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Abstract

Let wg, £ > 0, be a sequence of positive constants. Consider nearest—neighbor rein-
forced random walk on the d-dimensional integer lattice starting at the origin with edge—
weight sequence {wg}. In this process, the weight of an edge connecting nearest neighbors
in the lattice is wy if the edge has previously been crossed exactly k times. At integer
times, the process jumps to a nearest neighbor of the previous position, with probabilities

being proportional to current edge-weights.

We show that the individual coordinates return to zero infinitely often if there is
o0
positive probability that the range (= set of visited sites) is infinite. If ), w;kl = 00
k=0
o0
and ), w;k1+1 = 00, then the range is infinite. If both sums are finite, then the process
k=0
eventually gets stuck crossing the same edge over and over again. If one sum is finite
and the other is infinite, then, with probability one, all edges not touching the origin are

crossed at most finitely often. Hence, in this last case the process eventually crosses only

edges touching the origin, or the distance from the origin diverges over time to infinity.

AMS 1991 Subject Classification. 82B41, 60K35
Key words and phrases: Reinforced random walk, recurrence, transience,

phase transition.



1. Introduction

In 1987, Persi Diaconis posed the following problem. Put initial weight 1 on each
edge of the graph with vertex set Z? (the d-dimensional integer lattice) and edges between
nearest neighbors. Then run a discrete-time, nearest-neighbor random walk on Z¢ starting
at the origin according to the following rules. (1) The (conditional, given the past) tran-
sition probabilities for the next jump are to be proportional to the current weights of the
corresponding edges, and (2) the weight of an edge is increased by some positive constant
6 each time the edge is crossed. Diaconis’ problem is to determine for which values of
the dimension d and the reinforcement parameter ¢ this reinforced random walk (RRW)
is recurrent. Except for d = 1, no one yet proved recurrence or transience for any d and

any 6 > 0.

Davis (1989, 1990) considered RRW on Z under a wide variety of different reinforce-
ment conventions. Since no one had made progress on the original Diaconis problem for
d > 2, Davis (1990) posed the (perhaps) simpler problem of establishing recurrence or
transience for RRW on Z¢ with one-time reinforcement, meaning that the current weight
of an edge is 1 + ¢ if it has been crossed at least once and 1 if it has never been crossed.

There has been no progress on this problem either for d > 2.

Several years ago, Michael Keane posed an even simpler problem: show that RRW

with one-time reinforcement on a doubly infinite ladder is recurrent. This problem was

solved by Sellke (1995), but the techniques do not help on Z¢, d > 2.

Pemantle (1988) has studied RRW on trees with Diaconis reinforcement (meaning
“add é for each crossing”), but the dependence of Pemantle’s methods on the absence
of cycles prevents them from applying to Z% Coppersmith and Diaconis (see Diaconis
(1988)) have shown that RRW with Diaconis reinforcement on a finite graph is a mixture
of Markov random walks, and they even have an explicit formula for the mixing measure
in terms of all the “loops” of the graph. Diaconis (personal communication) has sug-
gested that the Coppersmith-Diaconis formula for finite graphs might be used to prove
transience/recurrence results for Diaconis RRW on Z¢, but to the author’s knowledge no

one has done this.



This paper will primarily study nearest-neighbor RRW on Z? of the following type.

Let wg, £ = 0,1,... be a sequence of positive constants, to be referred to as the edge-
weight sequence. For zeZ?, define N(x) = {yeZ?: ||y — || = 1} to be the set of
nearest-neighbors of # in Z%. Let Xg, X1,... be a random sequence of points in Z¢ with

Xo = 0 and X,41eN(X,,) for all n > 0. For yeN(z), define the number of crossings of
the edge between  and y before time n by

n—1

(1.1) C(n,z,y) = Z I(X;=2,Xip1=y)+ [(Xi =y, Xit1 = @).

=0
(Note that C(n,z,y) = C(n,y,x).) Let F, be the o-algebra generated by (Xj,..., Xn).
The transition probabilities of the X, sequence are assumed to be given by

We(n,Xn,y) H{yeN(X,)}

Z We(n,Xn,z)
zeN(X,)

(1.2) P{Xpn41 =y|Fn} =

It is easy to show by induction that X, = 0 and (1.2) determine a unique probability
distribution for (Xp,..., X ) and hence for the entire stochastic process Xy, X1, ...

The RRW described above, with the same deterministic sequence of edge-weights for
all edges, is essentially what Davis (1990) calls an initially fair sequence type RRW, except
that Davis (1990) assumes in addition that the wy’s are nondecreasing. We will expropriate

this terminology and refer to the RRW’s above on Z% d > 1, as being of sequence type.

Theorem 1. Let X,,n > 0, be a sequence type RRW on Z%,d > 2. If P{sup ||X.|| =
oo} > 0, then the individual coordinates Xgi), 1 = 1,2,...,d of X, wmsit zero infinitely

often, a.s.

The proof of Theorem 1 is based on the symmetry of the RRW with respect to trans-
lation, reflection, and coordinate interchange. Here is the heart of the argument. If it is
possible for X to visit zero only finitely often, then |X,(ll)| and |X7(12)| will both diverge
to infinity a.s. when X, has infinite range. By the symmetry between X,(,2) and —X,(zz),
xP is equally likely to diverge to —oo as to +oo on the event {|X7(11)| — oo}. However,
{|X7(11)| — 00, xP - oo} and {[Xy(Ll)| — 00, x2 - oo} are subsets of disjoint tail events
for a filtration with a trivial tail field, so it is impossible for their common probability to

be positive.



