < a) = 1. It follows that there cannot
exist and announcing sequence S, for T, and so we conclude that T is not predictable.
That the process X is not predictable may be see by showing that it is not natural,
by Theorem 6. To this end, let M be the martingale M(t) = (2T — 3)Ij1,00)(t). Then
[X,M] = —1/2 # 0, and so X is not natural.

We remark that accessible times that are not predictable rarely arise naturally
and are of little interest in themselves. In fact, they are times of discontinuity of the
filtration ([9], VIL.T45). They present a technical problem that must be surmounted
in proving results such as Theorem 5.
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