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SUMMARY

We derive the differential equation that a prior must satisfy if the posterior prob-
ability of a one-sided credibility interval for a parametric function and its frequentist
probability agree up to O(n~!). This equation turns out to be identical with Stein’s
equation for a slightly different problem, for which also our method provides a rig-
orous justification. Our method is different in details from Stein’s but similar in
spirit to Dawid (1991) and Bickel and Ghosh (1990). Some examples are provided.
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1. INTRODUCTION
Suppose X1, ... ,Xn are independently and identically distributed with pdf f(z; 6)
where 8 = (81,... ,6,)T is a p-dimensional vector. Consider a prior density m(8) for

6 which has the following property of matching frequentist and posterior probability:

Pe{ﬂ\‘ﬁ“—@ <z} = P,{ﬂ%ﬁl <zX1,e.. s Xn} +0p(n7h) (1)
for all z where 8 is the posterior mode or maximum likelihood estimator of 8 and b
is the asymptotic posterior variance of v/n(6; — 6) up to Op(n~1), Py(-) is the joint
probability measure of X1,...,Xn under 6 and Pr(:|Xi,... ,Xn) is the posterior
probability measure of § under m. Such a prior may be sought in an attempt to
reconcile a frequentist and Bayesian approach as in Peers (1965), or to find or in
some sense validate a noninformative prior as in Berger and Bernardo (1989), Ghosh
* and Mukerjee (1991, 1992a,b) and Tibshirani (1989), or to construct frequentist
confidence sets as in Stein (1985).

Suppose we wish to generalize (1) by considering a twice continuously differen-

tiable function #(6) instead of #; and require

{6 =)} _ 1 (v/a{He) —t8)} i
v <:| = P [Yn <aX|+0p(n7Y)  (2)

where henceforth b denotes the asymptotic posterior variance of \/n(t(6) —t(#)) up
to Op(n~1) and X = (X1,...,Xn)T. One of our objects in this article is to show
that (2) holds if and only if

2 BLOTO ) -
51 962 L/ V()T (8)V(6)
which may be rewritten as Stein’s (1985) equation (5.8)

g o m@m(@)} =0 ®

7|

S’
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where V,(0) = (a%t(e), ey %t(G))T,pa is the ath unit column p-vector and

I71(6)V4(9)
VViOI-1(6)V:(9)

satisfying nT(6)I(8)n(6) = 1 for all § and I~1(6) is the inverse of I(6), the per unit

observation information matrix of . Equation (4) is due to Stein (1985) in the

n(6) = (5)

context of a somewha.t‘diﬁ'erent matching equation and we will call this equation as
Stein’s equation and all priors satisfying (4) as probability matching priors. It may
be mentioned that (5) is not the only choice for 7. Another intuitively attractive
choice, at least for the construction of confidence sets for 6, is given in p. 605
of Tibshirani (1989). Our equation (5) is in general different from Tibshirani’s
equation, but both agree when ¢(§) = 6; and 6, is orthogonal to (6z,... ,6,) in the
sense of Cox and Reid (1987), the case mainly considered by Tibshirani.

We also justify Stein’s (1985) equation (5.8) in the context of his original proba-
bility matching problem. Our method of proof is quite rigorous unlike Stein’s, see,
e.g., Tibshirani (1989). It is somewhat different in details from Stein’s but similar
in spirit to that of Dawid (1991) and Bickel and Ghosh (1990). Section 2 of this
article contains the derivation of Stein’s equation, the necessary assumptions and

the related discussion. Section 3 contains a few illustrative examples.

2. THE EQUATION FOR PROBABILITY MATCHING PRIORS

Let I(6) = n™' 35 log f(Xi6), b= V(6 — 0),005 = {DaDpl(6)} o sy =
{DaDﬂD.,l(G)}(,:(;,_IC = ((~aap)), G=C~! where Do = 35-.

Following Ghosh and Mukerjee (1992b) we assume, as in Johnson (1970), that 6
has a prior density 7(#) which is positive and twice continuously differentiable for all
8. The prior 7(8) will be obtained by solving the probability matching equation (3)
for a real-valued parametric function ¢(8). If m(6) is not proper we have to assume
that there is a fixed positive integer ng such that for all X;,... ,X,, the posterior
pdf of 8 is proper. For a prior pdf (), let P.(-) denote the joint probability
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measure of 8 and X. All formal expansions for the posterior, as used here, are valid
for sample points in a set S which may be defined along the lines of Johnson (1970)
or Section 2 of Bickel and Ghosh (1990) with m = 1 with Ps-probability of S equals
to 14+ 0O(n~!) uniformly on compact sets of . The matrix C is positive definite over
S. We also make the Edgeworth assumptions as in Bickel and Ghosh (1990, p 1078).
It may be noted that in addition to the Edgeworth assumptions as mentioned above
we need the regularity conditions in Bickel and Ghosh (1990) or Ghosh, Sinha and
Joshi (1982) to justify the limiting Bayesian arguments for frequentist calculations
used later. The last two articles contain more details on these. For calculations
up to O(n~!) as needed here, the detailed rigorous justification of the limiting
Bayesian argument is not as messy as for o(n~!) but it is still somewhat lengthy,
though straightforward, and hence omitted. It should be mentioned that all the
assumptions made about f(z;8) will be satisfied for exponential family with 6 a
sufficiently smooth function of the natural parameter.

