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Abstract

When sampling from finite populations in practice, random samples from the whole
population are rarely used, due to either the high cost involved or the gaining in
information derived from more efficient designs. Bayesian hierarchical models are
a natural framework to model the non-randomness in the sample and have been
widely and successfully applied towards this end. This paper concentrates on the
implications that the design has on the inferences about some characteristics of the
finite population, and in a critic comparison among some usual designs.
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1. Introduction

A most standard assumption in many statistical inferential processes is that data con-
stitute a random sample of the population of interest. This is not so in the scenario
of sampling from finite populations, in which non-random samples are widely used. A
very interesting context in which non-random samples arise, that we shall not be treat-
ing in this paper, is that of non-randomness due to selection bias (as in Bayarri and
DeGroot(1992)[1] and West(1994)[6]). Also, there are instances when the lack of a well
defined sampling frame forces the inferences to be based on samples selected somehow
haphazardly, and we treated those elsewhere (Bayarri and Font(1994)[2]). In this pa-
per we simply concentrate in the most traditional and familiar alternatives to random
samples, that is, in stratification and cluster sampling.

In a very broad and general sense, stratification is usually sought out, normally with
the aim of increasing precision by isolating populations thought to be quite different
among themselves; standard stratification is by sex, age, type of habitat, ...etc. On the
other hand, clusters are usually encountered, not specially desired, but used because they
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generally provide a lot more data at a very low additional cost; traditional sampling
clusters are households, schools, ...etc. Broadly speaking, the way one thinks about
strata is as theirs being some few subgroups of the population, large in size (relative to
the size of the finite population), relatively homogeneous within each stratum, and quite
heterogeneous accross strata. Clusters brings the idea of small groups, with elements quite
similar to each other within each group, the hetereogeneity accross groups being very large.
When comparing inferences drawn from a random sample from the finite populations to
those based on a stratified or cluster sample of the same size, it is generally perceived that
an eflicient stratified sample can provide much more information than the random sample,
which, in turns, is perceived as being more informative than a cluster sample of the same
size (although, of course, a large part of the cluster sample data have been collected
basically for free). These intuitive perceptions can in fact be shown to hold when data
is analysed from a classical, randomization based (or model assisted), approach to finite
population sampling (see, for instance, Cochran(1977)[3]). We have not seen anything
similar from the prediction (or model based) approach. This was, in fact, the motivation
of this paper. We shall show that the common notions that a stratified sample is “good
” and a cluster sample “bad ” when compared to random samples, can also be shown to
hold in the prediction approach. We shall take a Bayesian point-of-view throught.

This is meant to be only a short note, and we have organised it in three sections, of
which this introduction is Section 1. In Section 2 we formulate the problem and remind
the results for simple random sampling. In Section 3 a particular two-stage exchangeable
model is used to compare random samples with stratified and cluster samples; results are
particularized in the usual scenarios for strata and clusters.

2. Formulation

We assume the finite population consisting of N values y;,ys,...,yn of some univariate,
continuous characteristic of interest. According to the model-based, or prediction, ap-
proach to finite population sampling, y1,yz,...,yn are treated as the realized values of N
random variables Y3, Y2,..., Yy, whose joint distribution, usually referred to as superpop-
ulation model, becomes the natural link between observed and unobserved Y’s. (We shall
use Y to generically denote any of the random variables in the population.) We assume
that, in the superpopulation model

E(Y)=0y, Var(Y)=o2. (2.1)

The natural, and distinctive, goal of statistical analyses of finite populations is to
make inferences (predictions) concerning a characteristic, T', of the population, based on
a sample of n elements selected from it. We shall (without loss of generality) denote the



data by y1,¥2,...,Yn, and assume that the characteristic of interest T is the mean of the

population: T =Y = z—'fvl-ﬁ Since

S0 3+ BN, Yildata) _

E(Y|data) = N
= f7,+ (1 - f)E(V.|data),
Var(Y|data) = (1 — f)?Var(Y,|data), (2.2)

