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Abstract

In many practical situations involving sampling from finite populations, it is not
possible (or it is prohibitively expensive) to access, or to even produce, a listing
of all of the units in the population. In these situations, inferences can not be
based in random samples from the population. Random routes are widely used
procedures to collect data in absence of a well defined sampling frame, and they
usually have either been improperly analyzed as random samples or entirely ignored
as useless. We present here a Bayesian analysis of random routes that incorporates
the information provided but carefully takes into account the non-randomness in
the selection of the units.

KEyworDps: Finite populations; hierarchical models; imperfect sampling frames;
non-random samples.

1. Introduction

When sampling finite populations it is explicitly or implicitly assumed that there exists a
well defined sampling frame from which units or elements are selected. In fact, probability
sampling methods are not possible without it. However, it is very often the case in
practice that inferences are desired about a finite population for which a listing of elements
(or units) is not available (for example, censuses of populations in Spain can hardly be
obtained), or it is impossible or prohibitively expensive to produce (as a listing of trees,
wild animals, .. etc. in a forest). Still in some other situations the finite population is,
in a way, temporary in nature and can not have a listing attached to it; an example is
provided by the population of “tourists” in a certain touristic site.

In these situations, practitioners do still make inferences about quantities of interest,
since inferences are required and the lack of a well defined sampling frame is not a excuse
good enough not to produce them.

What they usually do is to select the elements from the population in some haphazard
way that usually involves elaborated instructions to “guarantee” the “randomness” of the
elements. A very popular, and common, practice when sampling in a city, say, consists



in somehow selecting a path in the city and selecting people living in that path. The
mechanisms by which the path is defined and the people from the path are selected can
be quite elaborate and are meant to make the final sample “random”. We first found the
name “random routes” to refer to this type of sampling in Kish(1965)[1]. Practitioners
do use this type of sampling widely, and we have read many variants and many ways of
defining and selecting these “random routes” in the reports produced by survey sampling
companies. Random routes are not only restricted to cities (can also refer to paths in a
forest, for instance), nor to actual paths (can also refer to a geographic entity that can
be defined from a map, say). Also, they can be defined in a casual way (walk two blocks,
turn left, walk three blocks, ... etc.) or they can be well defined entities (a city street, a
city square, a registered path in a forest, ... etc.).

What the users of these random routes usually do is to treat the resulting sample as if
it were a random sample from the population, which usually results in an overestimation
of the precision of the inferences. On the other hand, academic statisticians are usually
extremely critic with the procedure and many conclude that this type of data is entirely
useless and that they simply can’t be analyzed in a rigorous way. This looks again as
still another confrontation of “theory” versus “practice” of statistics. We show however
that such an analysis is possible when Bayesian methods are used, an that the added
uncertainty can be modelled and incorporated into the analysis.

Under the usual (Bayesian) approach to finite populations and when simple random
sampling is used, the values of the quantity of interest Y7,Y5,..., Yy in the finite popula-
tion are assumed to be the realization of N independent, identically distributed random
variables. The common distribution is usually taken to be normal with mean u. Hence,
the so-called superpopulation model is N-variate normal with diagonal covariance matrix.

In this paper we assume that the finite population is going to be sampled by random
routes. We assume that there is a total of K possible routes with M; elements in each
route, that we sample k of them, and that m; observations for : = 1,2,..., k are taken in
each sampled route. A natural way to model random routes is by means of hierarchical
multistage models, in the spirit of Scott & Smith(1969)[3] and Malec & Sedransk(1985)[2].
However, the usual simplifying assumptions, namely that the size of each sampling unit
(in this case, a route) M; is known, and that the variance of the elements within a unit
(route) is roughly the same for all of the units, can not be maintained to hold in this
scenario, and this is intrinsic to random routes. (Notice also, that it would similarly not
make any sense to assume that the values of some covariate are known for the whole finite
population.)

To be specific, the conditional (on x) one-stage model that we will be considering,
can be described as follows: In route 7, 2 = 1,2,..., K there are M; elements whose
values of Y are assumed to be i.i.d normal with mean 6; and variance ¢?. The means
across the routes, 6;’s, are assumed to be independent (but not identically distributed)



normal with common mean g and variances c;o?. The ¢?’s in turn are assumed i.i.d. with
an inverse gamma distribution. This election of the joint prior for the 6;’s and the o?’s
greatly simplifies the needed calculus and the number of parameters while still providing
a flexible model to take into account the uncertainties in the 8;’s. (Of course, a completely
general formulation would take the ¢;’s to also be unknown; thus, our analysis here, with
fully assessed ¢;’s, could be re-interpreted as the needed conditional intermediate steps in
a more general analysis. We shall not however pursue this analysis any further in this
paper.) The conditional one-stage model is, thus,