Theorem 4 below suggests that there will be sequence type RRW’s on Z4 (d sufficiently
large) for which 0 < P{sup || X,|| = oo} < 1, but we have no proof.

o0 [e.2] .
Theorem 2. If Y w;! = oo and 5 Wopyy = 00, then P{sup X = o} =1 and
k=0 k=0

P{ian,(,i) = —00} =1 for each of the coordinates X,(,i),i =1,2,...,d of the corresponding
sequence type RRW X,, on Z%,d > 2.

Theorem 3. If > w,?l < 00, then the corresponding sequence type RRW on Z4,d > 1,

k=0
eventually gets stuck crossing the same edge over and over again. Thus,

Z Z P{X3, =2 and Xjnt1 =y for all sufficiently large n} =1.
zeZd  yeN(z)

Theorem 3 is almost certainly true on the two-dimensional triangular lattice, but we have
no proof. The proof for Theorem 3 as stated is very dependent upon the fact that all finite
cycles in the Z? graph are of even length, and this is obviously false on the triangular
graph. In fact, we can’t even prove that sequence type RRW on a single triangle gets stuck

o0
on one edge when Y. wi! < oo.
k=0

o0 o0
Theorem 4. If one of kz—:o w{kl and kz—:o w;k1+1 18 finite and one i3 infinite, then the
corresponding sequence type RRW on Z%, d > 1, crosses each edge not touching the origin
(at most) finitely often, a.s. Hence, with probability 1, either X2, = 0 for all sufficiently
oo o0

large n or || X,|| > 00 asn — o0, Ifd=1,) wy < oo and 3 wz_k1+1 = o0, then
k=0 k=0

P{X3n, = 0 for all sufficiently large n} = 1. Ifd=1, Y wy}! =0 and w;kl_*_l < oo,
k=0 k=0
then P{|Xan| = o0} = 1. If d > 2, then P{X3, = 0 for all sufficiently large n} is strictly

positive.

We have no examples of RRW’s as in Theorem 4 with d > 2 for which we can prove
P{||Xa]| = oo} > 0. We conjecture that P{X5, = 0 for all sufficiently large n} = 1
for d = 2 under the conditions of Theorem 4, but we can only prove the partial result in

Theorem 5.



Let p.(d) be the critical probability for bond percolation on Z?. (See for example
Grimmett (1989).)

oo o0
Theorem 5. Suppose that >, w,, = oo and Y, w;k1+1 < 0o. Let Zy be an ezponential
k=0 k=0

random variable with mean wo_l. Fori=1,2,...,4d—2 and k=0,1,..., let Z;k)_}_l be an

exponential random variable with mean (4d — 2)w;l .. The Z s are to be independent
2k+1° 2k+1

of each other and of Zy. If

4d—-2

(1.3) P{Z, < ZZ2k+1} < pe(d),

=1 k=0

then P{Xs, = O for all sufficiently large n} = 1 for the corresponding sequence type RRW
on Z% d > 1.

Remark One can use the Markov inequality to show that

(o] . d
s F vt <@

is enough to guarantee (1.3). However, it will be clear from the proof of Theorem 5 that
(1.3) is far from being a necessary condition in Theorem 5. Theorem 5 shows that X,
eventua,lly gets stuck jumping into and out of the origin if wy is sufficiently small compared
to ( E Wy +1)"1, but it only gives an extremely crude bound on what “sufficiently small”

means

The proofs of Theorems 2 through 5 use a construction of a continuous-time version of
RRW described in Section 4. This construction was inspired by Herman Rubin’s proof of
his Generalized Polya Urn Theorem, as presented in the Appendix of Davis (1990). Davis
used this theorem, in a different way, to prove the d = 1 case of Theorem 3 when the wy’s

are increasing.

Theorems 1 through 5 are actually true in greater (but varying) generality. However,
the main ideas in this paper all appear in the arguments concerning sequence type RRW on
Z%. Rather than grubbing for maximum possible generality in the statements of Theorems

1 through 5 at the cost of complicating the exposition, we initially consider only the case
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of sequence type RRW on Z%. Remarks following the proofs of the stated theorems point
out some other situations to which our methods apply and state some additional open

problems.

2. Proof of Theorem 1

Suppose that P(Vy) > 0, where Voo = {sup || X,]|| = oo} is the event that Xn visits
infinitely many points in Z? Since the coordinates of X, are exchangeable, it will be
enough to show that the first coordinate X,(,l) of X, visits zero infinitely often, a.s. We
will show that P{X,(,l) visits zero finitely often } > 0 and P(Vio) > 0 together lead to a

contradiction.
Lemma 1. If P{X,(zl) visits 0 only finstely often } > 0, then P{X1(7,1) >0, alln>1} > 0.

Proof of Lemma 1. If P{X,(,I) visits 0 finitely often } > 0, then there exists an n* > 0
for which P{Xy(,l) >0, all n>n*}=6>0. But as m — oo,

(2.1) P{X{V>0,n*<n<m} | P{X® >0,n>n*}=6>0.

