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This article is concerned with the estimation of the integral of a squared regression
function using Latin hypercube sampling. A class of generalized nearest neighbour
estimators ék,n is proposed and their properties are investigated with respect to various
smoothness classes of regression functions. In particular mild conditions are established
which ensure that ék,n achieves a root-n convergence rate. It is further shown that ék,n
has an asymptotic mean squared error smaller than that of any regular estimator based
on an i.i.d. sample of the same size.

1 Introduction

Latin hypercube sampling was first proposed in 1979 by McKay, Conover and Beckman as an
alternative to simple random (i.i.d.) sampling in computer experiments. An attractive feature
of Latin hypercube sampling is that, in contrast to simple random sampling, it simultaneously
stratifies on all input dimensions. More precisely, for positive integers d and n let

(i) 7, 1 < k < d, be random permutations of {1,...,n} each uniformly distributed over all n!

possible permutations,

(i) Uiy,.igjr 1 150,59 <y 1 <5 < d, be uniform [0, 1] random variables and

(iii) that the U, ., ’s and mx’s are all stochastically independent.

A Latin hypercube sample of size n (taken from the d-dimensional unit hypercube [0, l]d) is
defined to be {X(m(%),...,mq(3)) : 1 < i < n} where for all 1 < 4y,...,iq < 7,

XJ(l]-’ i '7id) = (i.7 - Uilv"yidyj)/n’ Vl S j S d’
X (t1,-. Sld) = (X1(%1, .. vy td)y .- o Xa(ta, .. .,id))'.

Let f : RY — R be a measurable function and for each 1 < k < dand z = (z1,.. .,z4) € [0,1]4,
we define gx(zx) = f[011]d_1 f(2) 1,4 dz;. In many computer experiments, we are interested in

estimating p = f[o,l]d f(z)dz. Let

fin =07t if o X (my(3), ..., md(3)).

Then i, is an unbiased estimator for y based on the Latin hypercube sample { foX (m1(3), . .., ma(2))
1< i < n}. Using an ANOVA-type decomposition for f, namely,

d
f(:l:) = ng(wk) - (d_ 1):“’ + f'rem(x)’ Vo = (wl, .. wwd)l € [Oa l]d’
k=1
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Stein (1987) proved that Var(jin) = (1/n) fig1j¢ frem (2)dz+0(1/n)as n — oo if [ig 110 f2(2)de < co.
This reveals that Latin hypercube sampling has an additional edge over simple random sampling in
that the asymptotic variance of fi,, is always smaller than the asymptotic variance of an analogous
estimator based on simple random sampling.

The problem of estimating f[0,1]"‘ f2,.(z)dz, using Latin hypercube sampling, was studied by
Owen (1992). Observing that

/011]& f(@)de = /[

he proposed a class of nearest neighbour estimators for 8 = fol g2(t)dt and essentially proved that
these estimators are n'/2 consistent provided the following Lipschitz condition holds: there exists
a constant M such that |gr(s) — gx(?)| £ M|s —t| for all s,¢ € [0, 1].

In this paper we undertake a more detailed study of the estimation of 8 under weaker smooth-
ness assumptions on g using observations

(1) {Xk(m1(2)y...,ma(2)), fo X(m1(3),...,mq(i)) : 1 < i < n}

d 1'
2 N2 2
1]df (z)dz + (d — 1)p ;/0 gi(zr)dzy,

?

which are obtained via Latin hypercube sampling. In Section 2, we propose a class of generalized
nearest neighbour estimators ék,n for 0. Upper bounds on their convergence rates are computed
over various smoothness classes of regression functions. In particular, mild conditions are obtained
which ensure that ék,n achieves a nl/2 convergence rate (with explicit constants) as well as its
asymptotic normality.

As another yardstick to gauge the performance of ék,n, Section 3 investigates the estimation
of 6; using simple random sampling. The nonparametric information bound [in the sense of Stein
(1956) and Levit (1974)] for the estimation of 6 is determined and a consequence of which is that
0k n (under Latin hypercube sampling) possesses a smaller asymptotic mean squared error than that
of any regular estimator for 6 based on a simple random sample of the same size. The Appendix
contains proofs of a number of technical results that are needed in Section 2.

REMARK. A related problem of estimating integrated squared density derivatives with simple
random sampling was studied by Hall and Marron (1987) and Bickel and Ritov (1988). They
proposed a number of estimators based on the method of kernels. In particular Bickel and Ritov
showed that the convergence rate of their estimators is optimal given the amount of smoothness
assumed and that they achieve the information bound when estimation at an n~1/2 rate is possible.
However due to the presence of boundaries in the current problem, it is not clear whether their
technique can be used to construct similar kernel estimators for §; which possess convergence rates
comparable to those reported in this paper.