N
where f = % is the sampling fraction, and Y, = % is the mean of the unobserved
Y’s, we shall restrict ourselves to consideration of E(Y,|data) and Var(Y,|data). (Notice
more generally that Y is simply a lineal transformation of Y, so if the distribution of ¥
is desired consideration can also be restricted to deriving the distribution of Y,.)
When simple random sampling (SRS from now on) is used, the Y;’s are generally
assumed to be ii.d. with a N(fy,o%) distribution. Hence, a superpopulation model

frequently used with simple random sampling is

Ylay,O'?/ ~ NN(Gle,a?,IN), (23)

where Y = (11,Y5,...,Yn), 1y is the vector of ones, Iy the identity matrix, and Ny
reffers to N-variate normal.

In many situations, instead of SRS we may decide to stratify or might have to use
_cluster sampling. Both situations are naturally modelled by using a two-stage hierarchical
model (Scott&Smith(1969)[5]). Accordingly, assume that we have K groups (strata or
clusters), with M; elements in group ¢, ¢ = 1,2,..., K. We have to change the notation
and let Y;; denote observation j in group :. A natural hierarchical model to consider
would then be

KjNN(ai,O'?), t = 1,2,...,K, j= 1,2,...,Mi
0; ~ N(0,02), o ~m(a}), i=12,...,K.

i

(2.4)

But if we are, say, in the design stage, and we are trying to decide whether to use
SRS or to stratify, or whether or not to use a cluster sample, then (2.3) and (2.4) should
at least be approximately equivalents (they can not be fully matched with this usual
formulation). We take this to mean that the marginal first two moments match. Hence,
since from (2.4),

B(Y) = BIE(Y|group i)] = E(6) =, (25)
it follows that 6 in (2.4) has to exactly be 8y in (2.3). Also, since



Var(Y) = E[Var(Y|group )] + Var[E(Y|group 7)] =
= E(c?) + Var(6;) = E(c?) + o2, (2.6)

a comparison with (2.4) shows that the following identities have to hold for some 0 < A <
13

E(c}) = Aok, o2=(1-))o2. (2.7)

A similar argument has to also be applied when sampling with covariates. Indeed,
in this case, if SRS is used, and X is the 1 x p vector of covariates associated with Y,
then the superpopulation model has the Y;’s independent with E(Y|X) = X3 and some
Var(Y]X), where B is a p x 1 vector of regressors. (We take the term covariate in a very
broad sense allowing also for design constants.) The usual two-stage models have

E(Y|X,group i) = XB;, Var(Y|X,group i) =0?, i=1,2,...,K

B; ~ Ny(bo, V1), o? ~ w(a?), 1=1,2,..., K. (28)

Again, the model used with random samples should, if not equal at least be a suitable
approximation to the superpopulation model derived from the more ellaborated hierar-

chical models (2.8) and we shall again require the first two moments to match. Since,
from (2.8)

E(Y|X) = E[E(Y|X, group 2)] = Xbo, (2.9)

it follows that the second-stage prior mean by has to be equal to the vector of regressors
B of the formulation with SRS. Further insight is gained when comparing the variances.
Indeed, we have from (2.8) that

Var(Y|X) = E[Var(Y|X,group 7)] + Var[E(Y|X, group 7)] =
= E(e})+XViX. (2.10)

It follows that in the SRS formulation, Var(Y|X) has to necessarily depend on X
(unless the B3;’s are known). A possibility that meets the requirement in (2.10) is

Var(Y|X) = (XX")o?,
E(6?) = (XXYAe?, V1=(1-)I (2.11)

This paper aims at pointing to relationships and differences among SRS, strata and
cluster sampling as clearly, as possible, and hence will concentrate on easy comparisons
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in the simplest formulation. We shall therefore only discuss inferences in the exchange-
able situations (no covariates) described by (2.3) in the SRS case, and by (2.4) in the
strata/clusters case, with the relationship (2.5) and (2.7) holding among them, o2 will
be assumed known from now on. We next procceed to accordingly derive the posterior
predictive distribution of Y, the mean of the unobserved units, for SRS, stratified and
cluster samplings. The results for SRS are an easy exercise and will quickly be mentioned
next, while the ones for the hierarchical models are given in Section 3.