Let Ep+ m be the set of all possible values (29 = 0,@1,...,&n) of the (Xo,...,Xn)
vector for which X'r(j,l) > 0, n* < n < m, so that P{(Xo,...,Xp) €Epe m} > 6. Let
v = (1,0,...,0) be the first unit vector in Z%. For each vector (zo,...,2,) in Epr m,
consider the vector (0,u™,2u®M ... n*u®M) n*u® f2,,..., n*u® + &,,), and denote
the set of such vectors by Fy« ,. Then for each vector in F,« ,,, the probability that
(Xo,..., Xnr+m) takes on that value is at least

(2.2) ro :{ min(wo..., Wan+ ) )}2"*

2d max(wo,... Wane

times the probability that (Xg ..., X ) equals the corresponding vector in E,+ ,,,. (Note
that the transition probabilities for the last m—n* steps are the same for the Fy,» ,,, vector as
for the corresponding En« ., vector. Also, transition probabilities for the first 2n* steps can-
not be smaller than the fraction in curly brackets in (2.2).) But if (Xo, ..., Xn*4m)eFn* m,
then XV > 0,1 <n <n*+4+ m. Hence, for all m,

P{XM > 0,1 <n<n*+m}>rp.é,

6



and so

P{X®M >0,n>1} = lim P{XM >0,1 <n<n*+m} > r,.é. O

Lemma 2. If P{X,(zl) >0, all n>1} >0, then
P{sup |X,(,1)| = oo and lim inf |X1(11)| < oo} =0.

Proof of Lemma 2. This argument will use a construction of the RRW which causes the
event {sup |X,(;1)| = 00, liminf |X,(,1)| < o0} to be a subset of a probability-zero tail-field

event.

For: =0,1,... and j = 1,2,..., let U;i) be iid #[0,1] random variables. Use the
U ]@’s as randomizers to construct sequence type RRW as follows. When IX,(ll)l = ¢ for the
first time, use Ul(i) to choose the next step with transition probabilities (1.2). Do this by
partitioning [0, 1] into 2d intervals with lengths equal to the transition probabilities. The
first interval should correspond to IX,(,I)I decreasing, the last interval should correspond
to |X,(,1)| increasing, and the correspondence between the direction of movement and the
order of the other intervals should always be the same. (When X 7(;1) = 0, have the first and
last intervals correspond to X ,(,1) decreasing and increasing, respectively.) When ]X,(ll) | =1
for the j** time, do the same thing using U ;i) as a randomizer. The crucial requirement
of the construction is that the behavior of (|X,(,1) |,X£LZ), e ,X,(,d)) between the first time
that |X,(ll)| =7 and the first subsequent time that | X ,(,1)| < ¢ should be determined by the
random variables U§k), k>:472>1.

Let A; be the event that the U](k)’s, k>1>0,7 > 1, are such that |X1(11)| will (or
would) stay strictly greater than i after the first time that |X,(,1)| equals 7. If P{X,(,l) >
0, alln > 1} = € > 0, then P(A;) = pe > 0, where p = 2d wo/{w1 + (2d — 1)wo}. The
important thing to notice is just that P(A;) is some positive constant not depending on :

if P{X" >0, alln>1} >0.

Let G; be the o-algebra generated by {U](-k),k > 1,7 > 1}. Then G; D Giy1 D
Git2 D ..., and the (proof of the) Kolmogorov Zero-One Law shows that Goo =) G is

(e o)

trivial. Let Ao = limsupA; = (] |J Ai. Then Ax€Goo, s0 P(Aw) is either zero or one.
1=0 i>1
However, P(|J A:) > P(A;) = pe, so P(Ax) > pe, and so P(Ae) = 1. -
>l
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On A, there are infinitely many i’s for which |X,(11)| will stay greater than 7 after
the first time that |X,(ll)| equals i. Thus, on Ay, the event {sup |X,(11)| = oo} implies the
event {lim inf |X,(,1)| =o00}. O

Lemma 3. P{sup |X,(ll)| = 00 and sup|X{P| < 0o} = 0.

Proof of Lemma 3. It is enough to show that, for each integer M > 0, P{sup ]X,(ll)| = 00
and sup |X7(,2)| < M} = 0. But at each time n that IX,(,I)I reaches a new maximum, the
(conditional, given the past) probability that |X 1(12_22 W X,(,2)| =2M is epr = 2[wo/{wy +
(2d — 1)wg}]*M, since this eps is the conditional probability that the next 2M steps will

all involve the second coordinate and will all be in the same direction. Thus,
P{sup|X{"| > i and sup |XP| < M} < (1 —em)’,

and so

P{sup|X{V| = 0o and sup |X?| < M} =0. O

Proof of Theorem 1. Again, suppose (in order to get a contradiction) that P(Ve) >
0 and P{X,(ll) visits zero finitely often } > 0. Lemmas 1, 2, and 3 together with the
exchangeability of the coordinates of X, imply that all coordinates diverge to oo in absolute
value a.s. on V. Since the —X,, process has the same distribution as the X, process,

X5 must be equally likely to diverge to —oo as to 400 on V. Hence,

(2.3) P{X{"| = 00, XD — —oco} = P{|XV| — 00, X{?) — +o0} = (1/2)P(Veo) > 0.

Now recall the randomization scheme in the proof of Lemma 2, involving the inde-
pendent U[0,1] r.v.’s U](-k). Let A;, A = limsup 4;,G; and G, be as before. Recall that
P(Ax) =1, so that

P{Aco, | XM| 5 00, X? = —00} = P{Aco, | XI| = 00, X - 400} >0 (2.4)



Let A} be the event { the U}k)’s, k > 1,7 > 1, are such that |X,(ll)| will (or would) stay
strictly greater than s after the first time that | X ,(11)| equals i and X{2 — +ooif |X,(,1)| ever
o0

equals i.} Define AY = limsupA} = (| |J A7}, and let AZ be defined analogously.
=0 2!