For a real-valued twice differentiable function f(#), we denote the gradient vec-
tor of f by V(8) = (D1f(8),... ,Dpf(8))T and the Hessian matrix of f by
H¢(8) = ((Dapf(8)))a,p=1,..,p- Then from (2.2) of Ghosh and Mukerjee (1991),
the expansion of the posterior pdf of & is given by

hTG—lh}
X

r(hIX) = (27) /|G|~ /2 exp {—

__1_. a 1 T ) n—l
1+ T2 S S ausshabaha + b V0) + 0 )

™ /2

(6)

Let U = +/n(t(6) — t(f)). Now we will derive from (6) a formal expansion of
the posterior characteristic function of U up to Op(n™!) by expanding #(8) — t(é))
around 4 by Taylor’s expansion retaining the first two terms. After considerable

algebraic simplifications we obtain

Blea)ix) = oo {92} 14 %wq) + 0,7 (@
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where b = VT(8)GV(6) and for 7 = (71,...,m)T = GV4(8), g = TH,()r,
er(6) = > ; Y- 6apy(Tagpy + T89ay + Ty9ap) and e2(6) = > %32 QaByTaTpT,
@ ~ P 5

m(y) = %y3g + = 1 ytr{GHt(G } + = yel(O) + = 1 y eg(é) + -ﬂ_?—é)TTVﬂ-(é). (8)

Let ¢(u|0,b) denote a normal pdf with mean 0 and variance b. Using repeated

integration by parts and the normal characteristic function we obtain

d
E{exp(iqU)IX} = characteristic function of |1 + % ™ (_E) &(u|0,b)

Op(n_l) (9)

where 7"1(_?17) #(u]0,b) is the result obtained by operating m —-—;) on ¢(u|0,b).

Proceeding as in Bhattacharya and Ghosh(1978, vide Lemma), we get from (9) for
fixed z, the posterior probability on the right hand side of (2) is given by

P{U < z2Vb|X} = \/_/ 7r1 )d)(v)dv + O0p(n7Y)  (10)

where ®(z) and ¢(z) are respectively the standard normal distribution function and

density function.

Let Hy(z) = 2% — 1, &(6,2) = Sz {e(6) + + 22 ey(9)}, £2(6,2) = [ eigle)

~ ~ T¢a 0 ~ ~
+tr{GHt(e>}], dy(b,m,z)= SO o kz &x(8,2), Ck(6,2) =p1i5n &8, 2),
=1

. 3 T(6)Vx
k=1,2, A;(0,m,z2) ~-phm d3(0,m,z) = %+ ECk( z)
where phm is the convergence in probability limit under 0 Then using the above

notations and standard results on Hermite polynomials, we have under § = 6,

Po{U < 2VBIX} = 8(2) = = #(d3(0m,2) + Opln™)

= 8(2) = 2= #()A60,m,2) + OpnT). (1)
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The last equality follows since 86 = 0,(n~1/?) implies d5(8,m,2z)— A§(6o,m,z) =
0,(n~1/2). Now to find the expansion of the frequentist probability Pp,{U < zv/b}
under 6 = g, we proceed as in Ghosh and Mukerjee (1991). See also Ghosh (1993,
Ch. 8) for a detailed argument. Since the difference between the posterior mode and
the maximum likelihood estimator of 8 is Op(n~1/2), for the following calculations
we assume that @ is the maximum likelihood estimator. Note that Py {U < zv/b}
is obtained by integrating ®(z) — 71; #(z)A3(8, 7, z) with respect to a prior m(6)
such that it vanishes at the boundary of a rectangle containing 6o (and satisfying
the assumptions of Bickel and Ghosh (1990) or Ghosh, Sinha and Joshi (1982)) and
then allowing this prior to converge weakly to the measure degenerate at 6. To
illustrate the limiting process we denote this prior by 75(6) where § is the length of
the each side of the rectangle. Now by integrating by parts the first integral on the
right hand side of (12)