Assume that data y1,y2,...,y. are obtained by SRS and that superpopulation model
(2.3) is thought to be appropiate. Then, if the usual non-informative prior 7 (fy) o
constant is used, it is easy to check that the posterior predictive distribution of Y, given
the data is normal with

2
N oy

—-—n n

E(Y,|data) =7,, Var(Y,|data) = (2.12)

(Notice, by the way, that these results closely match the ones obtained in the classical,
randomization-based approach.)

3. A compatible two-stage hierarchical model

As discussed previously, instead of SRS we may wish to stratify or decide to get extra data
by exhausting clusters, or have to base inferences in a cluster design for some other reasons.
A hierarchical two-stage model (2.4) is then deemed appropriate with the conditions
6 = Oy and (2.7) on its hyperparameters. We take here, for the sake of simplicity of
calculus and resulting expressions, a very particular case in which the variances of the
Y values around each mean group 6; are assumed equal: 67 = 02 = ... = o%. It then
follows from (2.7) that ¢? = Ao, for : = 1,2,..., K. If we further take A to be known
the resulting simple model is

Y;'_.,' ~ N(H,-,/\af,), j:1,2,...,Mi,i:1,2,...,K
0,‘ ~ N(ay,(l—A)O'lz/), 7:21,2,...,.[{
m(fy) o< constant. (3.1)

Before deriving the posterior predictive distribution of Y,, it is worth pausing and
deriving the superpopulation model in this case. By integrating out 61, ..., 0k from (3.1),
it can be seen that the joint distribution of Yi1,...,Ykar, given Oy is here a N-variate
normal with E(Y;;) = 0y and Var(Y;;) = o2, exactly as in (2.3). The variance-covariance
matrix, however, is no longer diagonal.

Instead,



(1-Xop if i=1* (same group)

0 if ¢#¢* (different groups) (32)

ConlYi Yoy = {

Hence, although observations from different groups are independent, observations from
the same group are not. In fact, the intra-group correlation coefficient can be seen to
precisely be p = 1 — A. (A more appropriate formulation, specially for some cluster
samplings, would take o? = \;0% with E();) = X so as to allow for different intra-cluster
correlation coefficients. We shall not pursue it here, however.)

Without loss of generality, we assume that data consist of the first m; < M; elements
of the first k¥ < K groups, : = 1,2,..., K, resulting in sample means 7, ,7,,,. .. »¥s,- The
joint posterior predictive distribution of the means of the unobserved elements in the K

groups, Yuy,...,Yug given the data can be shown to be a K-variate normal with mean
vector
— oY, +(1—-a)y, t=1,2,...,k
E(Y,|data) = 5 v .
and covariance matrix
) o2 ( diagi srh Okx(x—k) ) o2 ( diagf 2% Opx(x—k) ) N
Y O(K—k)xk diag/ﬁq XIIT Y O(K—k)xk (1 — /\)IK—k
@ a1
A2 ’”’fl o o A "f] t
N (1=XNot | o : (;’;, ey ;f:) I : Ik & (3.4)
YF o op =Y ’ :
= mp mE
25 lk—k (ﬁ’;, . ,;%‘,j) ekl

where g, = 3%, fkg"j Y, is a weighted average of the observed sample means and
. m; _ (1 — /\)m,
Tmi+ (A1 =2) T I =XNmi+ X (3:5)

These expressions admit an easy, intuitive interpretation. Thus, from (3.3) it can