Then A7 €G;, so AL, € G, and likewise A7, € Goo. Since Go is trivial, the disjoint events

AY and A7 cannot both have positive probability. However,
{Aoo, | XV] = 00, X — —00} € Ay and {4e, | XP| = 00, XB — +o0} C AL,

so that (2.4) implies that both A and A} have positive probability. Hence, we have a

contradiction, and Theorem 1 is proved.OI
3. Remarks on Theorem 1

It is easy to find other RRW’s to which the symmetry arguments of Section 2 apply.
For instance, suppose that each edge e on the Z? nearest-neighbor graph has its own
random edge-weight sequence Wo(e), Wl(e), ... of positive random variables, with the edge-
weight sequences of different edges being independent replications of each other. (The
W,ge)’s for the same edge are not assumed independent.) Let F,,n > 0, be the o-algebra
generated by Xy,..., X, and by all the W,ge)’s (or by all the weights “seen” by time n).
Let (1.2) again define the transition probabilities. Call the resulting process RRW with
iid weight sequences. If either (1) Wl(e) is bounded or (2) Wo(e) is independent of the
remaining nge)’s, k > 1, for (the same) edge e, then the arguments of Section 2 carry over
with very little change, except that one needs additional U[0, 1] randomizers to generate

the weights one “z(1)-level” at a time.

One can also adopt the arguments of Section 2 to other sufficiently symmetric graphs.
For example, consider the “triangular” graph in two dimensions. (See Figure 1.) If
P{sup||X,]| = oo} > 0 for a sequence type RRW starting at the origin on this trian-
gular graph, then X, visits each of the “symmetry axes” L;, Ly, and L3 infinitely often,
a.s. Here is a sketch of the argument. Again, if P{X, visits L; finitely often } > 0, then
P{X, & L, alln > 1} > 0. Also, the distance from X,, to each L; diverges to infinity
a.s. on the event {sup||X,|| = co}. This implies that X, eventually stays in one of the

six 60° angles I, ..., VI between L;’s on the events {sup || X,|| = oo}, and the conditional



Figure 1.

probabilities for the angles must be equal, by symmetry. However, if we use independent
U|[0,1] randomizers Ul(i),Uz(i) in succession when the (absolute) distance of X, to Ly is
2, with G; and the trivial G, as before, then the events { distances to L;’s — oo, X,
eventually in I or VI }, { distances to L;’s — oo, X, eventually in Il or V }, and {
distances to L;’s — o0, X, eventually in III or IV } are disjoint G, events and so cannot

all have positive probability.

The argument sketched in the previous paragraph also works on the “honeycomb”

graph in two dimensions.
4. The Rubin Construction

Fix d > 1 and a weight sequence wg,k > 0. For each edge e connecting nearest
neighbors in Z¢, suppose we have a sequence of independent exponential random variables
Yo(e), Yl(e), ..., with E Yk(e) = w,?l. The sequences for different edges are to be indepen-
dent. Now construct a continuous-time random walk X¢,¢t > 0, on Z% as follows. Each
edge e has a clock which keeps track of how long the process has been in contact with edge

e since the last previous crossing of edge e. (The process X, is “in contact” with edge e
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whenever X is at one of the endpoints of e.) After an edge e has been crossed exactly
k times, its clock “sounds an alarm” (for the k + 1°° time) as soon as it equals Yk(e), at
which time X; jumps instantaneously across edge e and the clock for e is reset to zero.
Start with Xo = 0, and with all edge-clocks almost surely set at zero. Since the Yk(e)’s are
continuous and independent, different edge-clocks almost surely do not sound their alarms
simultaneously. It can happen that X, jumps infinitely often in finite time. Set X =0
if there are infinitely many jumps before time ¢. For the sake of being specific, make the

paths of X right-continuous in ¢.

Let Xn,n > 0, equal the position of X, after the n** jump. It should be obvious from
the independence of the Yk(e)’s and the fact that Yk(e) has a constant hazard rate equal to
wy, that the conditional transition probabilities of X, are given by (1.2). (Cf. Section 5
of Davis (1990).)

Finally, note that Yo(e), Yz(e), ... are the contact times for the first, third, ... crossings

of e. Thus, the “even” Yk(e) ’s are the contact times for the “odd” crossings of e.

5. Proof of Theorem 2

Theorem 1 implies P{limsupX,(ll) = —oo} = 0. Hence, P{sup x = oo} =1 will
follow if we can show P{limsup X Q. m} = 0 for all meZ. Theorem 2 will then follow

from the symmetry of X,, with respect to sign-change and coordinate interchange.

It is easy to see that P{limsup X ,(,1) =m, and X, visits infinitely many points in Z¢
with first coordinate m} = 0. The argument is similar to that of Lemma 3 above. If this

probability were positive, then P{ sup X,(Ll) = m, and X, visits infinitely many points
n>n*

in Z? with first coordinate m} would be positive for some n*. But this last probability

2

is obviously smaller than P{sup X5’ = m, and X,, visits at least i different points of

Z% with first coordinate m fc:lrzt:lhe first time after time n*}, which is less than or equal
to [1 — wo/{w1 + (2d — 1)wo]. (There is conditional probability we/{w; + (2d — 1)} that
the first coordinate of X 41 will equal m + 1 each time X, visits a new point with first
coordinate m.) Since this holds for all 7, the claim in the first sentence of this paragraph

follows.
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Theorem 2 will now follow if we can prove

(5.1) P{limsup X'V = m, X,, = ** infinitely often } = 0

** in Z? with first coordinate m. (5.1) can be proven without reference to

for all points @
the continuous-time RRW described above, but it seems easier to use X;. So, suppose that
X, and X, are constructed as in Section 4 using independent exponential Y(e) random

variables. Since E wz, = oo and E w,! 41 = 00, it is easy to see (from the Kolmogerov
£=0

“three series” theorem, say) that P{ Z YZ(,:) = o0} =1 and P{ E Yz(: 3_1 = o0} =1 for
k=0 k=0

every edge e.