/Azem, s de_Z/na(e 6”"d9 + Z/gkem 8)d6

=/{_ 53-’7—°‘+ng9,:}776

and since for any continuous function a(f lun f (6)ms(8)dé = a(bp), we have

(12)

. * a [0
i [ 836,76, 2)s(6)d0 =~ 3 % o=t +ch<eo,z>
Using similar arguments as in Bickel and Ghosh (1990)- we have from above
1 ONa -
Pr{U < 2B} = 8(2) ~ =60~ 2 o oo + Z Ch(60,2)] +0(n™). (13

We now determine the probability matching prior 7 by matching the coefficients of
n=% on the right hand sides of (11) and (13) for all 6, i.e., by solving the differential

T OVx0) = =3 e,

equation
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ie.,

5 - {m0)r(0)] o (14)

Remark 1. Note that, up to O(n™!), n4(6) = ja i‘:)‘i::(@f(%ﬁ‘z;» where 8 is the
maximum likelihood estimator of 8 and a covy is the asymptotic covariance under
6. |

Remark 2. We will now derive the probability matching equation for Stein’s
confidence set given by his (5.3) (in our notations) Sa(8) = {9: nT(6)I(6)h < za}

where 7(6) is an arbitrary differentiable vector satisfying nT(6)I(8)n() = 1.

a

To find the posterior and the frequentist probabilities of the set Sa(6), we first
express the posterior expansion (6) using I (6) in place of G™*. Since G~ — I 6) =
Op(n~ %) under 8, we can rewrite the right hand side of (6) after some simplifications
as

o 1 T 5
m(h|X) = (2m)~5|1(8)|" % exp {—h Iz(e)h} X

1 hTV.(6)
1+ ﬁPa(h) + —_\/ﬁﬂ-(é)

where P3(h) is a third degree polynomial of k not involving the prior 7. Now we use

+ Op(n—l)] (15)

linear transformation W = BI(f)h where I 3(6) is the symmetric positive definite
square root of I(6) and BT = (b1,... ,bp) is orthogonal with b, = I%(6)n(8). Note
. . a . . . P
that Wy = bTT%(8)h = nT(6)I(8)h and KTV A(§) = WinT(0)V(8) + Y Wabl x
a=2
LA R

I=3()V.(6). By this transformation and integrating out Wy, ... , W), we get from
(15) that the expansion of the posterior pdf of W is given by

w? " T(@ j
71'(’LU1|X) = (271')_%6__2L [1 + —\};Q;;(’wl,e) + wln——\(jo_rllrv(%gg)' + Op(n_l)]

where Q3(w,8) is a third degree polynomial of w; depending on 6 but not on
the prior 7. Consequently, the posterior coverage probability of Sa(é) is given by

1 .
Pr{Wy <zl X}=1-0a-— —\/—ﬁtﬁ(za)d;(G,ﬂ,za) + Op(n_l)
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moity o Lyt
- a

Jn
T
n"(60)V(60) 1
{Cs((’o,za)+ (0] +0p(n7") (16)
where d3(0,7,2a) = &5(0, 2a) + ,,r(fg(g),(é),

€6, 20) = ¢ (2a) /_ ™ Qa(w1, 8)d(w:)dws,

and
CS(GO, Za) = plialgl £S(éa Za).

Now as in (12) and (13), we get from (16), the frequentist coverage probability of

So(8) under 6, is given by

d)(za) 677 (9) -1
Peo{Wl < za} =l-a- 75—{4.3(90,201) - Z a[;ﬂ ”9=9o} + O(TZ ) (17)

Equating the coefficients of n=% on the right hand sides of (16) and (17), we can
match Po{W; < Z,} and Pr{W; < 24|X} for all 6 up to Op(n™1) if 7 satisfies

0
> %{Tlﬂ(e)ﬂ(e)} =0,
' which is Stein’s (1985) equation (58)

Remark 3. Note that from (16), the Bayesian coverage probability of So(6) under

an arbitrary prior 7, is given by

)} = 1— o 22a) e (6) 2T Q) 7a(6) -
P"'ﬂ{ee 50(9)} =1 \/ﬁ /[Cs(ev 01) (9)+77 (G)Vﬂ'(e)] X 71'(0) d0+0( )

which is not equal to 1 — @ up to O(n™!) as suggested in (5.5) of Stein (1985).
However a simple modification of Sa(é) will have the desired accuracy. Depending
on 7, define S&(é,ﬂ') by

S, (6,m) = {e= T OIE)h — 5=d3(0,m,20) < }
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Since the expansions given in (16) and (17) are locally uniform, it follows that
P{0€ S (6,7)X}=1—a+0p(n™")
and consequently for an arbitrary prior 7,
Pr {6 € 5,(6,m} =1-a+0(™),

Py{f € S,(6,m)} =1 —a+0(nY).