2 A class of generalized nearest neighbour estimators

For simplicity, we shall from now on write X (m1(%),...,74(2)) as X(7(3)), etc., and without loss of
- generality assume that (¢ — 1)/n < Xi(7(¢)) < i/n for all 1 < i < n. For some positive integer m,,
let {w; j(mn), Wi ;(mn):1 < 4,5 < n} be a sequence of nonnegative constants such that

(2) wij(my) = W ;(my) = 0, ifi=jorl|j—1i|>my,

(3) Zwi,j(mn) =1, V1i<i<n,
J=1
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N _ 1, Vm, +1<j<n—my,,
(4) ;w” (mn) = { O(1), uniformly in j otherwise,
(5) sup{w; j(ms):1<4,5<n} = o(my?), asn— oo,

(6) Bi(mn) Y Bigi(mn) = wij(mn), VY1<i,j<n.

B#i
EXAMPLE. Let m, > 1 and ¢;(m,) denote the cardinality of the set {5 : 0 < |j — i| < mp,1 <
j <n}. For 1 <14,j < n, define

-1 . . .
. ) o (my), if0<|j—i < my,
wi(mn) = { 0, otherwise,

and
- ] ei(ma)(ei(my) = D)7Y2, i 0 < |j —i| < Mg,
Wi (mn) = { 0, otherwise.

Then the sequence {w;-“’]-(mn), ﬁ;;",j(mn) : 1 <4,j < n} satisfies the conditions (2)-(6).
We propose the following class of generalized nearest neighbour estimators ék,n for 6. Define

bin = (2/m) Z{f o X (7(1)) E wi,j(ma) f o X (7(5))

=1
(7) - E Z Wi, jy (M) Wi g (M) f 0 X(7(51)) S 0 X(7(42))}5
n=1lj2=5+1

where m,, is some suitably chosen integer which tends to infinity as n — oo.

Due to the stratified nature of {Xg(%(3)) : 1 < ¢ < n}, this class of estimators is especially
suited to the present problem. Roughly speaking, these estimators behave like kernel estimators at
the interior points of [0, 1] while allowing simple modifications to be made to them when estimating
points near the boundaries; thus safeguarding against increased biases at the boundaries.

For robustness reasons, we shall investigate the mean squared error of ék,n with respect to the
following Lipschitz-type classes of functions. For constants 0 < o < 1 and M > 0, we define Fr o pm
to be the set of all functions f : [0,1]? — R such that sup{fj,1je-1 @) [jprde; 1 0 < 2 < 1} <
M and that |gx(s) — gk(?)] < M|s — t|* whenever 0 < s,t < 1. The following is the main result of
this article.

Theorem 1 Letl <k <d and ék,n be as in (7). Then we have

fo,1]¢
+0((ma/n)**) + o(1/n),

as my, — oo and my/n — 0 uniformly over f € Fi o pm where for j # k and 0 < z; <1,

Eén—ﬂ 2 = 4p7? 2z zp)dr — zr)dz) — R]nwjda:_,-
(s — 1) U P@dends - [ oo #k/ 2 in(3)da;)

j1/n - -
Ry jn(z;) = E{Z nw; j, (mn) / 1)/ /( (fr1,—i(2i> ks Uk) + fr2,~5(25> Tk k)] dTRdYR

i=1 ]1—1 -1)/n
- E Z s j, (M) B 5 (2,
J2=1j3=32+1

ja/n g3 /n - -
/ (fi1,-5 (x5, Tk, Uk) + fr2,—i(%5, Tk, Yr)|d2rdyr }
(j2—1)/n J(G3—1)/n
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with
Fer-i(eznu) = gl f(z) I] doi— gr(zi)),
T A
o235 T y6) = gk(wk)[/m’l]mf(y)lgkdyz—gk(yk)]-

The following corollary shows that ék,n is capable of estimating 6; at an n~1/2 rate (with explicit

constants) under mild conditions.

Corollary 1 Under the conditions of Theorem 1, if 1/4 < a < 1 and by choosing m,, = o(n(4a~1)/4%),
we have

A 1 1
BB = 0n)" = 4= { | S (@)gi(z)d - /0 gk(ow)dzk — ; /0 R} ;n(w5)dzs} + o(1/m),

as my — oo uniformly over f € Fy o Mm.
The next result gives sufficient conditions for ék,n to be asymptotically normal.