On the event that a particular edge e is crossed inﬁnitely often by X, (or by X;),
the total time that Xt i1s in contact with e will be E Y(e) “0o0. If £ and y are the
endpoints of e, the total time in contact with e equals the total time at @ plus the total
time at y, so that the total time at  and/or the total time at ¥ must be infinite. If the
total time spent at @ is infinite, then all edges with endpoint £ must be crossed infinitely

often, since the total contact time for each such edge is infinity.

Again, let e* be a particular edge, with endpoints #* and y*. The probability is zero
that X, (or j(t) visits * infinitely often and eventually arrives at and leaves &* only by
jumping across e* from and to y*. Here’s why. On this event there would be some positive

oo .
integer-valued random variable J for which the total time at @* is at least either ) }’2(; )
k=J

or E 2 k +1 (For instance, if all but the first J — 1 departures from «* are across e* to
v*, w1th all of these subsequent departures being “odd” crossings of e*, then the total time
at ¢ is at least E 2(;: ).) But both of these sums are almost surely infinite whatever
the value of J, af:ijit was pointed out in the last paragraph that all edges touching «* are

crossed infinitely often if the total time at &* is infinite.

Now back to (5.1). The previous paragraph shows that X, cannot with positive
probability visit ** infinitely often by eventually arriving and departing only across the
edge e** between £** and its unique neighbor y** with first coordinate m — 1. But the
second to last paragraph shows that lim sup Xn 1 > (m + 1) almost surely when an edge
with both endpoints having first coordinate m is crossed infinitely often. (5.1) follows.

a
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6. Remarks related to Theorem 2

In this section, let G be a connected graph for which each vertex is on ﬁnitely many
edges, and suppose that for every edge e there i s an edge-weight sequence w, ), k>0, of

positive constants, with 2 (wgz))— = oo and Z (wgi)_i_l) ! = oo for every e.
k=0 =

For some G’s, the arguments of the previous section show that the corresponding
RRW will almost surely have infinite range if G is infinite and will visit all vertices of G
infinitely often in the case that G is finite. Let G be a finite proper subgraph of G, and
consider whether the edges of G could be precisely those edges which our RRW on G crosses
infinitely often. If G contains an edge with both endpoints on non-G edges, then the edges
crossed infinitely often cannot coincide with those of G (See the paragraph third from the
end of Section 5.), and likewise if G contains a vertex which is not part of any G-loop and
which is also on at least one non-G edge. In this second case, eventually all returns to the
designated vertex are across the same edge as the previous departure. An argument like
that of the second-to-last paragraph shows that the total time at the designated vertex is
oo if this vertex is visited infinitely often, which in turn implies that all adjoining edges are
crossed infinitely often. If these observations exclude all finite proper subgraphs of G, then
the RRW has infinite range for infinite G and visits all vertices infinitely often for finite G.
Examples of such G’s are (a) a triangle, a square, or any finite “cycle” (b) any tree and
(c) the nearest-neighbor graph on Z%. However, these arguments do not apply when G is
a triangle with a “hanging edge” attached to one corner. In this last case, the author has

not succeeded in proving that the hanging edge must be crossed infinitely often.

We conjecture that RRW on any G with edge-weights as described in the first para-
graph is either a.s. recurrent or a.s. transient. Here, recurrent means that every vertex of
G is visited infinitely often, and transient means that no vertex of G is visited infinitely

often. This result is easy to prove on Z. To wit,

Theorem 6. For each edge e connecting nearest neighbors in Z let w(e),k =0,1,...
be a sequence of positive edge-weights. If Z (wg )y™' = 0o and Z (wéih_l)_l = oo for
every edge e, then either P{X, is recurrent } =1 or P{X, is tra,nszent } =1 for the

corresponding RRW on Z
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Proof of Theorem 6. Use the Rubin construction to get a continuous-time RRW X,.

Let zeZ,z > 0 say, with edge e~ between z and z — 1 and edge et between z and z + 1. If

X, visits z infinitely often, then X; must either jump across e~ from z to z — 1 infinitely

often, or across e’ from z to z + 1 infinitely often, or both. The total waiting time at =

for infinitely many jumps down to z — 1 is k§ Yz(,f_;i, and the total waiting time at z for
=0

infinitely many jumps up to z+1 is io: Yz(,: +). Since both sums are a.s. infinite, X; must

k=0
spend an infinite amount of time at z if it visits z infinitely often. But it follows that X,

must exit from z infinitely often in both directions if X; visits z infinitely often, entailing
that both z — 1 and = + 1 are visited infinitely often if = is. Thus, P{X, is recurrent }+
P{X, is transient } = 1.

Let G; be the o-algebra generated by the Yk(e)’s for edges to the right of 7 or to the
left of —i. Let Goo = () G¢. The event {X, is transient } is in the completion of the trivial

2
o-algebra G, so P{X, is transient } must be 0 or 1.0J

If {X,, visits @ infinitely often } implies {X,, visits y infinitely often } whenever y is
a nearest neighbor of @ in the graph G, then obviously

(6.1) P{X, is recurrent } + P{X, is transient } = 1.

