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1. Introduction

The problem of testing statistical hypotheses has been one of the focal points
for disagreement between Bayesians and Frequentists. The classical Frequentist
approach constructs a rejection region and reports associated error probabilities.
Incorrect rejection of the null hypothesis Hy, the Type I error, has probability o,
and incorrect acceptance of Hy, the Type II error, has probability 8. This tra-
ditional (a, 3)-Frequentist approach has been criticized for reporting error proba-
bilities that are independent of the given data. Thus a common alternative is to
use the P-value as a data-dependent measure of the strength of evidence against
the null hypothesis Hy. But the P-value is not a true frequentist measure and has
its own shortcomings as a measure of evidence. Edwards, Lindman, and Savage
(1963), Berger and Sellke (1987), Berger and Delampady (1987) and Delampady
and Berger (1990) have reviewed the practicality of the P-value and explored the
dramatic conflict between the P-value and other data-dependent measures of ev-
idence. Indeed, they demonstrate that the P-value can be highly misleading as a
measure of the evidence provided by the data against the null hypothesis. Because
this point is of central importance in motivating the need for the development here,

we digress with an illustration of the problem.

Hllustration 1: Suppose that one faces a long series of exploratory tests of possible
new drugs for AIDS. We presume that some percentage of this series of drugs are
essentially ineffective. (Below, we will imagine this percentage to be 50%, but the
same point could be made with any given percentage.) Each drug is tested in an
independent experiment, corresponding to a test of no treatment effect based on
normal data. For each drug, the P-value is computed, and those with P-values
smaller than 0.05 are deemed to be effective. (This is perhaps an unfair caricature
of standard practice, but that is not relevant to the point we are trying to make

about P-values.)

Suppose a doctor reads the results of the published studies, but feels confused
about the meaning of P-values. (Let us even assume here that all studies are
published, whether they obtain statistical significance or not; the real situation of
publication selection bias only worsens the situation.) So, in hopes of achieving a
better understanding, the doctor asks the resident statistician to answer a simple
question: “A number of these published studies have P-values that are between

0.04 and 0.05; of those, what fraction of the corresponding drugs are ineffective?”

The statistician cannot provide a firm answer to this question, but can provide
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useful bounds if the doctor is willing to postulate a prior opinion that a certain
percentage of the drugs being originally tested (say, 50%, as mentioned above)
were ineffective. In particular, it is then the case that at least 23% of the drugs
having P-values between 0.04 and 0.05 are ineffective, and in practice typically
50% or more will be ineffective (see Berger and Sellke, 1987). Relating to this last
number, the doctor concludes: “So if I start out believing that a certain percentage
of the drugs will be ineffective, then a P-value near 0.05 does not change my opinion
much at all; I should still think that about the same percentage of those with a

P-value near 0.05 are ineffective.” That is an essentially correct interpretation.

We cast this discussion in a frequentist framework to emphasize that this is a
fundamental fact about P-values; in situations such as that here, involving testing a
precise null hypothesis, a P-value of 0.05 essentially does not provide any evidence
against the null hypothesis. Note, however, that the situation is quite different in
situations where there is not a precise null hypothesis; then it will often be the case
that only about 1 out of 20 of the drugs with a P-value of 0.05 will be ineffective,
assuming that the initial percentage of ineffective drugs is again 50% (cf., Casella
and Berger, 1987). In a sense though, this only acerbates the problem; it implies
that the interpretation of P-values will change drastically from problem to problem,

making them highly questionable as a useful tool for statistical communication.

To rectify these deficiencies, there have been many attempts to modify the clas-
sical Frequentist approach by incorporating data-dependent procedures which are
based on conditioning. Earlier works in this direction are summarized in Kiefer
(1977) and in Berger and Wolpert (1988). In a seminal series of papers, Kiefer
(1975, 1976, 1977) and Brownie and Kiefer (1977), the Conditional Frequentist ap-
proach was formalized. The basic idea behind this approach is to condition on a
statistic measuring the evidential strength of the data, and then to provide error
probabilities conditional on the observed value of this statistic. Unfortunately, the
approach never achieved substantial popularity, in part because of the difficulty of

choosing the statistic upon which to condition (cf., the Discussion of Kiefer, 1977).

A prominent alternative approach to testing is the Bayesian approach, which is
based on the most extreme form of conditioning, namely conditioning on the given
data. There have been many attempts (see, for example, Good, 1992) to suggest
compromises between the Bayesian and the Frequentist approaches. However, these
compromises have not been adopted by practitioners of statistical analysis, perhaps

because they lacked a complete justification from either perspective.
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Recently, Berger, Brown and Wolpert (1994) - henceforth, BBW - considered
the testing of simple versus simple hypotheses and showed that the Conditional
Frequentist method can be made exactly equivalent to the Bayesian method. This
was done by finding a conditioning statistic which allows an agreement between the
two approaches. The surprising aspect of this result is not that both the Bayesian
and the Conditional Frequentist might have the same decision rule for rejecting
or accepting the null hypothesis (this is not so uncommon), but rather that they
will report the same (conditional) error probabilities upon rejecting or accepting.
That is, the error probabilities reported by the Conditional Frequentist using the
proposed conditioning strategy are the same as the posterior probabilities of the

relevant errors reported by the Bayesian.

The appeal of such a testing procedure is evident. The proposed test and the sug-
gested conditioning strategy do not comprise a compromise between the Bayesian
and the Frequentist approaches, but rather indicate that there is a way of testing
that is simultaneously frequentist and Bayesian. The advantages of this “unifica-
tion” include the following;:

(i) Data-dependent error probabilities are utilized, overcoming the chief objection
to (a, ) — Frequentist testing. And these are true error probabilities, and

hence do not suffer the type of misinterpretation that can arise with P-values.

(i) Many statisticians are comfortable with a procedure only when it has simul-
taneous Bayesian and frequentist justifications. The testing procedure we
propose, for testing a simple null hypothesis versus a composite alternative, is
the first we know of that possesses this simultaneous interpretation (for this
problem).

(iii) A severe pedagogical problem is the common misinterpretation among practi-
tioners of frequentist error probabilities as posterior probabilities of hypothe-
ses. By using a procedure for which the two are equivalent, this concern is

obviated.

(iv) Since the approach is Bayesianly justifiable, one can take advantage of nu-
merous Bayesian simplifications. For instance, the stopping rule (in, say, a,'
clinical trial) does not affect the reported error probabilities; hence one does
not need to embark upon the difficult (and controversial) path of judging how
to “spend a” for “looks at the data.” (A full discussion of sequential aspects
of the procedure would be too lengthy. See BBW for discussion in the simple

versus simple case; we will report on the sequential situation for composite
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hypotheses in a later paper.)

Most “Bayesian-Frequentist agreement” articles end up arguing that the “clas-
sical” procedures being used today are satisfactory from either viewpoint. It is
noteworthy that this is not the case here. In effect, we argue that the Bayesian
procedure is correct, in part because it has a very sensible conditional frequentist
interpretation; but this procedure is very different than what is typically used in
practice. Hence we are proposing a serious change in practical statistical method-
ology.

The general development given later may appear to be somewhat involved tech-
nically, but the new tests that result are often quite simple. To illustrate this, as
well as some of the comparison issues mentioned above, we end the introduction

with an example.

Example 1.

Suppose that X;,X>,...,X, are n 1i.d. random variables from a normal dis-
tribution having unknown mean # and known variance o2, (ie. the N(f,0?)
distribution) and denote by Xn = > X;/n their average; thus X, ~N(0,06%/n).
Based on the observed value Z, of X, , we are interested in testing Hp : § = 6y
versus Hy : 6 # 6,. Consider the following three testing procedures, defined in
terms of the standard statistic ¢t = \/n(Z, — 60)/o.