Theorem 2 Under the conditions of Theorem 1, if 1/4< a <1 and choosing
my = o(nmin{(4a=1)/421/2}) e have for each f € Fr oM, nl/zag’i(ek,n — 0;) converges in distri-
bution to N(0,1), as m, — oo if

ol =4
k,n { [0,1]¢

f2($)gz($ )d _/1 4 dzi. — 1R2- Nz
Hade = | gi(ar)do ; | Bijn(ei)dei)}

and liminf,, o aZ,n > 0.

REMARK. We observe that if f is continuous, say, then under the assumptions of Theorem 1
we have as m,, — 00,

[ Bsntein = [ aonlfe) - ou(o) TLdsde; +o00), Vi b

i

3 On the nonparametric information bound

In this section we shall study the problem of estimating 6 using a simple random sample. The hope
is that this would give us another yardstick for gauging the quality of the results of the previous
section. More precisely, let X(1),...,X(n) be an i.i.d. sample where X (1) = (Xy(1),...,Xa(1))
is uniformly distributed on [0, 1]%. The aim of this section is to compute the nonparametric infor-
mation bound for the estimation of 8 using the observations

(8) {Xi(i), foX(5):1< i< n}.

For simplicity, we write y = f(z) for all z € [0,1]? and define p(zk, y) to be the joint probability
density function of Xi(1) and Y = f o X(1).
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Proposition 1 The linear space of all score functions of regular parametric submodels through
p(zk,y), namely the tangent space, is the space of all Ly-integrable functions [w.r.t. the measure
p(zk,y)dzrdy] which are orthogonal to Ly-integrable functions which are functions only of =y (and

not y).

The proof of Proposition 1 follows from the observation that the marginal distribution of X(1) is
known and a detailed proof is similar to that given in Bickel, Ritov and Wellner (1991), page 1328.
We further observe that the functional #; has pathwise derivative

. [e] 1

oumy=2 [ [ yEIXe(1) = an)h(or, v)p(er, y)dzady,
for all h in the tangent space. Hence it follows from Proposition 1 that the canonical gradient
(or the adjoint map) is equal to G(zk,y) = 2[yE(Y|Xk(1) = zx) — E3(Y|Xk(1) = z4)] for all
zr € [0,1],y € R. This implies that the nonparametric information bound for the estimation of 6
is Var{G(Xk(1),Y)} = 4[fjp,1j FA(2)g¥(zr)dz — [y gi(zx)deg]. Thus we have proved

Theorem 3 Let 67k,n be a regular estimator for 0y based on observations as in (8). Then
. 1
lim inf n E(0, — 6k)* > 4{/ FA(2)gi(zk)dz — / gr(zr)dz).
n—0o [0,1]4 0

Theorems 1 and 3 reveal that ékm under Latin hypercube sampling possesses an asymptotic
mean squared error smaller than that of any estimator for ; based on a simple random sample of
the same size.

4 Appendix

Proor or THEOREM 1. First we compute the bias of ék,n. Define for 0 < s, < 1,

Ms,t):{ 1 if |ns] = |nt],

0 otherwise,

where [t| denotes the greatest integer less than or equal to £. Since (i — 1)/n < Xi(7(3)) < ¢/n for
all 1 < ¢ < n, we observe that

E(Q/n)Zf o X(7(s ))sz,g(mn)f X(7(4))
n _ 1)d 1 Ao 1]2d—2 /(z 1)/n f(«’”); /(.j"l)/n w".1j(mn)f(y)dykdzk H[l - 671(1:1’ yl)]dxldyl

I#k
o 2

and similarly

ar(zE) Z / nw; j(ma)ge(wk)dyrdzr + O(n~1),

(5-1)/n

1)/n

En 33 Y i (ma)is iy (ma) f o X(RGL)) S o X (7(72))

i=141=1j2#51
D D50 ol K AT AR T
TL ’U)i" mn w.,. m
=1 1=1j2#5 1)/n J(51-1}/n J (52—1)/n J1 1,92\ /Tn
(10) ng(yk)gk(zk)dykdzkdxk+O(n— ),
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as n — oo uniformly over f € Fi o p. Now it follows from (3), (6), (7), (9) and (10) that

o j1/n ja/n
Blp=0 = =33 3 [T [ [ s

1=1 j1=1 ja#n =1)/n —1)/n
x[gk(yx) — gk(z)]lgx(2k) — gk (zi)ldyrdzrday + O(n™1),

as n — oo uniformly over f € Fi o nm. This “factorization” is crucial in further reducing the bias
by another order. Using (3), (6) and the Lipschitz condition of f € F} o a1, we have