5:) are the same for all edges and

This implication holds if the edge-weight sequences w
(e,

nondecreasing in k, with ) wk_1 = 0o. A weaker condition implying (6.1) is the following.
k=0

Define

(e)

vp(e) = max wy

where the maximum is over all edges e touching . Thus, vi() is the maximum k** edge-
oo
weight for the edges touching . Define ui(z) = max vj(®). Then Y {ur(®)} ! =0 isa
J= k=0
sufficient condition for { X, visits @ infinitely often} to imply { X, visits y infinitely often }
o0

for y a neighbor of ® (and so (6.1) must be true if > {ug(z)} ™' = oo for all z.) Here is
k=0

why. When the continuous-time RRW X, visits @ for the k** time, the crossing numbers
for all edges touching @ are 2k — 1 or less, and therefore all the edge-weights of these edges
are ugk—1(e) or less. It follows that the sojourn time of X; at @ between the k" arrival
and the k** departure is (conditionally, given the past) greater or equal to an exponential

random variable Z; with mean {usk—1(2)}~!/{#x-edges}, where the denominator is the
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o0 ]
number of edges touching . But Y {usr_1(2)}~! = 00, s0 Y Zx = o0, a.s. Hence if
=1 k=1
X, visits @ infinitely often, then X spends an infinite amount of time at &, and therefore
every edge touching & must be crossed infinitely often, since the total contact time for

each such edge is infinity.

7. Proof of Theorem 3

o0
Suppose that a sequence type RRW X, n > 0, with > wk_1 < oo is constructed as
k=0

described in Section 4 using independent exponential Yk(e) random variables. In this case
o0 oo

it is easy to see that P{ ) Yk(e) < 00} = 1 for every edge e. Furthermore, T(¢) = 3 Yk(e)

is a continuous random variable whose density is continuous and positive on (0, c0), and

the different T(¢)’s are independent.
Lemma 4. Under the conditions of Theorem 8§, P{sup || X,|| < oo} = 1.

Proof of Lemma 4. Whenever |X1(11)| hits a new maximum, there is some positive
conditional probability ¢ > 0 that X, will get stuck crossing one of the edges that it
o0

has just come into contact with for the first time. This is because a generic T' = ) Yj
k=0

e ,11,(4'1_3), where

has positive probability of being less than the minimum of Y7*, Yo(l),
Yy¥, and the Y:)(j) ’s are independent of T and of each other, Y}* 2 Yl(e), Yo(j) D Yo(e).
The T corresponds to the “total contact time” needed for X to cross a particular “new”
edge infinitely often. The Y;* corresponds to the Yl(e) for the edge just crossed when
|X,(,1)| hits its new maximum. The Yo(j Vg correspond to the Y})(e)’s for the other edges
adjacent to the one corresponding to T. Hence, P{sup IX,(ll) | > m} < e™!, and so
P{sup |X,(,1)| = oo} = 0. Since the same is true of the other coordinates, the Lemma

follows. a

By Lemma 4, the number of edges that X comes into contact with is a.s. finite. But
the “total contact time” T(®) needed to cross any edge e infinitely often is also a.s. finite.
Hence, X; will have infinitely many jumps in finite time, a.s. The idea behind Theorem 3
is that the “jump explosion” cannot with positive probability occur across several edges

simultaneously.
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Suppose Theorem 3 is false. By Lemma 4 there must be a finite connected graph G
consisting of 2 or more of the nearest-neighbor edges of Z¢ such that P{the edges that X,

crosses infinitely often are precisely those of G} > 0.

We show first that G cannot contain any cycles. Suppose first that G contains a
square with right side labelled as edge 1, top side as edge 2, left side as edge 3, and bottom
as edge 4. Whenever X, is on a corner of the square, it is in contact with one odd edge
and one even edge. If a “jump explosion” occurs simultaneously across all edges of the
square, it must be the case that T(!) 4- T®) = T(?) 4+ T4 where T is the T for edge j.
But this equality occurs with probability zero, since the T()’s are independent continuous
random variables. Likewise, any other cycle in G must be of even length, so it can be
decomposed into alternating “odd” and “even” edges. Whenever Xy is in contact with the
cycle, it is in contact with one “odd” edge and one “even” edge. If a jump explosion occurs
simultaneously across all edges of the cycle, the “total time in contact with the cycle” at
the time of the explosion must simultaneously equal the sum of the “odd” T’s and the sum
of the “even” T’s. But these two sums are independent continuous random variables, so

they have probability zero of being equal.

We next show that G cannot be acyclic with 2 or more edges. If this were possible,
then there would exist an n* and a path (29 =0, @1,...,2}) with positive probability for
(Xo,- .., Xn+) with the following two properties. First, &+ is an “interior” point of G with
(at least) two G-edges ey and e; touching ®,+. Second, the conditional probability of the
event Epn« g 2 { X, crosses all edges of G infinitely often and no other edges whatsoever
after time n*, } given that (Xo,..., Xp+) = (2o, ...,&x+), is strictly positive. Note that on
Ep« G, the subsequent RRW X, n > n*, must visit @,« infinitely often, with all returns

to &,+ being across the same G-edge as the previous departure, since G is acyclic.

Let k; be the number of times that the path (@g,...,®,+) crosses e;, and likewise for
ke and e;. Take the situation after (Xo,..., Xp+) = (20,...,%,+) as the initial situation
for a Rubin construction as in Section 4 for the subsequent RRW X, n > n*. Call the
resulting continuous-time process Xt* , t > 0. (Note that 5(6“ = @,+.) In particular, let
Yk(ll),Yk(llip Yk(ll-)I-2’ ... be the independent exponential “contact times” between jumps for
edge e;. If X crosses only G-edges, then X} must be at .. for Yk(ll) units of time before
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jumping across e; for the first time, Xt* must then be at &,- for Yk(113_2 additional units of

time before the third jump across e;, and in general X { must be at &, for exactly Y,fll_)'_z p
time units between the (2j — 1)** and the (2j + 1)** jumps across e;. At the time of the

~ ~ o0
jump explosion for X}, X; must have been at @,» for precisely > Yk(llj_z j units of time if
Jj=0