Classical Frequentist Test:

[if |t| > tas2,  reject Ho and report error probability a,

¢ { if |t| <tq/2, accept Ho and report error probability £(6),
where a and ((6) are the probabilities of Type I and Type II error and t,/z: is
the usual critical value. Since B(6) depends on the unknown #, it is common to
choose a “subjectively important” value of 6 (or two) and report g at that (or
those) points.
P -value Test:

{ if [t| > to/2, reject Ho and report the P-value p = 2(1 — ®({¢|),

if |t| < to/2,  do not reject Ho and report p;

P .

here, and in the sequel, ® denotes the standard normal c.d.f. whose p.d.f. is
denoted by ¢. Typically in such a test, a = 0.05 is chosen.
A New Conditional Test:

if B(t) <1, reject Hy and report error probability o* = B(t)/(1 + B(t)),
Ty : ¢ if 1 < B(t) <a, make no decision,
if B(t) > a, accept Hy and report error probability f* = 1/(1 + B(t)),
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where B(t) = /1 +2n exp{—t?/(2+n~')} and a is a constant defined in (4.7); a
good approximation to a is a = log(5n) —loglog(1l + 2n). As we will see later, o*
and B* have a dual interpretation as (i) (conditional) frequentist Type I and Type
II error probabilities and (ii) the posterior probabilities of Hy and Hy, respectively.

To see these three tests in action, suppose n =20, 6 = 0,02 = 1,a = 0.05 for
Tc and Tp, and 8 = 1 is deemed to be of interest for Type II error under T¢.
Table 1 summarizes the conclusions from each test for various values of ¢. Note

that ¢,/ = 1.96 and a = 3.26.

Values of [¢| Tc Tp Tf
_____ 0 — p=1 B* =0.135
(A(1) = 0.006)
acceptance 1 — p=0.317 g* = 0.203

region 1.18 —
No Decision Region

— — — —1.96— _p=005 _|___ o*=0496 ___
rejection g | (=005 p = 0.0026 a* = 0.074
region
4 — p = 0.0000 o* = 0.0026

Table 1. Conclusions from the classical, P-value, and conditional tests
when n = 20 and o = 0.05.

The acceptance and rejection regions of all three tests are the same, except that
Ty makes no decision when 1.18 < |t| < 1.96. (This agreement is a convenient
coincidence for this illustration, but will not happen in general.) The differences
between the tests, therefore, are in the “error probabilities” that are reported.

Compare, first, Tc and T}. The error probabilities for T¢ are fixed, while
those for T} vary with |t|. In the rejection region, for instance, T¢ always reports
a = 0.05, while T} reports error probabilities ranging from nearly 1/2 (when
|t| = 1.96) to a* = 0.0026 (when [t| =4). The variability in the reports for Ty is
clearly appealing.

Compare, next, Tp and T} . An immediate advantage of T} is that it can “ac-
cept” Hy, with specified error probability, while the P-value (or 1 — p) is in no
sense an error probability for acceptance (see the articles mentioned at the begin-
ning of the Introduction for discussion). In the rejection region, p does vary with
|t[, but it is smaller than a* by a factor of at least 10. Since we will argue that

a* is a sensible conditional error probability, this discrepancy provides further evi-
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dence that P-values can be highly misleading (if interpreted as error probabilities).
Indeed, in the situation of Illustration 1, note that a* = 0.496 (for those drugs
where the P-value is 0.05), which would correctly reflect the fact that, typically,
about 50% of these drugs will still be ineffective.

A comment is in order about the “no-decision” region in T} . In practice the no-
decision region is typically innocuous, corresponding to a region in which virtually
no statistician would feel that the evidence is strong enough for a conclusive deci-
sion. The no-decision region could be eliminated, but at the expense of introducing
some counter-intuitive properties of the test. Indeed, when this is more fully dis-
cussed in section 2.4, it will be observed that even unconditional frequentists should

probably introduce a no-decision region to avoid paradoxical behavior.

2. Notation and the “simple” hypotheses case

2.1 The Frequentist and Conditional Frequentist approaches
Suppose we observe the realization z of the random variable X € A and wish

to test the following “simple” hypotheses:
(2.1) Hy: X ~mp(z) versus Hy: X ~my(z),

where my and m; are two specified probability density functions (p.d.f.). We

denote by

(2.2) B(z) =

the Lkelihood ratio of Hy to H, (or equivalently the Bayes factor in favor of Hy).
Let Fy and Fy be the c.d.f.s of B(X) under Hp and Hy, respectively (under my
and m;, respectively). For simplicity, we assume in the following that their inverses
Fo"1 and F1_1 exist. The decision to either reject or accept Hy will depend on the
observed value of B(z), where small values of B(z) correspond to rejection of Hp.

For the traditional Frequentist the classical most powerful test of the simple

hypotheses (2.4) is determined by some critical value c such that,

(2.3) { if B(z) <c, reject Hy

if B(z) > ¢, accept Hy .

Corresponding to the test (2.3), the Frequentist reports the Type I and Type 1I
errors probabilities as o = Py(B(X) < ¢) = Fy(c) and f = Pi(B(X) > ¢) =
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1 — Fi(c). For the standard equal-tailed test with o = 3, the critical value ¢
satisfies Fo(c) =1 — Fi(c).

The Conditional Frequentist approach allows the reporting of data—dependent
error probabilities. In this approach, one considers some statistic S(X), where
larger values of S(X) indicate data with greater evidentiary strength (for, or
against, Hy ), and then reports error probabilities conditional on S(X) = s, where
s denotes the observed value of S(X). For the test (2.3), the resulting conditional

error probabilities are given by
a(s) =Pr(Type I error |S(X) = s) = Py(B(X) < c|S(X) = s)

(2.4)
B(s) =Pr(Type II error |S(X) = s) = Pi(B(X) > ¢|S(X) = s).

Thus, for the Conditional Frequentist, the test (2.3) of these simple hypotheses
becomes
(2.5) { if B(z) < c, reject Hy and report conditional error probability a(s)

if B(z) > ¢, accept Hy and report conditional error probability B(s).

Of course, one is always free to report both a(s) and f(s); and indeed the entire
functions «(-) and B(-), if desired.

Example 2.
Suppose X > 0 and we wish to test

1
Hy: X ~e ®versus H; : X ~ 58—1/2'

Then B(z) = 2¢~%/2. If we choose ¢ = 1 in (2.3), the error probabilities of this
unconditional test are a = 0.25 and § = 0.5.

An interesting statistic for formation of a conditional test is S(X) = |B(X)—1]|.
Clearly S is between 0 and 1, and larger values of S correspond to data providing
greater evidence for, or against, Hy. Furthermore, S(X) is an ancillary statistic,
having a uniform distribution on (0,1) under either hypothesis. (Conditioning on
ancillary statistics is, of course, quite common.)

Computing the conditional Type I and Type II errors in (2.4) is easy because
{X : S(X) = s} is just a two point set. Calculation then yields, as the Conditional
Frequentist test (2.5),

(2.6) if B(z) <1, reject Hy and report conditional error probability o(s) = B(z)/2
) if B(z) > 1, accept Ho and report conditional error probability 8(s) = 0.5.

It is interesting that only the conditional Type I error varies with the data.
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It is actually quite rare for there to be suitable ancillary statistics upon which
to condition, as in Example 2. (For some other situations in which this occurs,
see BBW.) Hence we will employ a different (and more Bayesian) strategy for
determining a suitable conditioning statistic. We return to the issue of ancillarity

in section 5.