(11) sup{| Ebk,n — k| : f € Frap} = O((ma/n)?™ + (1/n)),

as n — o0o. Next we shall compute the variance of ék,n. Observe that

E(frn— Ebr,)* = —Var{Z Z w; ;(mn) f o X(7(3)) f o X (7(4))}

11_71

+_V‘”'{Z Z Z W; 5, (M ) Wi 5, (M) f 0 X(F(41)) f o X(7(52))}

=1 .71—1 J2#h

—-—Cov{zz w; j(my) f o X(7(4)) f o X(7(5)),

i=1j=1

f.: SN Wigy (M) i 5y (ma) f 0 X(7(51)) f 0 X (7(52))}-

i=1511=1 j2#5h

Now it follows from Lemmas 2, 3 and 4 below that
E(fyn — Eby. )
ST ARLCY-CAUEY W CATA R o) (LD S ICN

J#k 1,j1=1

11/n J1/n - -
/( /( (fra,—i (25, Tk Yk) + Fr2,—5(Z5, Tk, Yk ) dzrdyr }

1)/ JGir-1)/m
—{ Z > 0y (M )i,y (10
4,J1=1 J2#51
J1/n J2 /n - 9
a2 x [P [ ki w) + feami(es o eldeidud Y ds; + of1 /o)

as n — oo uniformly over f € Fi o p. This proves Theorem 1 since the mean squared error of ék,n
is equal to the sum of its variance and squared bias. a

Lemma 1 With the notation of Theorem 1, if 11,12, j1,j2 are all distinct integers then

Cov{f o X(x(i1))f o X(R(j1)), f 0 X(R(i2))f 0 X ((j2))}
i/n ifn L -
= 'y / U o Uiaomi(eis 1 98) + FraesCass s i)ldondun)

iz /n 2 /n - -
(13) / [Fet,=3 (%3, Tho Uk) + Fr2,-5(%5, Ths v dzrdyr Ydz; + O(n™?),
(22—1)/n (j2—1)/n
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and
Cov{fo X(ﬁ'(il))f o X/(Tr(jl)) , fo X(7(51))f o X(7(42))}
/[0 11 /( /( /( )/ FA(z)gx(yr)g9x(zi)dyrdziday [ ] dz

—1)/n -1)/n 14k

j1/n
/(11 1)/n /( 9k(2k)9k(Yk ) dyrdzy]

n-1)/n

i1/n g2/
(14) < [T [ gu(ekgr(sh)dsidat] + O(1/m),
(1-1)/n J(52-1)/n

as n — oo uniformly over f € Fi o M.

Proor. First we observe that for i # j,

Ef o X(7(2))f o X(7(5))
nttt ifn i/n
= o /[0 i /(z'—l)/n /(j-1)/n f(z)f(y)dzrdyk 11;1[1 — bn(z1, y1))dzidy;

i/n
n? / / 9k(zk)gr(yr)dzrdyx + O(1/n),
(i-1)/n J(i-1)/n
as n — oo uniformly over f € Fj o a. Hence using the “orthogonal” decomposition

F(@)f(y) = gr(er)gn(ys) + > [ Fe—i (x5, T &) + Frz—i (5> Th U6)] + Frrem (2, 9),
i#k

we observe that the Lh.s. of (13) is equal to

i1/n afn L -
-’} / / /( e, 2k U6) + fi2,-5(25> 2k, Ykl dzrdye}

i#k 70 J(a=/n

iz/n i2fn ' ~
A S o eaemi(ei o ) + Fua (e, ko vldetds Y + (™),

as n — oo uniformly over f € Fi o p. The proof of the second statement of the lemma is similar
and is omitted. a

Lemma 2 With the notation and assumptions of Theorem 1,

Var{zn: f: w;,j(mn)f o X (7(8))f o X (7(5))}

=1 j5=1
1 n
= ([ P@eeds - [ ooz} =Y [ 3D mwi,(m)
(o] #R70 ag=1
i1 /n J1/n . . .
(15) / [fr1,-5(2j, Tk Yk) + fr,2,—5(25, ks Yi)|dzrdyr Yodz; + o(n),
(.1-1)/n J(j1-1)/n

as n — oo uniformly over f € Fr o M.
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PRroOF. We observe that the Lh.s. of (15) is equal to

n

> Zn: w}j(ma)Var{f o X(7(i))f o X(%(j))}

1=1j5=1
+E " [ws iy (M )i gy (M) + Wiy (M YW (M) + Wiy (M)W (M) + W)y (M Y3 G (M)
XCov{f o X(7(i))f o X(7(j1)), f o X(7(3))f o X(7(j2))}
(16) +E**wi1,j1 (mn)wiz,jz(mn)cov{f ° X(ﬁ(zl))f o X(ﬁ(jl))’ fo X(ﬁ'(h))f o X(ﬁ'(.h))}’

where )77 ; . denotes summation over all distinct values of 1 < 4,71,j2 < n and 3>°** denotes
summation over all distinct values of 1 < 44,12, j1,j2 < n. From (3) and (5), we observe that