Q;

be seen that, the means units (groups) that have not been sampled at all, are naturally
estimated by a suitable weighted average, 7, of all of the sample means. For the observed
units, the usual estimate y,, is shrinked towards 7,, an amount determined by the weights
a;. Also, the covariance between the means of two units that have both been sampled is,

2 1 oy )\20‘§/ a.lpha.? e
Con(T Vfdata) = 4 ¥ (st + ) + oy w1 b <k
O’U( Uiy u]-I ata)— )\203, alpha;a; = . o
i £, 4, <k

-V o mim

that of one sampled unit and an unsampled one is,
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Ao o
Y = i<k j*>k
11a1 m;

Cov(Yy;, Yy, |data) =

and the one for two unsampled units is,
Mo (e + (1= 0) + &2 =g, i3 > k
=1 o

(‘EM ©*# g%, 5 >k
i=1 o

The weight that each sample mean ¥, receives in the combined 7,, and the amount of
shrinkage of 7, toward 7, are determined by o, which is a function of both, the number

Cov(Yyu,Y .y, |data) =

of data taken in unit z and the intra-class correlation p. It can be shown that o; is an
increasing function of m; from 0 (if no data is taken in unit 7) to (1+ 25 _MT) if the unit
(group) is exhaustively sampled. It is also an increasing function of p from 0 (when p = 0)
to 1 (when p = 1). Thus, in (3.3), the relative weight that the sample mean 7,, has in
estimating Y, is larger, the larger m; (which makes 7, a better estimate of Y,,) and the
larger p (if p is very large, ¥, is an excellent estimate of Y,;). Still another interpretation
can be given to «;. By noting that
Var(0;|0y)
Var(0,~|0y) + Var(?s,. |01) ’

it follows that «; can be interpreted as the relative contribution of the variance of é;

&; =

around fy to the total variation of the Y,,’s around fy. An easy particular case occurs
when the same number of observations is taken in each sampled group, that is, m; =

my = ... = my = 7. In this case, all the ;’s are equal o = a2 =...= a = «, the
relative weight of each sample mean fk—‘— is simply 1 %, so that the combined 7, is the
1 ]
sample mean 7,. "
From the joint disribution of Yiy,..., Yy, it is easy to derive the distribution of
Y. =YX, 4Y., where~, = “F—=t, which is normal with mean
— 1 k K
B(Y . ldata) = {Z (0 = mfog, + (1 = ] + (sl T} (3
=1
and variance
. o2
Var(Y,|data) = W{A(N n)+
k N—n— k M —m;)ey
+ )\Z(Mi—mi)mflai[Mi—mi+ = Ek 1 ( m)a}+
=1 =1 &

N—n—3F, (M- mi)ai])},

Sk pha; (3.7)

K
+ (1= M [Mi +

k+1



we shall further discuss the expresions (3.6) and (3.7) above in two specially interesting
particular cases of strata and clusters.

3.1. Strata

In the most usual scenario for stratified sampling there are very few strata (that is, K is
small) and observations are taken in all of them, so that k = K. If the stratification is
“good ”, most of the variability among the values of Y is due to variability accross strata.
When k£ = K, expresion (3.6) can be rewritten as

K
E(Y.|data) = 3 gileu, + (1 — )7, (3-8)

where ¢; = (M; —m;)/(N —n) is the percentage of unsampled units which lies on stratum
i,1=1,2,..., K. That is, the estimate of Y, is just a weighted average of the shrinkage
estimates of the mean Y, in each stratum; strata with larger proportions of unsampled
units get larger weights in the pooled estimate, as it could be expected. The posterior
variance of Y, (3.7) is, for k = K,

— N 2
Var(V.ldata) = 5— “2{Af + (1 = 1)/ Setratal (3.9)

1=S™ s
where Sgtrata = Tiey (Mi — mi)(1 — i)[gi + —==22).