2.2 The Bayesian approach
In Bayesian testing of the above hypotheses, one usually specifies the prior prob-
abilities, my for Hy being true and 1 — mg for H; being true. Then the posterior

probability (given the data) of Hy being true is

(1—7('0) 1

(2.7) Pr(Holz)=[1+ — B—(x—)—] -1

To a Bayesian, B(z) in (2.2) is the Bayes factor in favor of Hoy, which is often
viewed as the odds of Hy to H, arising from the data; /(1 — 7o) is the prior
odds. Clearly, small observed values of B(X) suggest rejection of Hp.

When no specific prior probabilities of the hypotheses are available, it is intu-
itively appealing to choose mp = % in (2.7). We will use this default choice in
the remainder of the paper (although generalizations to other 7, are possible, fol-
lowing the approach in BBW). With this default prior probability, the posterior
probability in (2.7) becomes

. _ __B(=)
(2.8) a*(B(z)) = Pr(Hol|z) = T+ B(2)
and the posterior probability that H; is true is

* . _ 1
(2.9) B*(B(z)) = Pr(H|z) = 17 B(2) B)’

The standard Bayesian test for this situation can then be written as

T, - { if B(z) < 1, reject Hy and report the posterior probability a*(B(z))
! if B(z) > 1, accept Hy and report the posterior probability B*(B(z))-

(This is, indeed, the optimal Bayesian test if “0—1” loss is used; again, other losses
could be considered, following the lines of BBW.)



2.3 The modified Bayesian test.

The formal similarities between the conditional Frequentist test (2.5) and the
test T; are quite pronounced. In fact, BBW have shown that T; can be given
a meaningful conditional Frequentist interpretation, when testing simple versus
simple hypotheses. They modified the test T1 to include a no decision region and
suggested a conditioning strategy under which the conditional Frequentist test will
agree with this modified Bayesian test.

For any b > 0, let 1(b) = F; (1 — Fi(b)) with %~1(b) = F{'(1 — Fy(b)) and
define

r=1 and a=9¢(1) if $(1)2>1

(2.10)
r=1%"11) and a=1 if ¥(1)< 1.

Consider the test of Hy versus H; given by
if B(z) <, reject Hy and report the conditional error probability a‘*(B(:c));
T : if r < B(z) < a, make no decision;
if B(z) > a, accept Hy and report the conditional error probability [*(B(z)).
The “surprise” observed in BBW (see also Wolpert, 1995) is that Ty is also a

conditional frequentist test, drising from use of the conditioning statistic
(2.11) S(X) = min{B(X), p~'(BCO)},

over the domain X* = {X : 0 < S(X) <r}. (The complement of A'* is the no-
decision region.) Thus, the Conditional Frequentist who uses the acceptance and
rejection regions in T}, along with the conditioning statistic in (2.11), will report
conditional error probabilities upon accepting or rejecting which are in complete
agreement with the Bayesian posterior probabilities. That is, a(s) = a*(B) and
8(s) = *(B).

The main justification for using (2.11) as the conditioning statistic is that it
results in all the desirable consequences discussed in the Introduction. In general
it is not an ancillary statistic (except under the “symmetry” condition discussed in

BBW). We delay further discussion until section 5.

Example 2 (continued).
Simple computation yields ¥(b) = 24/1 — /2, so ¥(1) =+/2 > 1. Hence r =1
and a = V2, so that the no-decision region is the interval (1, v2). The reported

error probabilities, upon rejection or acceptance, are again given by (2.8) and (2.9).
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2.4 The “No-Decision” Region and Alternate Tests.

The no decision region in the new testing procedure can be a source of criticism.
Note that, without the no decision region, T} would be the optimal Bayes test T
for a Bayesian (who assumes equal prior probabilities of the hypotheses as well as
“0—1” loss). In a sense, the no decision region is the “price” that must be paid in
order to have a valid conditional frequentist interpretation for the optimal Bayes
test. Thus, the “size” of the no decision region is a particularly important feature
to study.

We will see considerable numerical evidence that the no decision region is typi-
cally rather small, containing only moderate B(z) that would rarely be considered
to be strong evidence. Furthermore, when the data consists of n iid. observations
from my or m;, the probability content of the no-decision region decays expo-
nentially fast to zero (under either hypothesis). To be more precise, from a large
deviation result (cf. Chernoff, 1972, pp. 44) it follows immediately that, for the

test TT,

nl

P;(“no decision region”) ~ e~ " — 0,

for : = 0,1, as n — oo, where

I= —logoértlg1 /mf)(m)mi_t(a:)d:z.

It should also be clear, from (2.10), that the no decision region disappears whenever
Fy(1) = 1 — Fi(1), in which case r = a = 1. This can happen in cases with
Likelihood Ratio Symmetry (for definition and discussion see BBW).

The no-decision region in T} could be eliminated. An alternative test without

such a region, that was proposed in BBW, is

T . { if B(z) <c¢, reject Hy and report the conditional error probability o*(B(z));

2 if B(z) > ¢, accept Hy and report the conditional error probability 5*(B(z));

here the “critical value” ¢ is the solution to Fy(c) = 1 — Fi(c) (i.e., the critical
value for the classical test with equal error probabilities).

The reason we prefer T} to T} is that, from a Bayesian perspective, it is not
sensible to accept or reject when the odds favor the opposite action (at least if
the hypotheses have equal prior probabilities and the losses of incorrect actions are
equal, as we are assuming). Suppose, for instance, that ¢ = 5. Then T3 would
“reject Ho” when B(z) = 4, even though B(z) = 4 would typically be interpreted
(by a Bayesian) as 4 to 1 evidence in favor of Hy. For a Bayesian, the inclusion

of the no decision region prevents this counterintuitive behavior from occurring.
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Even for a classical frequentist, the inclusion of a no decision region helps al-
leviate some paradoxical behavior of the unconditional test. To see this, consider
two traditional (unconditional) statisticians, A and B, who intend, based on the
same observation z on X, to construct a size o most powerful test (as given in
(2.3)) for testing whether X ~ mg(z) or X ~ my(z). Further, suppose that both
statisticians are indifferent to the choice of the p.d.f. for the null hypothesis.

e Statistician A chooses the hypotheses to be
HA: X ~mo(z) vs. HE: X ~m(z),

and constructs the size a most powerful test as:

{ if B(z) < co, reject HP
if B(z) > co, accept H |

where the critical value ¢o is determined by the equation Fy(co) = a.

o Statistician B chooses the hypotheses to be
HB: X ~my(z) vs. HE: X ~mo(z),

and constructs the size ‘'« most powerful test as:

{ if B(z) > ¢, reject HE
if B(z) < ¢1, accept HE |

where, in this case, the critical value ¢; is determined by the equation 1 —
Fi(e1) = a. Here, as in (2.2), B(z) = mo(z)/m1(z).

The difficulty arises whenever ¢y # ¢;, in which case the set
{z: min(co,c1) < B(z) < max(co,c1) }

is not empty. This set is the set of disagreement between the two statisticians,
where they will reach different conclusions. This is troubling if their initial feelings
about the two hypotheses were symmetric, is terms of (say) loss and believability,
and if they felt required to use (say) a specified Type I error «.

This conflict can easily be resolved, however, if one is willing to modify the
classical test in (2.3) to incorporate the possibility of no-decision. With this in

mind, let 7¢ = min(co,c;) and ag = max(cg,c1); then the modification of the

12



classical test (2.3) for the simple hypotheses (2.1), which includes a no decision
region, is:

if B(z) < rq, reject Hy;

if ro < B(z) < ao, make no decision;

if B(z) > ao, accept Hp .