Remark 4. From (11) it follows that the credible set Aq(8) = {t(G) < t8) +

\/_%- za} of t(#) has posterior coverage probability 1—a accurate only up to Op(n~ 3 ).

However, modifying A, (é) as in Remark 3 by

Al (6,m) = {t<9> <t0)+ \/g (==t d_(i\/%—))}

one has the posterior coverage probability of A;(é, 7) and hence the Bayes and the
frequentist coverage probability equal to 1 — e, up to O(n71).

Remark 5. We notice that the matching equation (14) to match up to O(n™")

va{ue-ub} ¢ )
———— for a prior

7 does not depend on the Hessian matrix H,(6) of ¢(f). From this one may guess,

the posterior and the frequentist distribution functions of

restrospectively but rightly, that it is possible to approximate up to Op(n~1) the
\/Hj £(6)—t(9) i

distribution function of 7 at some z by the distribution function (at
. 0-t(d); .
some z') of only the first term of Taylor’s expansion of Yl )b 19 , L.e., by that

of 27‘7(16:);; = U’ (say). Since U’ is only a linear function of A, as in Remark 2 we
get from (6) directly by linear transformation of variables without all the involved

. algebra

z - sTV (8 _
Pﬂ-{U' < zIX} = CI’(z) - %ﬁ)— [m(&, Z) + ——7%3('9-)'] + Op(n 1) (18)
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where m(6, z) is a function of 6 and z, and does not depend on 7. (In fact it can be
seen through indirect or complicated algebraic arguments that m(d,z) = &(9,2).)

Since the last expansion is locally uniform in z, we have

PV < 2 525”/’ X} = 8(z) - —\%dzw, r,2) + Op(n™)
' = P{U < 2Vb|X} + O,(n7 ).

Finally, one would get the same matching equation (14) by matching the posterior
and the frequentist distribution functions of U’ up to Op(n~?).

We conclude this section by referring to the more accurate probability matching
results of Mukerjee and Dey (1993). They have determined prior by matching the
posterior and the frequentist distribution functions of scalar 6; up to op(n~!) when

there is a single nuisance parameter 8, orthogonal to 6;.

3. EXAMPLES

Example 1. X; = (Xli,Xzi)T, i=1,...,nareiid. Na(p,%) where p = (p1,p2)T
2
andT=| % ’001202 . Here 6 = (1, pt2,01,02,p)T and suppose the parametric
pPO102 g3

function of interest is t(§) = po2 /o1 = B, (say), the regression coefficient of X5,
on X1;. The inverse of the information matrix I(f) is given by I ~1(8) = Block
diagonal (X, D) where

[ 291 %pfalaz 3019(1 = p?)
D= 1 3P°0107 . . 30 \ 202p(1 N é’z)
301p(1—p?)  o2p(1 - p%) (1-p%)

The probability matching equation simplifies to

5}

o7 |1~ )éazmr(é)] + (%[(1—,) )377(0)] =

which has a solution given by =(8) = o7 05} (1 — p?)~%. This prior has been pro-

posed by Geisser(1965) for inference for p and is shown to avoid the ma.rginalizdtion
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paradox. Since 0; and o, have symmetric roles in 7(8) above, this is also the prob-
ability matching prior for pay /o2 = By2 (say), the regression coefficient of Xy on

Xa1.

Example 2. Xi,...,X, are i.i.d. Np(u, 02I,) where 6 = (p1,... yip,o)T. Sup-
pose the parameter of interest is t(6) = %’i The information matrix is I() = o~2

Diag (1,...,1,2p). The probability matching equation is given by

Zp: d pim(6) _0 uTur(6)
izlaﬂi \/;pl%:—zﬁ.*_(%ﬁf)z oo 2p0-\/2p%ﬁ+(%&)2

which has a solution given by 7(8) = o7} (uTp + 2po?) =3 (,qu)‘PZ_l. It can be

checked that this prior will result in a proper posterior, and for p = 1 this reduces

to the reference prior for uu/o, proposed by Bernardo (1979).

Example 3. X;,...,X, arei.i.d. log-normal with parameter § = (1,0)T. Suppose
the parameter of interest is t(d) = exp{u + 0%}, the mean of X;. The information

matrix is I(f) = o~2 Diag (1, 2). The probability matching equation is given by

9 ——n(u,0) 2 —a?——ﬂ(u o)
AW 0 \a, /1422

which has a general solution given by

=0

=

2

m(p,0) =07 (1 + %) : f(o?e ™)

for any nonnegative function f.
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