>3- wli(mn)Var{f o X(5)S o X(R()} = ofm),

as n — oo uniformly over f € Fi o m. Next using (3), (4), (14) and the Lipschitz condition on g,
we observe that the second term in (16) is equal to

snf [ S@akende = [ ailo:)ds) + ofn)

as n — oo uniformly over f € Fi o . Finally we observe from (13) that the third term in (16) is
equal to

n
—nZ/ Z nw;y g (M)
J#k 11,.7'1_1

afn pifn y
/ [fr1,-i(%5s @k k) + fr2,-5(%55 Tk y)lderdyr Yodz; + o(n),
(1—1)/n J(1-1)/n

as n — oo uniformly over f € Fj o p. This proves Lemma 2. a

Lemma 3 With the notation and assumptions of Theorem 1,
n n
Var(30 37 3 i (ma)iijp(ma) f o X(7(31))f o X (7(j2)))
i=1j1=152#5

= 4n{/ FA(z)gi(zr)dz _/ gi(er)dzr} — nZ/ { Z Z i g, (M ) Wi g, (M)

¥k 4,91=1 jo#

J1/n d2/n
/ / kl —J(:BJ’xk’yk) + sz_J(fE],.'l)k, ’yk)]dil:kdyk} d:l:_, O(n)’
(1~1)/n I —U/n

as n — oo uniformly over f € Fr oM.

Lemma 4 With the notation and assumptions of Theorem 1,

Coo{3" Y wij(ma)f o X(7(0))f o X(R(7))

=1 j=1
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Xn: Zn: D" Wiy iy (Ma)Biy o (M) f 0 X(7(51))f 0 X (7(52))}

t=1j51=1j52#5n

= anf / @i~ [ otendest —n S [{ 3 s, (ma)

J#k i1,51=1

i1/n j1/n . .
/ [fr1,—i(Z5s T Yk) + Fo,2,-5(255 Ty Yk ) dTedyr }
(11 1)/nJ(i1-1)/n ‘

x{ E > s g, ()i, ()

4,J1=1 ja#i1

g /m g2/n 10 s 1 1 / /
/( 1/ /( ny k,ly—j(zj’zk’yk)'l'fk,2,—j(xj’zk’yk)]dmkdyk}dzj+0(n)7

as n — oo uniformly over f € Fr o M.

The proofs of Lemmas 3 and 4 are similar to that of Lemma 2 and are omitted.
PrOOF OF THEOREM 2. We observe from (11) and (12) that it suffices to show that nl/?(6y, —

Eék,n) is asymptotically normal. For 1 < ¢ < n, define pgn(i) = nfé/_nl)/n gi(zk)dzy. Using the
decomposition

F(@)F(Y) = tkn(Dkn(d)
= pn(B)f(@) = (D] + e (G (Y) — prn (D] + (@) = pea (DY) = pra(d)],

we obtain

n (B — Ebp) = 4n”'/? i[f o X(7(3)) — pk,n(3)] Xn: Wi, (M ) e, (5)

=1 3=1
—2n 23 f o X(R()) - ()] 3 3 B smen ) (i (5)
p 1= 5

+Ak,n + O(n_1/2),

as n — oo where

An = 20233 wi(ma)lf o X(#(6)) - pia(Lf 0 X(F(3)) — (3]

o
= Y i (ma)Bi g, (ma)lf 0 X(7(51)) — pea(GOIf 0 X(7(52)) — sk (d2)1}-
s1=1j2=j1+1

As in the proofs of Lemmas 2 to 4, we have EAi’n = o(1) and, from Markov’s inequality, Ag, =
0,(1) as my, — oco. From (3), (4) and (6), and making repeated use of Markov’s inequality to get
bounds for the remainder terms, we have for f € Fi o M

(17) 0"? (B — Ebyp) = 207117 i[f o X(7()) — s (8)]ptr,n (%) + 0p(1),
i=1

as m, — o0o. From Theorem 1 of Loh (1993), we note that the first term on the r.h.s. of (17)is
asymptotically normal and Theorem 2 is proved. O
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