Another way of saying this is that, if it is desired to treat mo and m; symmetrically,
with error probabilities of Type I and Type II both to equal a specified o, then

introduction of a no-decision region is necessary.

Example 2 (continued).

With a predetermined and desired probability a of the Type I error, simple
calculations yield ¢p = 2¢/a, and ¢; = 2(1 — a). The disagreement region between
statisticians A and B disappears only with a = 0.3819, at which point ¢y = ¢; =
1.2360. This, of course, would also be the “critical value” used in the alternative
test T%. With a = 0.25, the disagreement region between the two statisticians is
(ro, ao) = (1, 1.5) , somewhat larger than the no decision region (1, v/2) obtained
in T}. Observe that, as a decreases, the disagreement region increases in size. For

instance, with a = 0.05, this region is (0.4472, 1.9).

3. Testing a composite hypothesis.

The test T] can also be used in the composite hypothesis case. Suppose we
observe the realization, z, of the random variable X € X from a density f(z|f),
with 6 being an unknown element of the parameter space ©. In the sequel, we let
Py(-) denote conditional probability given § € ©. Consider the problem of testing

simple versus composite hypotheses as given by
(3.1) Hy: 6 =06, versus Hy: 0 € O,

where 6y ¢ ©; C ©. Often we will take ©; to be ©; = {# € © : 0 # 6o}.
As in Section 2.2, we assume the default prior probability mp = —;— for the simple
hypothesis Hy : § = 6, while assigning to Oy the prior density g(6)/2, where g isa
proper p.d.f. over ©;. We observe, in passing, that testing a point null hypothesis
should typically be thought of as an approximation to testing the more realistic
hypothesis Ho : |6 — 6p| < € for some small € > 0 (cf., Berger and Delampady,
1987).
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For this case, the Bayes factor in favor of Hy is exactly as given in (2.2), i.e.

B(z) = mo(z)/m1(z), but now with me(z) = f(x|6) and
(32 mi(e) = [ falo)o(6)ds

Note that m; and mg are the marginal densities of X conditional on H; and Hp
being true, respectively. (For a Frequentist, ¢ might be thought of as a weight
function which allows computation of an average likelihood for H;, namely, mi(z)
in (3.2).) For a Bayesian, the test of (3.1) can thus be reduced to the equivalent test
of the “simple” hypotheses Hy : X ~ mo(z) versus Hy : X ~ my(z). Hence,
modulo the no decision region, the modified Bayesian test, T}, is the natural
Bayesian test of the hypotheses in (3.1).

For the Conditional Frequentist who wishes to test Hg : § = 6 against H; : 0 €

©,, the conditional error probabilities arising from (2.4) would be

(3.3) a(s) = Py, (rejecting Hy |S(X) = s),
and
(3.4) B(8)s) = Ps(accepting Hy |S(X)=s).

One should observe that, since H; in (3.1) is a composite hypothesis, the condi-
tional probability of type II error is a function of 6, analogous to one minus the
power function in classical statistics. In the following Theorem, we show that T7

still defines a type of valid conditional frequentist test for this situation.

Theorem 1. For the test T; of the hypotheses (3.1) and the conditioning statistic
given in (2.11), a(s) = a*(B) (defined by (2.8)) and

(3.5) E*CIp(6]s)] = 6*(B),

where g(6|s) denotes the posterior p.d.f. of § conditional on H, being true and on
the observed value of S(X).

The equality of a(s) and a*(B) in the above theorem was, in a sense, our
primary goal: the conditional Type I error probability and the posterior probability
of Hy areequal. Since Type [ error is (rightly or wrongly) perceived to be of primary
interest in classical statistics, the agreement of the two reports for the suggested

procedure is, perhaps, crucial to its acceptance.
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The situation for Type II error is more complicated because the frequentist
probability of Type II error necessarily depends on the unknown @, while 8*(B),
the posterior probability of Hj, is necessarily a fixed number. The relationship
in (3.5) between $*(B) and the conditional frequentist Type II error probability,
B(8]s), is however, quite natural: §*(B) can be interpreted as the average of the
conditional Type II error probabilities, with the average being with respect to the
posterior distribution of 6 given s. Intuitively, this averaging is a considerable
improvement over the common classical practice of simply picking a plausible value
of 8 and reporting the power at that value.

Of course, there is nothing to prevent a frequentist from reporting the entire
function B(6|s) (or the conditional power function, 1 — 3(6]s)). Indeed, one might
argue that this is beneficial if the prior distribution has been chosen in a “default”
fashion (cf. Jeffreys, 1961), since alternative “averages” of A(6|s) might be desired.
In practice, however, the simplicity of just reporting #*(B) will probably be hard
to resist.

There is one oddity here from a Bayesian perspective. It is that §*(B) is not
the average Type II error with respect to the posterior distribution of 6 given
H; and the data, but is instead the average Type II error with respect to the
posterior distribution given H; and given S = s. The difference between these
two posteriors is typically not too great, however. In any case, conditioning on S
is, in a sense, the most conditioning that is allowed for a frequentist and, from the

Bayesian perspective, the final answer, 8*(B), is fine.

4. Some applications

We present several applications to standard testing problems. To simplify the
notation, we let, in this section, a*(z) = a*(B(z)) = B(z)/(1+ B(z)) and f*(z) =
B*(B(z)) =1/(1 + B(2)).

Example 3: (Two-sided Normal Testing)
We consider the same basic setup of Example 1: based on X, ~ N (6,0%/n), o*

known, we wish to test
(4.1) Hy: 0 =0y versus Hy: 6 # 6y,

for some specified value of ;. A natural choice of the conditional prior (given

H, is true) for @ over the set ©; = {# # 6} is a conjugate prior. Hence we
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assume that ¢ in (3.2) is the A (u, ko?) p.df. Here p and k are assumed to be
known. The parameter u is the conditional prior mean of 8, given H; is true. This
allows, under H;, a measurable shift of the conditional prior p.d.f. of § away from
Hy. Let A = (6p — p)/Vko. When A = 0, the prior p.d.f. is symmetric about
6,. This choice of A is often considered as the default choice for applications,
and was used in Example 1. Also in Example 1, the default choice of k = 2 was
made; the resulting M(0,202) prior is similar to the Cauchy (0,¢?) default prior
recommended by Jeffreys (1961).

As before, we let ¢ denote the standard test statistic, t = \/n(Zn, — 6o)/0. It is
easy to verify that the (conditional) marginal p.d.fs. of ¢ corresponding to Hp and

H; , respectively, are

(42) mo(t) = $() = jgp {—%}

‘and
_ 1 —(t + VknA)?
(4.3) m(t) = N NEA T exp{ ST+ k) } :

Combining (4.2) and (4.3) in (2.2), it follows immediately that the Bayes factor in

favor of Hy is

kn A, A
T ) +’2‘}'

(4.4) B(t) = V1 + knexp {

It can be shown that, in the present case, (1) > 1, so that r = 1 and a =
¥(1) = Fy ' (1— Fi(1)) in (2.10). Hence the no decision region in T7 is of the form
(1,a). Accordingly, letting CEP denote Conditional Error Probability, the testing

procedure T7 is,

if B(t) < 1, reject Hy and report the CEP a*(t) = ?1(3?%;
(45) Ti: if 1 < B(t) < a, make no decision;
if B(t) > a, accept Hy and report the CEP f*(t) = m?lm.