Yj|0,0% ~ N(b;,0?) j=12,...,M; i=12,...,K
0;lu ~ N(u,ci0?) o2 ~ GaYe,B) 1=1,2,...,K, (1.1)

where 8 = (04,...,0k)" and o2 = (0},...,0%)". It is interesting to note the form of the
super-population model as deduced from (1.1). In fact, it is no longer a N-variate normal
or Student t (depending or whether or not we condition on the common variance) with
diagonal covariance matrix, but a product of K M;-variate Student t’s:

(Yar, ..., YiM.‘)t|/‘ ~ tM.'(anua g(IM; + 1M.-1§\/[,-Ci), 2a)a (1'2)

with marginal moments
E(Y5lu) = p, Var(Yylp) = £ 14a),

and covariances

Cov(Yyj, Yieje ) = § 71

[ L if i=i"  (same routes)
0 if ¢s#3¢* (different routes).

Apart from this Introduction, the rest of the paper is organized in three more sec-
tions. In Section 2 we state the inferential goals and carry out the usual hierarchical
computations conditional on px and the M;’s. In Section 3 uncertainty about the M,’s is
introduced in a simple, particular case. Finally, in Section 4, uncertainty about u is also
incorporated. The greater uncertainty in the situation, as compared with problems in
which simple random sample is used, produces predictive distributions with no moments
of order higher than one, as it could have been expected. Another noteworthy aspect
of the analysis is that most derivations can be carried out in closed form for the special
simple case that we consider here.

2. Conditional posterior and predictive distributions

Here and in the rest of the paper, we shall label, without loss of generality, the k sampled
routes as routes 1,2,...,k. Similarly, we label the m; elements observed in each route
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as if they were the first ones; that is, y;;, 7 = 1,2,...,m;, ¢ = 1,2,...,k. Also, we
denote by n the total number of observations n = >k . my, by ys the n x 1 vector of
sampled (observed) values y;;, and by Y, the (N —n) x 1 vector of unsampled ones. Their
arithmetic means will be denoted by 7,, Y, respectively. Similarly, we shall denote by ys,
the m; x 1 vector of sampled elements in route ¢, ¢ = 1,...,k, and by 7,, its mean; Y,
will stand for the vector of unsampled elements in route 7 (it has dimension (M; —m;) x 1
fori=1,2,...,k and M; x 1 fori =k +1,...,K), and Y,, for its mean.

The usual goal when sampling finite populations is to make inferences about some
function of the N values of Y in the populatio;l. AMvery common function of interest is
the mean Y of the finite population, ¥ = ;ﬂ—%iiﬁ Since Y can be expressed as
Y =77,+(1—f)Y,, where f = % is the sampling fraction, we shall restrict ourselves
to consideration of Y,, and state that our inferential aim is to predict Y, based on
the observed values y,. We shall next derive all the needed intermediate predictive an
posterior distributions.

All of the distributions derived in this Section are conditional on px and the M;’s.
(Uncertainty about M;’s is added in Section 3 and about p in Section 4.) We think it to
be a good strategy, since in some problems with a lot of previous information, it might not
be too crude an approximation to assume that g in (1.1) can be assessed; also, although
rare, there might be problems with full information about the routes and the M;’s would
then be known. (This would actually be better described as a usual two-stage sampling
model.)

The computations, although lengthy, are straightforward and will be omitted.

From the model (1.1) we directly get

P(yswa”z) = Nn(ySI (diag{c{lm.‘} Onx(K—k)) 0, diagf{Imiaf}),
p(0|p,0%) = Ng(8|1kp, diagf{ciol}). (2.1)

From (2.1) we derive p(y,|y, 0?) as

P(ysli; 02) = Nulys[Lupt , diag{(Tn, + L 15,,c0)07}). (2.2)

From (2.2) and the joint prior distribution for a2, p(a?) = [1XX, Ga™(«, B), we get the
joint posterior distribution for a2, p(a?|ys, ), which can be fully described by saying that,
given p (and the M;’s), the components 67, i = 1,2,..., K are independent a posteriori,
and

p(a,-2|ys, ,U,) = Ga_l(az'2|ai7 :Bi)a 1= 17 sy k
= Ga (e, B), i=k+1,...,K, (2.3)
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where for 1 = 1,2,...,k,

o = a+(mi/2)
Bi = B+ (Qir)/2)
Qi(p) = (s — IMi/‘)t(Imi + 1mi1:n.-ci)_1(yse — Lo, ). (2.4)