Zj:l &

An important particular case is that of proportional allocation , in which m;/M; =
n/N. In this case, ¢; = (M; — m;)/(N — n) = M;/N (or stratum weight), and
Sstrata = (A (1 =M1 = f)/f] so that (3.9) now becomes
2
Var(V.|data) = NL %Y ) = AVar(SRS). (3.10)

—-—n n

(Var(SRS) reffers to the variance of Y, when predicted from a SRS as given in (2.12).)
The mean E(Y,|data), howewer, is not 7, as in SRS, but still the weighted average in
(3.8) that can not be substantially reduced, and hence comparison with SRS is not direct.
Nevertheless, in the particular case in which all the strata have similar sizes, we can
assume as an approximation M; = M, = ... = Mk, so that with proportional allocation,
m; = my = ... = mg. In this case the variance (3.9) is given by (3.10) and the mean
E(Y ,|data) is simply 7,, the overall sample mean.

Hence, we get, in the last case, the same posterior predictive for Y, here as when
using SRS, except that the variance here is smaller (since 0 < A < 1). Also, recall that
Var(Y) = E(0?) + Var(0;) = Ao + (1 — M)oi; good stratification means that Var(8;) is
large, that is, (1 — A) is large and we can obtain a substancial reduction on the variance
of Y, thus confirming the known results.



3.2. Clusters

A usual scenario in cluster sampling is having many clusters (K is large in comparison
with N), of quite small size (the M;’s are small), from which a small sample (k is much
smaller than K) is taken and sampled exhaustively (m; = M; for the k sampled units,
i = 1,2,...,k). Clusters are usually encountered, and they usual consists of elements
which are quite similar, with cluster means varying almost as much as the individual
values of Y in the worst cases.

The posterior predictive distribution of Y, is normal with mean and variances given
by (3.6) and (3.7), where here m; = M; for : = 1,2,..., k. That is,

E(Y, |data) = 7,

— N o3
Var(Y,|data) = ¥ LA+ (1 = N FSeluster s (3.11)
—n n
Ko oMm?
where S¢lyster = 2'7\;31 -

g 05
In the particular case of all the clusters being roughly of the same size, we can as an

approximation take My = My = ... = Mg = M, and then

E(?u |data) = 7,

Ver(Vuldata) = o— 4 M(1- )] =
= A+ M(1 - \)]Var(SRS). (3.12)

It is immediate to see from (3.12) and (3.10) that when comparing SRS, strata an
cluster samples in these particular cases, all the three result in the same estimate for Y,
but that the variance when clusters are used is larger than the variance of Y, for both SRS
and stratified samples. Recall again that Var(Y) = E(o?) + Var(6;) = Ao + (1 — N)o?
and that in cluster samples Var(0;) is almost as large as Var(Y), so that (1 — )) is close
to 1 and we can get a Var(Y,|data) much larger than the one obtained with SRS. In fact,
as A — 0 (or p — 1), the variance in (3.12) goes to MVar(SRS), a result that could be
expected.

We have so far compared the three designs -SRS, stratification and clustering- on the
basis of the variance of the posterior predictive distribution. Such a comparison can be
made more appealing when interpreted as a comparison among the entropies of those
predictive destributions. The entropy of a (continuous) distribution with density p(z) is
given by

~ [ pl@)tog p(2)de,
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and it has been long used (see, for instance, Renyi(1961){4]) as a measure of the infor-
mation contained in p(z). (Note that a relative measure of information, such as the
kullback-Leibler divergence between the prior and posterior predictive distributions can
not be used here because the former is an improper distribution.)

The entropy of a normal distribution with mean p and variance o* can be computed
to be

H{N(z|n, %)} = % +log V27 + log . (3.13)

Hence, comparing the variances of the posterior predictive distributions is equivalent
to comparing their entropies in our examples. In fact, the difference between the entropies
of the predictive distributions corresponding to two different designs can be seen to be
the logarithm of the ratio of their standard desviation, which from (3.12) and (3.10) can
be seen to have very simple expressions.
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