In this case, no explicit expression for the critical value a is available, but a can
be found using the following set of equations. For any b > 0, let tl:,l: be the two
solutions of the equation B(t) = b; it follows from (4.4) that

A 14+kn 14+ kn
(4.6) tbi=\/ﬁ:i:\/ = (1og(T)+A2).
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Using (4.6), the value of a is determined by the equation
(4.7) e(—tF) + 2(t;) = B(AY) — B(A)),
where tT is given by (4.6) and A}f = (AV1+ kn £ +/log(1l + kn) + A%)/VEn. It

is clear that a = a(kn,A) depends on A and (with a known k) on the sample size

n. In the following table we present values of a for several choices of A and kn.
Note also, that, for the suggested default choices k = 2 and A =0, a closed form

approximation to a (accurate to within 1%) was given in Example 1.

Table 2. Values of a(kn,A), for the normal two-sided test.

kn | |Al=0 | 1 2 3 4 5

1| 1317 |1.655 [1.777 |1.793 | 1.780 | 1.802
2 | 1.530 |[1.987 |2.301 |2.344 | 2.359 | 2.367
3 | 1.691 |2.202 |2.710 |2.768 | 2.798 | 2.808
4 | 1.822 |2.369 |3.036 [3.137 | 3.165 | 3.178
5 | 1.932 |2.506 |3.306 | 3.449 | 3.483 | 3.500
6 | 2.028 [2.621 |3.536 |3.727 | 3.767 | 3.786
7 | 2113 |2.722 |3.735 | 3.978 | 4.023 | 4.045
8 | 2189 |2.812 |3.910 |4.208 | 4.259 | 4.282
9 | 2258 |2.893 |4.066 |4.420 | 4.478 | 4.503
10 | 2.321 |2.966 |4.206 |4.617 | 4.683 | 4.710
15 | 2.576 |3.256 | 4.744 |5.442 | 5.559 | 5.593
20 | 2.768 |3.471 |5.121 |6.085 | 6.272 | 6.314
25 | 2.922 |3.642 |5.407 |6.608 | 6.882 | 6.936
30 | 3.051 |3.783 |5.637 |7.046 | 7.421 | 7.490
40 | 3.260 [4.010 |5.990 | 7.749 | 8.343 | 8.455
50 | 3.425 |4.188 |6.257 |8.293 | 9.116 | 9.287
60 | 3.563 |4.336 |6.470 |8.732 | 9.781 | 10.026
70 | 3.681 |4.462 |6.647 | 9.096 | 10.362 | 10.694
80 | 3.784 |4.571 |6.798 |9.404 | 10.878 | 11.305
90 | 3.876 |4.668 | 6.929 |9.671 |11.338 | 11.868
100 | 3.958 |4.756 |7.045 |9.903 | 11.754 | 12.390

Illustration 2: Fisher and Belle (1993) provide the birthweights in grams of some
n = 15 cases of SIDS (Sudden Infant Death Syndrome) born in King County in

1977:
2013 3827 3090 3260 4309

3374 3544 2835 3487 3289
3714 2240 2041 3629 3345

With the standing assumption of normality and a supposed known standard devi-

ation of o = 800 g, we consider the test of

Hy: 6§ =3300 versus H;: 6 # 3300
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here 3300 g is the overall average birthweight in King County in 1977 (which can
effectively be considered to be known), so that Hy would correspond to the (be-
lievable) hypothesis that SIDS is not related to birthweight.

We apply the test (4.5) with A = 0 and the default choice of £ = 2. From
Table 2, we find a(30,0) = 3.051, and simple calculations yield ¢ = 0.485 and
B(t) = 4.968, so that B(t) > a. Thus, according to T7, we accept Ho and report
the CEP g* = 0.201.

One can, alternatively, write the test T} in terms of the standard statistic, £,

as follows:
if t <t7 ort>t], reject Hy and report the CEP a*(2);
T : ity <t <ty orty <t<tf, make no decision;
ift7 <t <t}, accept Ho and report the CEP [*(t).

Figure 1 below illustrates the effect of the “shift” parameter A on the no decision
region corresponding to the test T}. Note the symmetry of the regions when A =0

and that the size of the no decision region decreases as A increases.

-4 N

Figure 1. The no decision region of T} as a function of A and with kn = 10,
for the normal two-sided test of Example 3.

Example 4: (One-sided Normal Testing)
We continue with the same basic setup of Example 3, but now we wish to test
the hypotheses
Hy: 6§ =6y versus Hy: 6> 0.

The choice of conditional prior (given H; is true) for 8 over the set ©1 = {6 > 60}
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90 = b2

With this prior p.d.f., the marginal p.d.f. (3.2) (given H; is true) of ¢ becomes

), 0>90.

2 t knt
ma(t) = V1+ kn¢(\/(1 + kn))q)(m)

Note that, in this case, m¢(¢) remains unchanged. Hence the corresponding Bayes

factor can be written as

V1+kn —knt? knt -1
ol (M)

Again, it can be verified that the no decision region is of the form (1,a), where a

B(t) =

can be determined numerically by the following set of equations:

B(t:1) = 1; B(ts) = a;
{ 1 - ®(t) = 2 [V 3 (knt)g(2)dt.

Thus the test T} (as presented in terms of the standard test statistic ¢) is

ift >, reject Hy and report the CEP o*(t);
T :{ ift, <t <ty, make no decision;
ift <tg, accept Hy and report the CEP B*(t).

Table 3 presents values of a, t, and ¢; for selected choices of kn. Note that the

no decision region is somewhat smaller than for the two-sided test.

Table 8. Values of a, t, and t; for the normal one-sided test

kn a ta t kn a te t1
1 {1.271 | 0.183 | 0.560 20 | 2.436 | 0.690 | 1.390
2 | 1.448 | 0.262 | 0.731 25 | 2.558 | 0.740 | 1.454
3 | 1.580 {0.320 | 0.841 30 | 2.659 | 0.781 | 1.505
4 |1.858 | 0.367 | 0.923 35 | 2.747 | 0.817 | 1.548
5 {1.774 | 0.406 | 0.987 40 | 2.825 | 0.847 | 1.584
6 | 1.851 0.4.6 1.040 50 | 2.956 | 0.898 | 1.645
7 (1918 | 0.469 | 1.085 60 | 3.066 | 0.940 | 1.693
8 11979 | 0.495 | 1.124 70 | 3.161 | 0.976 | 1.734
9 {2.034 | 0.519 | 1.159 80 | 3.244 | 1.006 | 1.768
10 | 2.084 | 0.541 | 1.190 90 | 3.318 | 1.033 | 1.799
15 | 2.285 | 0.627 | 1.308 100 | 3.385 | 1.057 | 1.825

Example 5: (ANOVA I)
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Consider p independent samples X; = (X1, Xi2,...,Xin), ¢ =1,...,p), of n
i.i.d. random variables from the A (u;,0?) distribution, with unknown o?. We are

interested in testing
(4.8) Ho: pp=pa=--=pp=0

against the standard alternative Hy : not all p; are equal to 0. Note that, when
p =1, this is the standard two-sided test with unknown 2. '

We will use a hierarchical prior defined as follows. Let the p;, ¢t =1,...,p, be
i.i.d. with a first-stage N(0,£0?) prior distribution, to be denoted by m1(ui|o?,¢).
Let the second-stage prior be m3(0?,£) = 072g(€)do?d¢; thus o? is given the usual
noninformative prior and £ > 0 is given the proper prior p.d.f. g (to be defined

later). Straightforward computation yields, as the Bayes factor of Hy to Hy,
-1

(n—1)/2
SRS 7

(n = 1)1 + n) + y]

(4.9) B(y)=(m-1+y) P2 x [/Ooo [

where

(4.10) y= (?zfgiléij(fgjv '

To proceed with a Conditional Frequentist interpretation of the Bayes test, we
need to slightly reformulate the test. The difficulties are that () Hy is, itself, com-

posite; and (z¢) improper prior distributions were used. The most direct solution
is to initially suppose that we will base the test on the statistic, y, in (4.10). We
have seen a Bayesian justification for doing so; and y is the standard classical F
test statistic for the testing problem at hand.