On the other hand, the model for the unsampled elements can be directly seen from

(1.1) to be

( { 1M1—m1 6 \ \

p(wal8, ) = Ny | wa|| 1M (diagf{IM,-_m,.a,?} 0 )

1Mk+1 0k+l 0 diag,ﬁl {IM‘-O',;Z

|t )
(2.5)

and the conditional on o2, posterior distribution for 8 can be computed from (2.1) to be

01
: dia k{——'—_c“f? } 0 _
p(Blys, p,0%) = Nic 0| | ( TlamAtf TN ) (26)
ak O(K—k)xk dzagk_,_l{c,-ai }
1k
whereé,-:iw t=1,...,k.

cim;+1
Hence, the posterior predictive for ¥, conditional on o2 (and g and the M;’s) is

computed from (2.5) and (2.6) to be

1M1—m1é1
: diagF{A;0?} 0 )
2 . 1 1Y
D\Yu|Ys, Uy O :NN-n Yu ~ , ( . y
(wal ) 130, —m, Ok 0 dzag,ﬁ_l{Biaiz}
1p, p
(2.7)
where M, = K, ., M; and
A = I + Wimmiliome ;g g
T T M;—m; szz+1 y =L
B; = Ig+clyly, it=k+1,... K (2.8)
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Finally, we can integrate o? out from (2.7) by using (2.3), and we get the joint distri-
bution of Y,, which can be described by saying that the vectors Y, are independent, for
i=1,2,..., K, with posterior predictive distributions given by

p(Yuilys’ﬂ) = tM,‘—m,'(yu.'llM.'—m.'éi,Ai %,26!,‘), 1= 1,...,k

)

= tM.-(yu,-llM.-,Ul,Bi g,Qa), i1=k+1,...,K, (29)

where A;, B; are given in (2.8), and «;, f; in (2.4).

The (conditional) posterior predictive distribution of the quantity of interest can di-
rectly be deduced from (2.9), or more easily from the normal distribution p(Y,|ys, i, %)
(which can be directly computed from (2.7)) by integrating out o? with (2.3)). The re-
sulting p(Y . |ys, ) can not be expressed in closed form, but its moments can, and they
are given by

B 1 k 5 K
E(Y.ulys,p) = N_n lZ(Mi_mi)9i+ﬂ > Mi]

=1 i=k+1
Var(Vlys, ) ! B S~ M1+ M)
u{Ys, = % i1C;
g (N—-n)? |a-1,57,
- ci(M; —m)\ 26+ Qi(u)
—|—;(Mz—m,) (1+ e 11 ) mi+2a_2}. (210)

If the M;’s and y where known, we could finish here. As argued before, however, it
is almost intrinsic to sampling by random routes that the sizes of the routes can not be
known in advance. In the following Section we introduce uncertainty about the M;’s into
the analysis in a very simple situation which makes computations easy.

3. Uncertainty about M;

In this Section we explicitly recognize that the sizes of all the K possible routes can not
be known in advance. We assume, however, that we are able to observe the sizes M; for
the routes that we do sample. In practice, what we usually can get are accurate estimates
of these sizes, and uncertainty of these estimates should also be taken into account; for
simplicity, we shall not pursue this venue in this paper but assume that M; are known
for those routes that we get to sample. We change notation in this section and denote by
T; the (unknown in advance) size of route ¢, ¢ = 1,2,..., K, and assume that we observe
T.=M;,:1=1,2,...,k.



A very simple model for the T; is to assume that 77,75,...,Tk are i.i.d. Poisson with
parameter A, and give A the usual non-informative prior 7(A) o 1/A. It is now an
easy exercise to compute the posterior predictive distribution of Ti+1, Tk+2, .- -,k given

Ml,Mz,. . .,Mk, as

KM T(T, + M,)

p(Tk+1,...,TK|Ml,...,Mk) = F(M) KTu+Ms (31)

where T, = Y%, Ti and M, = 5, M;

Notice that the mean and variance of Y, given in (2.10) are really
E(Yylysypps M1y ..y My, Tiog1, ..., Tx) and Var(Yy|ys, p, My, ..., My, Thta,. -, Tk) and
that Tky1,- .., Tk can be very easily integrated out. In fact, since, from (3.1),

M,

B(TIM;,.., M) = =%, i=k+1,.. K,
K Ms K Ii ; 2
Var ( 3 %'Tz'lMla---,Mk) = 2| X 7?+@=’7:1—7) : (3.2)
t=k+1 t=k+1

we get, from (2.10) and (3.2),

E(?ulys-) H, {Mz}llc) = N_n Z (M; — m,)é, +p—M;