Xt* is to cross e infinitely often without ever crossing any non-G edges. Likewise, X ; must
have been at «,» for precisely § Yk(f_)I_z ; units of time if X ¢ 1s to cross e; infinitely often
without ever crossing any non-]C_T"oedges. But these two sums are independent continuous
random variables, and so the probability that they are equal is zero. Furthermore, the
behavior of the successive positions of X is by construction the same as the behavior of
Xn, n 2 n*, given (Xo,...,Xn+) = (®0,...,%p+). Thus, the conditional probability of
Epnr g, given Xo, ..., Xp+) = (20,...,Ea), cannot be positive, and so G cannot be acyclic

(with 2 or more edges) either. The only remaining possibility is that X, eventually crosses

a single edge over and over again, so Theorem 3 is proved. O

8. Remarks on Theorem 3

Let G be any connected graph for which each vertex is on finitely many edges. Suppose

(e)
k

that for each edge e there is an edge-weight sequence w; ’, k > 0, of positive constants,

with § ('wgf))”1 < oo for each edge e. We conjecture that P{X, is transient} + P{X,
eventf;fly gets stuck crossing one edge} = 1 for the corresponding RRW on G. Again,
transience here means that no vertex is visited infinitely often. For finite G, the conjecture
reduces to P{ X, eventually gets stuck crossing one edge} = 1. For infinite G, if the number
of edges per vertex is bounded and if all edges have the same edge-weight sequence, then it
is easy to show that X, will a.s. visit finitely many vertices. (The argument is essentially
that of Lemma 4 in the previous section.) Hence, in this case as well the conjecture becomes

P{X, eventually gets stuck crossing one edge} = 1.

Here is a very simple unresolved special case of the above conjecture. Let G be
a triangle, and suppose that the three edges have a common edge-weight sequence wy,
k > 0, with § w,:l < oo. Show that the corresponding RRW X,, eventually gets stuck
on one edge,kz.os. The apparent difficulty of this problem is an indication of how crucial

the “even cycle length” property of the Z¢ graph was in the proof of Theorem 3.
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A situation where the arguments of the previous section do apply is the following.

Consider RRW X,, on Z¢, with different edges having different edge-weight sequences
oo

wsce), k>0 If E(wie))“l < oo for all e, then the proof of Theorem 3 shows that X,
k=0

gets stuck on one edge a.s. on the event {sup || X,|| < co}.
9. Proof of Theorem 4

Use independent exponential Yk(e) random variables to construct the corresponding

continuous-time RRW X t, t > 0, as described in Section 4.

oo o0
Lemma 5. Letx € Z% & # 0. If one of kz—:1 w,, and kE—:O w;kl_l_l is finite and one is

infinite, then Xy, t > 0, will a.s. spend (at most) a finite amount of time at x. Thus,
[ I( X = =) dt < oo, a.s.

o0 <
Proof of Lemma 5. Suppose that Y w;! = oo, Y w;kl_H < 00. Then for every edge e,
k=0 k=0

P{ Z YZ(,:) = oo} =1 and P{ Z 2(,3_1 < oo} = 1. Since X, = 0, and since the number
of edges touching x is 2d and therefore even, at least one of the edges touching = will
have been crossed an odd number of times whenever X is at . Hence, the total time at
z is bounded by the sum of all the “even crossing” waiting times Y2 r41 for all 2d edges

touching «. But this sum is finite, a.s.

The argument for the other case Z Wy, < 00, Y e, W 41 = 00 is exactly the same,

k=
except that one uses the fact that some edge touching & must have been crossed an even

number of times whenever X, is at . O

oo O
Proof of Theorem 4. If one of kzo w,, and kzo w5y q is finite and one is infinite, then

oo ~

the total time ), Yk(e) that X; must be in contact with an edge e to cross it infinitely
k=0

often is a.s. infinite. But Lemma 5 implies that the total time that X; is in contact with

an edge not touching the origin is a.s. finite. Hence, any edge not touching the origin will

be crossed only finitely often, a.s.

o0 oo
Ifd=1, Y w,} =ocoand }, wy,, < oo, then there will be some z > 0 for
k=0 k=0
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which Z YZ(,;_} < Y(e ). Here e~ is the edge between z — 1 and z, and e™ is the edge
between .’L‘ and z + 1. In fact, the events that different positive z’s have this property are
independent, with a common positive probability. But the RRW can never jump across et

to £ + 1 for such an z, so X;, — oo is impossible. Likewise X, — —oo is also impossible,

so P{X3, = 0 for all sufficiently large n} = 1.
Suppose d =1, . w;, < ocoand 3 w2—k1+1 = 00. Let e be the edge between 0
k=0 k=0

and 1, and let e; be the edge between 1 and 2. Then § Yz(,:_f_)l = oo and E (el) < 0.
But then X, cannot jump from 1 to 0 across ey 1nﬁn(1)tely often, since thls Would entail
X; being 1 for an infinite amount of time, while the total waiting time for infinitely many
jumps from 1 to 2 across e; is finite. Likewise, X, cannot jump from —1 to 0 infinitely

often either, so P{|X,| — oo} = 1.

[0 ] (e o]
Suppose now that d > 2, ) wz_kl = oo and Y, w2_k1+1 < o0o. Consider the random

variables E YZ(I:-?-)I for all the edges eq which touch the origin. Recall that these sum
k=

random variables are iid with a density strictly positive on (0 00). Thus, there is positive

probability that every edge e touching the origin has a E Y;(k_‘;_)l value which is smaller
k=

than the Yo(e*) values for all other edges e* sharing a non—origin endpoint with eg. This
would mean that the total “contact time” for all even crossings of eg is less than the
shortest “first crossing” contact time of any other edge e* with which e, shares a non-
origin endpoint. If this holds for all edges ey touching the origin, then X, will visit each
of the nearest neighbors of the origin for a finite but strictly positive amount of time and

will be at the origin otherwise.