Write the density of y as f(y|61,...,6,), where 6; = p;/o. Then the test can
be rewritten as a test of Hy : ; = 6, = --- = 6, = 0, which is a simple hypothesis.
Furthermore, under Hj, the hierarchical prior defined earlier becomes: the 7 (6;|¢)
are N(0,¢), independently for i = 1,...,p, while £ still has proper prior g(£). The
implied prior, w(6s,...,6,), is thus proper, and Theorem 1 can be applied. Note
that, here,

mo) =m(sl0) and i) = [ miela(e)dt
where
m(ylé) =/f(yl91,...,9p)7r(01,...,0,,)d91,...,d0,,

yp/2-1(1 + n&)p(n—l)ﬂ
[(n — 1) + ng) + yP/*’

(4.11)
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with
D(3)(n = 1P/

P(HT(25)

The test T, from Section 3, can thus be written as

if B(y) <1, reject Hy and report the CEP o*(y);
(4.12) T : if 1 < B(y) < a, make no decision;
if B(y) 2 a, accept Hy and report the CEP B*(y).

Here, using (4.9) and (4.11), a (as well as y; and y,) can be solved numerically

from the following system of equations:
By1)=1;  B(yd) =g
J mlyl0)dy = [ J5 m(yl€)g(€)dedy.

In terms of the statistic y in (4.10), this test has the form

(4.13)

if y > y1, reject Hy and report the CEP a*(y);
T3 : if Yo <y < y1, make no decision;
if Y < Ya, accept Hy and report the CEP 3*(y).

As an illustration, consider the case with p = 1; clearly this is equivalent to the
normal two-sided test with unknown o?. Note that, in this case, y = t?, where ¢
denotes the standard ¢-test statistic. In comparison, the classical a-level two-sided

test of (4.8) (with p =1) can be given in terms of the statistic (4.10) as

ify > ti/2 reject Hy and report error probability « ;
ify < ti/z , accept Hy and report the probability of Type II error ;

here t,/; is the 3§ -level critical value from the #(,,_;)— distribution.
The default prior, g(£), that we recommend for this testing problem is
(4.14) (6) = —=¢% exp(—55)
o gie)= V2 P 267
This prior yields, for p = 1, the analysis recommended by Jefireys (1961), since it
can be shown that (| 0?) (formed by integrating over ¢) is then Cauchy (0, 0?).
In Table 4, we present the value of ¢9.025 along with the values of a, Vy1 and \/ya

as were determined numerically for selected choices of n under the prior (4.14).

Tllustration 2 (continued): Now assume that o is unknown. This corresponds to the

case of p = 1 in the null hypothesis (4.8) above. The calculated value of the test

21



statistic (4.10) is y = 0.343. For the default prior (4.14), we find from Table 4 that
VYa = 1.123. Thus again, we accept Hy and report CEP §* = 0.186 (computed
from (4.9)).

Table 4. Values of a and critical points for the normal two-sided test with unknown o?2.
n a VYa | /U1 | [to.ozs] n a VYa | VY1 | |to.0zs]
2 11.302 | 1.342 | 1.983 12.706 20 |3.083 | 1.174 | 2.011 2.093
3 11732 | 1.035 | 1.881 4.303 25 | 3.242 | 1.215 | 2.046 2.064
4 11962 | 0.993 | 1.863 3.182 30 | 3.374 | 1.250 | 2.076 2.045
b | 2.123 | 0.991 | 1.864 2.776 35 | 3.486 | 1.280 | 2.102 2.032
6 | 2250 | 1.001 | 1.872 2.571 40 | 3.583 | 1.306 | 2.126 2.023
7 12356 | 1.015 | 1.883 2.447 45 1 3.669 | 1.329 | 2.147 2.015
8 |2.447 [ 1.030 | 1.894 2.365 50 |3.746 | 1.351 | 2.165 2.010
9 12528 |1.045 | 1.905 2.306 55 | 3.815 | 1.370 | 2.183 2.005
10 | 2.600 | 1.060 | 1.917 2.262 60 | 3.879 | 1.387 | 2.199 2.001
11 | 2.665 | 1.074 | 1.928 2.228 65 | 3.937 | 1.404 | 2.213 1.998
12 | 2,725 | 1.087 | 1.939 2.201 70 | 3.991 | 1.419 | 2.227 1.995
13 12.781 | 1.100 | 1.949 2.179 80 | 4.087 | 1.447 | 2.252 1.990
14 | 2.832 | 1.112 | 1.959 2.160 90 | 4.172 | 1.471 | 2.273 1.987
15 | 2.880 | 1.123 | 1.968 2.145 100 | 4.247 | 1.493 | 2.293 1.984

For general p, the choice of ¢g(£) in (4.14) results in m(u]o?) being the p-variate
t-distribution with location 0 and scale matrix 0%I and one degree of freedom. Note
that the introduction of ¢ allows B(y) in (4.9) to be computed by one-dimensional
integration, regardless of p.

The choice of g(£) in (4.14) is not the only “default” choice that is reasonable.
In particular, this choice of g implies that A = Y_¥_, p;/0® has a prior density
which is roughly prbportional to AP=1/2 for small A. Sometimes, however, (4.8)
is more naturally thought of as testing. Hy : A = 0 versus H, : A > 0, in which case
a prior density for A which is positive at zero may be more intuitively appealing,.
A choice of g that achieves this goal is g(¢) = 1(1 4 ¢)73/2. The resulting prior

has the same tail behavior for large A as the earlier choice, but is positive at zero.

Example 6: (ANOVA II)
We continue with the same basic setup as in Example 5, but now, we are inter-

ested in testing, with p > 1, the composite hypothesis

(4.15) Hy: p1 = po == pp (equal to, say, u)

against the alternative H; : mnot all y; are equal . We assume a similar hier-

archical prior structure for this testing problem: choose as the first-stage prior,
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m1(pilo?, £), the N(p,€0?) distribution for the i.s.d. p1, pa, ..., fp; choose, for
the second-stage prior, the usual noninformative prior for (u, 0%), i.e. m2(y, 02) =
(1/0?)dp do?, while (independently) £ is given the proper p.d.f. g(¢).

It can be shown that the Bayes test and the classical test are based on the usual

F statistic s - =
G v )

and that the test can be reformulated, as in Example 5, with 6; = (y; — p)/o and
m(y|{) given by

y(P=3)/2(1 4 pg)p(n=1)/2
[p(n — 1)1+ né)+(p— 1)y](pn—1)/2’

(4.16) m(yl¢) = C

with _

C— D("2=1)[p(n — 1)]P(=D/2(p — 1)(P-1/2
- T((p — 1)/2)T(p(n — 1)/2)

The corresponding Bayes factor has a similar form to that of Example 5, namely

B(y) = (p(n — 1) + (p — 1)y)~Pn~1D/2

(4.17) oo (14 ng)p(n=1)/2
g [/o (p(n — 1)1 +nk) + (p - y)rn~D/%)

Now, for any specified prior g(£), the test TT of the hypotheses (4.15) follows
exactly as in Example 5. The values of a, y; and y, are determined numerically,
using (4.16) and (4.17) in the equations (4.13). In Table 5, we provide the values
of a for selected choices of n and p under the prior (4.14) for g(¢).