1 k K-k
k

=1

. 1 g K M, M, (k+1+M
1k _ s 1d¥lg 5
Var(Y ulys, p, {Mi}7) (N=n)? a—1 i=zk;-1 [ k + k ( k )]

1 k , c(M; —mi)\ 28+ Qi(p)
+(N—n)2 2 (M —mi) (1+ cm;+1 ) m; + 2o — 2

ﬁ 2 MT (K — k) (%) . (3.3)

4. Uncertainty about pu

_|_

Finally, we incorporate uncertainty about g into the analysis in the form of a non-
informative prior p(u). For ease of calculus, we take the special case @ = 1 in the
distribution of the ¢?’s so that we in fact take them to have an inverse exponential dis-
tribution. Hence, we have the two-stage hierarchical model:

Y;j|0,0'2 ~ N(Hi,af) j=1,2,...,Mi i=1,2,...,K
0;lp ~ N(u,cio?) o ~ Ez7Y(B) :=1,2,...,K
p(p) o constant. (4.1)



The conditional (on &%) posterior distribution of y is easily obtained from (2.2) and
the constant prior giving

o 4.2
Pl o) = N (227 ) (42)
where Z; = Ek 1@ Zz Zz— a;Y;,0; 2, a; = ”;n+1’ =1,2,...,k.

If we could derlve the joint posterior distribution of (Z, Z,), then the marginal pos-
terior distribution of g, p(g|ys) would merely by given in terms of a two-dimensional
integral,

plelws) = [ [ o812, 220020, Z2) 222,

where p(Z,, Z,) is derived from p(c?,...,0?|y;) and p could easily be integrated out from
all of the expressions in the previous sections. Also, an estimate of Y, could be given,

from (3.3) as

1 k

E(?,,,'ys, M], “ee ,Mk) -

N ;) aiciT,,
= 1

1 k M, — my; K-k

e [z it Kb ] B 49

my

+

=1

where E(plys) = E%1221vs (—%) Notice that Var(Y,|ys, g, My, ..., My) does no longer
exist.

The surprise here is that p(Z;, Z;) and E (%) can be obtained in closed form. The
derivations are, however, very lengthly and cumbersome. We shall illustrate the kind of
results obtained in a simple particular case.

Assume that £ = 3 and that data is such that the following inequalities hold (other
cases are handled in a completely similar way):

_y-S1 > —y-sz > gs;;
(ysl - ysa )a’la3 - (?82 - gss)aza’:‘} - (ysl - ysz)a1a2 >0
a; > a3z and ay; > as

Then, the distribution p(Z1, Z,), after much algebra, can be computed to be

([ (TT2.; exp{B(wi — b;) Z; })[exp{ﬂ(w + b3 — 1)d,} — 1]

ify Vs, > > Y,

P(Z1,Z5) o § (T2, exp{B(ui — b:) Z; })[exp{ﬂ(us + b3 —1)dz2} — exp{B(us + b3 — 1)d1 }]
ify,, > 2 >79,

0 otherwise

\

(4.4)



where

— wl—u ) — bZ1-b22Zp
dl — ua d2 - b3
— 37 — 1 — (57 —77
m=Pgt 0= Gooan U= (Tn — T
— — 1 — (7 —7
bl - ysl b2 b2 - (ysl "‘5_,2)0.2 b3 (y81 ys3)a3b2

The proportionality constant in (4.4) can also be given in closed form and it turns out
to be

_ 1. _ _
[COIlSt&Ilt] ' = 13_2'[(?/31 - yss)a1a3 - (ysz - ysa)a’2a’3 - (y31 ~Ys, )a1a2]°

Finally, the needed posterior expected value of y is

E (%) = [~?[constant] x {—M ;ly_’alalaa (ysl a; — -?73303)_
(Fs;=¥s;,,)0i0i41 [_ _ (Ts;,—Fs;, )00 .
M9 Y41l 7T . . 1 it ag
B E?:] a-‘—ﬂ::+1 [ si®i T Ysip Fitl T ai—at+1 lo a.'+1] } '
References

[1] Kish, L. (1965). Survey Sampling. Wiley. New York.

[2] Malec, D. & Sedransk, J. (1985). Bayesian Inference for Finite Population Parameters
in Multistage Cluster Sampling. J. Amer. Statist. Association. 80, 897-902.

[3] Scott, A. & Smith, T.M.F. (1969). Estimation in Multi-stage Surveys. J. Amer. Statist.
~ Assoctiation. 64, 830-840.