Now suppose that d > 2, Z w,, < oo and Z w2k+1 = oo. There is positive
k=0

probability that after 4d steps X, will be back at the origin with every edge touching the
origin having been crossed exactly once. If this happens the situation is similar to that in
the preceding paragraph. There is positive conditional probability that the “total contact”
time for all remaining “odd crossings” of edges touching the origin is less than the smallest
“next crossing” contact time for all other adjacent edges. If this happens, X; will never

again cross any edge not touching the origin.
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Here is another and perhaps more interesting argument for why X has strictly positive
probability of eventually crossing only edges touching the origin for d > 2. Consider
sequence type RRW on a finite graph for which each vertex is on an even number of edges.
Under the “one sum finite, one sum infinite” condition on the weights, the same arguments
as above apply to show that with probability one eventually only edges touching the starting
point will be crossed. Now consider a finite subgraph of the Z? graph which (1) contains
all edges touching the origin and all adjacent edges and (2) has an even number of edges
touching each vertex. For some positive integer n*, there is positive probability ¢ that
RRW X, restricted to this subgraph will have X3, = 0 for all n > n*. But then a
likelihood ratio argument similar to the proof of Lemma 1 shows that unrestricted RRW

on Z% has probability at least 7«6 that X5, = 0, n > n*, where r,« is given in (2.2) O
10. Proof of Theorem 5

Let K,(e),l”z(e),}’;(e),... be as in the Rubin construction of Section 4. The “odd”
Yz(,:_)l_l’s will also end up being as in Section 4, but they will be constructed in terms of yet

other exponential random variables.

For each ordered pair of adjacent edges (e,e’) and each k = 0,1,..., let Zyx41(e,e’)
be an exponential random variable with mean (4d — 2)w,, k1+1' The different Zzx+1(e,e’)
random variables should be independent of each other and of the Yz(,f Vs, (In particular,
Zorv1(e,e') and Zaky1(€’,e) are iid, not equal.) Define Yz(,:il to be the minimum of the
4d — 2 different Z3+1(e, e')’s with e as the first element of the ordered pair of edges. Then
the Y;,:_)}_l’s are independent exponential random variables with YZ(:_)H having mean w, kl 1
agreeing with the set-up in Section 4. Let X, t > 0, be the resulting continuous-time

RRW.

Now, call an edge e’ not touching the origin “closed” if
, oo
(10.1) Y >3 Zorsale, ),
e k=0

where the first sum is over the edges e adjacent to e'. Otherwise, call e’ “open”. (This
usage of “open” and “closed” corresponds to the lingo of percolation theory.) Note that

different edges e’ are independent when it comes to being open and closed. Condition
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(1.3) says that the probability of an edge being open is less than the critical probability

for dimension d, so with probability one there is no infinite open path.

Since Y, k-)H < Zsi+1(e, €'), condition (10.1) for an edge e’ not touching the origin to

be closed implies

(10.2) Yo(el) > Z Z Yz(:-)H7
e k=0

where the first sum is again over all edges e adjacent to €'. Recall from the last section
that whenever X, is in contact with an endpoint of €', there is an edge adjacent to this
endpoint which has been crossed an odd number of times. If e/ has never been crossed,
this “odd” edge must of course be one adjacent to e’, not e’ itself. But (10.2) says that the
sum of the total contact times for all even crossings of these adjacent edges is less than the
contact time for the first crossing of e’. It follows that X; can never cross a closed edge €',
since it cannot stay in contact with e’ long enough. Since there are no infinite open paths
a.s., there are only finitely many edges which X; will ever cross at all. Theorem 4 tells us
that any edge not touching the origin will only be crossed finitely often, so eventually only

edges touching the origin will be crossed. O
11. Remarks on Theorems 4 and 5

We conjecture that P{ X5, = 0 for all sufﬁciently large n} = 1 for d = 2 in Theorem 4.
This conjecture may be more plausible in the E wyl = 0o, E wy 1 < oo case than in

k=0 k=0
the other.

A fascinating RRW of sorts on Z2 related to the E w5 < oo, E Wy 41 = 0o case
of Theorem 4 has apparently been considered before. Suppose that wo =1 and w; = 0.
The resulting RRW X, might be called “erasing random walk”, since edges are “erased”
as they are crossed. According to Greg Lawler (personal communication), it has been
conjectured that this X, process on Z? always ends up at the starting point (without loss
of generality the origin) with all edges out erased. Here are two simple observations which
make this conjecture more plausible than it might seem initially. First, the process cannot

”

“get stuck” without a way out at any point of Z? except for the origin. This is because

each point of ZZ% is on four edges, and for £ # 0, the process must have crossed either
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one or three of the edges touching & whenever X, is at ®. (Either “in” or “in-out-in”.)
Second, there is always an “open” path back to the origin whenever the X,, # 0. This is
because any finite path for this X,, can be embedded in a large finite subgraph G of the Z2
graph, with G having the property that all vertices of G lie on an even number of G-edges.
(You can take G to be a “box” with a “fringe” of loops added to the edge.) But erasing
random walk on a finite graph must get stuck somewhere, and by the first observation it
can’t get stuck anywhere but at the starting point if all vertices are on an even number of

edges.

An obvious conjecture for d > 3 is that “erasing random walk” has a strictly positive

probability of never returning to the origin.
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