-1

9(£)d¢

Table 5. Values of a for the ANOVA 1I test.

p=2 4 6 8 10 p=2 4 6 8 10

n=2 | 1.654 | 1.742 | 1.847 | 1.934 | 2.007 n=20 | 3.155 | 3.568 | 3.607 | 3.622 | 3.634
3 [1.995 [2.135 [2.237 [ 2.320 | 2.388 30 |3.439 |3.874 |3.885 |3.876 | 3.868

4 12133 {2372 [ 2474 | 2.552 | 2.616 40 |3.648 | 4.098 |4.088 |4.061 |4.038

5 | 2.267 | 2.545 | 2.645 [2.719 [ 2.778 50 |3.814 |4.276 |4.250 |4.208 | 4.174

6 |2.377 |2.683 |2.779 | 2.848 | 2.903 60 |3.952 |4.425 |4.386 |4.332 | 4.288

7 | 2.471 | 2.797 | 2.889 | 2.953 | 3.004 70 | 4.070 |4.552 |4.503 |4.439 | 4.387

8 |2.553 |2.895 [2.983 |3.043 | 3.090 80 |4.173 | 4.665 |4.606 |4.534 |4.475

9 |2.626 [ 2981 [3.065 |3.120 |3.163 90 | 4.265 | 4.765 | 4.699 | 4.620 | 4.554

10 |2.692 | 3.058 |3.137 [3.188 [ 3.227 100 | 4.347 | 4.856 |4.784 | 4.698 | 4.627

Tllustration 3: (Pappas and Mitchell, 1985). An experiment was conducted to de-

termine whether mechanical stress can retard the growth of soybean plants. Young
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plants were randomly allocated to two groups of 13 plants each. Plants in one group
were mechanically agitated by shaking for 20 minutes twice daily. At the end of
the experiment, the total stem length (cm) of each plant was measured. The raw

observations, in increasing order, are as follows:
Control : 25.2 29.5 30.1 30.1 30.2 30.2 30.3
30.6 31.1 31.2 31.4 33.5 34.3

Stress : 24.7 25.7 26.5 27.0 27.1 27.2 27.3
27.7 28.7 28.9 29.7 30.0 30.6

For these data (n = 13 and p = 2) we obtain,
Z; = 30.59, Z, =27.78, and I = 29.19,

n n
Z(wlj —~%1)? =26.65 and Z(:czj — %)% = 21.56,

-1 p 7, —1)%

y — p(n 1)’n Zl;](z :I:)— 5 — 25.37.
(p—1) 2t 2 j=a(mij — %)

The value of the Bayes factor, B(y) in (4.17), is B(y) = 0.001. Clearly, using Tf,

we should reject Hy and report CEP o* = 0.001.

5. Concluding Remarks

Testing a Precise Hypothesis: In this paper, discussion was restricted to testing of
simple hypotheses or testing of a composite alternative hypothesis and a precise
(i.e., lower dimensional) null hypothesis. Deciding whether or not to formulate
the test as one of testing a precise hypothesis centers on the issue of deciding if
there is a believable precise hypothesis. Sometimes this is easy, as in testing for
the presence of extrasensory perception, or testing that a proposed law of physics
holds. Often it is less clear. In medical testing scenarios, for instance, it is often
argued that any treatment will have some effect, even if only a very small effect,
and so exact equality of effects (between, say, a treatment and a placebo) will never
occur. While perhaps true, it will still often be reasonable to formulate the test as
testing the precise hypothesis of, say, zero treatment difference, since such a test
can be shown to be a very good approximation to the optimal test unless the sample
size is very large (cf., Berger and Delampady, 1987). This is an important issue,

because whether one formulates a test as a test of a precise hypothesis or as, say,
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a one-sided test can make a huge difference in the Bayesian posterior probabilities
(or conditional frequentist error probabilities), in contrast to classical unconditional
testing, where the error probabilities only vary by a factor of two. Since this issue
is so important in Bayesian or conditional testing, we will belabor the point with

an additional illustration.

Illustration 4. Suppose one is comparing a standard chemotherapy treatment for
cancer with a new radiation treatment. There is little reason to suspect that the two
treatments could have the same effect, so that the correct test would be a one-sided
test comparing the two treatments. If, instead, the second treatment had been the
same chemotherapy treatment, but now with (say) steroids added, then equality
of treatments would have been a real possibility, since the steroids could have no
substantial additional effect on the cancer. Hence one should now test the precise
hypothesis of no treatment difference, using the Bayesian or conditional frequentist
test. (We do not mean to imply that one need only carry out the relevant test here;
rather we are saying that the relevant test is important to do as part of the overall
analysis.) Note that both null hypotheses in Illustrations 2 and 3 are believable
hypotheses.

A final comment on this issue is that precise hypothesis testing should not be
done by forming a traditional confidence interval (frequentist or Bayesian) and sim-
ply checking whether or not the precise hypothesis is compatible with the confidence
interval. A confidence interval is usually of considerable importance in determin-
ing where the unknown parameter (say) is likely to be, given that the alternative
hypothesis is true, but it is not useful in determining whether or not a precise null

hypothesis is true.

Choice of the Conditioning Statistic: The first point to stress is the unreasonable
nature of the unconditional test, and the even more unreasonable nature of common
procedures such as the P-value; in some sense, these are the worst possible testing
procedures, and any reasonable conditional frequentist tests are better. (We hope
to be able to indicate this more formally in subsequent work.) Furthermore, the
conditional tests we propose have the feature of conditioning as much as is possible;
there is typically no natural reason to stop short of the maximal possible degree of
conditioning (see, e.g., the Discussion and Rejoinder in Kiefer, 1977). Unfortunate-
ly, among these (perhaps optimal) conditional tests, there is apparently no single
optimal choice. In particular, choice of the conditioning statistic may seem rather

uncertain and arbitrary.
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Conditioning on ancillary statistics is familiar but, as mentioned earlier, suitable
ancillary statistics rarely exist for testing. Furthermore, it is far from clear that
conditioning on ancillary statistics is always best. Consider Example 2, for instance.
Conditioning on the ancillary statistic led to a conditional Type II error probability
that was actually constant over the acceptance region, even though the likelihood
ratio (or Bayes factor) varied by a factor of two over that region! In contrast, our
recommended conditioning statistic led to conditional Type II error probabilities

that varied quite sensibly over the acceptance region.

It is sometimes argued that conditioning on non-ancillary statistics will “lose
information” but nothing loses as much information as unconditional testing (effec-
tively replacing the data by the indicator on its being in the acceptance or rejection
region); and since our conditioning leads to Bayesian posterior probabilities as the
conclusion, it is hard to see what information is “being lost.” Finally, it is crucial to
remember all of the advantages (mentioned in the introduction) that accrue from
using a conditioning statistic that results in error probabilities with a Bayesian

interpretation.

Choice of the Prior on the Alternative Hypothesis: This is the stickiest issue: each
choice of prior distribution on the parameter space of the alternative hypothesis
will lead to a different conditioning statistic, and hence to a different conditional
frequentist test. In one sense this is wonderful, in that it says that both Bayesians
and frequentists have the same problem; whether one chooses to phrase the problem
in terms of choice of the prior distribution or choice of the conditioning statistic is
simply a matter of taste. (Of course it can be argued that choice of the prior is
much more intuitively accessible than is choice of the conditioning statistic.) But

that does not settle the question of what to do.

A subjective Bayesian has a ready answer: “Elicit your subjective prior distribu-
tion on the parameter space of the alternative hypothesis, and use the Bayes test;
if you wish to use a conditional frequentist test, use that with the corresponding
conditioning statistic.” (Actually, of course, the subjective Bayesian would also
insist that the prior probabilities of the hypotheses be elicited and utilized. That

would require the modifications discussed in BBW.)

We have no disagreement with this answer, except that we also want to provide
an automatic test, for those who are unable or unwilling to elicit a prior distribution.
What we have done in section 4, therefore, is to define what we consider to be

attractive “default” Bayesian tests (following Jeffreys, 1961), and provide their
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conditional frequentist analogues. This, in fact, defines a new joint Bayesian -
frequentist research agenda for testing: develop attractive default Bayesian tests for
all situations, and then translate them into their conditional frequentist analogues.
(For the development of general default Bayesian procedures, two interesting recent

approaches are described in Berger and Pericchi, 1996, and O’Hagan, 1995.)

We have frequently heard the comment that non-Bayesians will not accept these
conditional frequentist procedures because their development utilizes a prior dis-
tribution. It seems absurd, however, to reject a procedure that is arguably greatly
superior from a pure frequentist perspective, simply because a Bayesian tool was
used in its derivation. We suspect, therefore, that what is really intended by such
comments is to suggest that the appearance of statistical objectivity is often con-
sidered to be important, and that there is concern that a procedure that uses a
prior distribution will not be perceived to be objective. While not passing judg-
ment here on the possibility or desirability of “objectivity,” we would argue that
the proposed default conditional tests have every bit as much claim to objectivity
as any other frequentist procedure. They are specific procedures that can be used
without subjective input, and have highly desirable frequentist properties that can

be evaluated on their own merits.

Generalizations: We have not considered situations involving composite null hy-
potheses, except those that can be reduced to simple hypotheses by some type of
invariance reduction (e.g., ANOVA II). In principle, composite null hypotheses can
be treated in the same fashion as composite alternative hypotheses; i.e., be reduced
to simple hypotheses by Bayesian averaging. This will be a far more controversial
step for frequentists, however, since classically the treatment of null hypotheses
and alternatives has been very asymmetric. For instance, many frequentists will
welcome the notion of “average” power that arises from the conditional frequentist
tests that we consider, but will perhaps be wary of any notion of “average” Type I

error.

As discussed in BBW, the general framework applies equally well to sequential
experiments. One can develop conditional frequentist tests that essentially agree
with Bayesian tests, and hence which essentially ignore the stopping rule. This is
potentially revolutionary for, say, clinical trials. It appears necessary, however, to
“fine tune” the new sequential tests, so as to obtain a satisfactory tradeoff between
the size of the no-decision region and the expected sample size of the experiment.

This work will be reported elsewhere.
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Other Approaches and Comparison: A number of other approaches to data-dependent
inference for testing have been recently proposed. These include the developments
in Bernardo (1980), Hwang, Casella, Robert, Wells, and Farrell (1992), Schaafsma
and van der Meulen (1993), Evans (1994), and Robert and Caron (1995). While
being interesting and worthy of study, these alternative approaches all have one
or more of the following disadvantages: (i) requiring new evidential concepts that
would require extensive study and experience to properly understand; (ii) possess-
ing significantly non-Bayesian or non-frequentist properties, which would prevent
members of either paradigm from accepting the approach; and (iii) being difficult

to implement in all but relatively simple situations.

In contrast, the approach we advocate possesses none of these disadvantages. It
does not really involve new concepts, since conditional error probabilities are quite
familiar to most statisticians (and can, in any case, be understood with the usual
frequentist logic); likewise the interpretation of Bayesian posterior probabilities is
familiar (and very easy besides). One might argue that it is difficult to develop and
understand the recommended conditioning statistic, but this understandingis really
only necessary for those developing the methodology. Most practitioners would need
only to know the actual test procedure, and that the reported error probabilities
can either be interpreted as posterior probabilities (with, say, default priors), or as
frequentist error probabilities conditioned on a reasonable statistic reflecting the
strength of evidence in the data. Note, in particular, that the actual conditioning
statistic need not be presented in an applied statistical report, any more than one
now needs to present all the background properties of the particular unconditional
test that is chosen. This is assuming, of course, that a default conditioning statistic
is being used, rather than one tailored to subjective prior beliefs; in the latter case,

reporting the conditioning statistic (or better, the prior) would seem only fair.

Likewise, the testing paradigm we propose should be acceptable to both frequen-
tists and Bayesians. Although the proposed tests are mainly traditional Bayesian
tests, it is perhaps the Bayesians who will most object to this paradigm; while

_there are compelling reasons for frequentists to shift to the conditional frequentist
paradigm, there are no compelling reasons for Bayesians to alter their approach.
For instance, many Bayesians would see little reason to formally introduce a “no-
decision” region.

Some Bayesians might be attracted by the long-run frequentist guarantee that

is carried by the new tests, in that the guarantee is independent of the prior dis-

28



tribution. This would seem to imply some type of robustness of the methodology
with respect to the prior. The situation is unclear, however, because it could be
claimed that it is “robustness for the wrong question.” We would, at least, expect
Bayesians to agree that these new tests are considerably better than the classical
unconditional tests. And, most importantly, the answers obtained in practice by
“pure” Bayesians and by non-Bayesians who adopt this new paradigm will now
typically be quite similar.

Finally, implementation of the new paradigm is relatively easy, in many cas-
es easier than implementation of classical unconditional testing. This is because
Bayesian testing is often much easier to implement than unconditional frequentist
testing, and the new tests are essentially based on Bayesian tests. The only sig-
nificant adaption that is needed is computation of the no-decision region, which is

usually a computation of only modest numerical difficulty.

Appendix: Proof of Theorem 1

We will only prove the second assertion since the proof of the first assertion is
provided in BBW. We assume that 1(1) > 1 in (2.10). The case (1) < 1 follows
similarly and therefore is omitted.

Let f* denote the p.d.f. of B(X) under m;, i = 0,1 and let Fp and f; be the
conditional c.d.f. and p.d.f. (respectively) of B(X) given 6 € ©; (under Py(-)).

Notice that, since g is a proper p.d.f. over O, the following relation holds:

b
= *(y)dy = mq(z)dzx
Fi(b) / fr(v)dy /{B(,)Sb} ()d

- [ falo)o@)sas = [ [ fald)a®)deds
{B(z)<b} /O, 0, J{B(z)<b}
b
- /(_) | / 3 ()g(6)dyd = /@ Fig(0)d0

Hence, for all b > 0, we have

(A1) OB W HONOM
0,
Moreover, it is easy to verify (see BBW), that
(A.2) fo) =0bff(d) VYb>0
and that
vy — @ oy —f1(b)
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Now, it follows from (2.10), and (2.11) that for all § € ©;, the expression for
conditional Type II error in (3.4) is

B(8ls) =Po(B(X) > $(1)|S(X) = s)
(A4) __ BEERE
[F3(s) + f5 (9(s)) 19" ()]
It is also straightforward to verify that, given H; is true, the posterior p.d.f of 8
conditional on S(X) = s is

[£3(s) + f3 ((s)) I¥'()]] 9(6)

mi(s)

(A.5) g(6ls) =
with
mi(s) = [ (5 + £ (06 (o) a(0)es

= [f1(s) + £ (¥ () W' ()]
where the last equality followed from relation (A.1). By combining (A.4) and (A.5)
in (3.4) we obtain that

B9 [5(0]s)] = /@ B(615)9(6]s)d8

i ((s)) 19" ()]
FORFHCONLOIN

Finally, using relations (A.2) and (A.3) in (A.6), it follows that

(A.6)

11
[1+4¢(s)] (14 B(a)]

using the fact that B(z) = v(s) on the set {B(z) > ¢(1) and S(z)=s}. O

EICI9[B(6)s)] = = 8*(B),
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