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PATH CONVERGENCE OF RANDOM WALK
PARTLY REFLECTED AT EXTREMA

by Burgess Davis’

Summary

We study the integer valued process X,,n > 0, which behaves like fair nearest neigh-
bor random walk, except that when one of its two nearest neighbors has been visited and
the other has not, it jumps to the previously visited neighbor with probability p > 1/2.
We show that X,//n converges in distribution. Whether the analog for p < 1/2 holds is

not resolved.

1. Introduction.

This paper studies the class of integer valued stochastic processes, parametrized by
p € (1/2,1), which behave like fair nearest neighbor random walk except when one neighbor
has been visited and the other has not; then, the neighbor which has already been visited is
jumped to with probability p. A precise definition is given below. These processes can be
thought of as tracking idealized buy-low-sell-high stock markets, or as following the motion
of creatures or impulses whose motion between adjacent integers changes the path between
these integers in a way that makes it more hospitable for future crossings. This second
viewpoint is essentially the (bond-) reinforced random walk approach, detailed in the next
paragraph. Our processes are the simplest reinforced random walks, and are among the
simplest walks which move in random environments of their own creation. They may also
" be thought of as vertex-reinforced random walks. More complex vertex-reinforced random

walks have been used as models of learning. See Pemantle (1992).
Let § > 0. An integer valued process Xo, X1, X2,... which satisfies

P(Xns1 = Xu +11Xiyi <n) = 1 = P(Xn41 = Xo — 1|Xi,i < )

— w(n)X‘n.) n > 1
- w(n,Xn)+w(n,X,,—1)’ =7

1 Partly supported by NSF
MSC 1991 60F05, 60J15, 60J65, 82C41
Key Words Reinforced random walk, Self attracting process, weak convergence
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where w(n,j)=1+6if j € [1}212X,,1111<a3c X;) and w(n,j) = 1 otherwise, is here designated
as d-reinforced random walk, §-RRW for short. We call the intervals (z,7 + 1) bonds
and w(n,j) the weight of the bond (5,7 + 1) at time n. Thus 6-RRW jumps to nearest
neighbors with probabilities proportional to the weights of the bonds connecting these
neighbors to the current position, and the weight of a bond is initially one and is increased
(reinforced) to 1 + & the first time it is crossed. Reinforced random walks on various
graphs and with a variety of reinforcement schemes, for instance, which add one to the
weight of a bond each time it is crossed, are studied in Diaconis (1988), Pemantle (1988),
Davis (1989, 1990), and Sellke (1994b). Reinforced random walks exactly analogous to é-
RRW, on graphs, are the subject of Sellke (1994a). The papers Durrett-Rogers (1992) and
Cranston-Mountford (1994) are concerned with related continuous time processes. Path
convergence in connection with other non-Markovian ways to construct nearest neighbor
paths with self-attracting behavior is discussed in Bolthausen (1994), and Toth (1994)
studies processes which can be interpreted as a “negatively reinforced” random walk, that

is, the weights of bonds decrease when they are crossed.

This paper was immediately motivated by Nester (1993), which investigates various
stopping times for 6-RRW, and also studies the mean square deviation EX? of §-RRW,
proving both 0 < 1in_1¢ inf EX2, which follows almost immediately from Theorem 2.3 ii) of
Nester (1994), and nE)?:zl /n <1, for any § > 0. Here we show that 7}1—{%0 EX2/n exists, that
X, /+/n converges in distribution, and more generally prove path convergence for (scaled,
of course) 6-RRW. This is Theorem 4.1, our main result. Many of Nester’s results translate
immediately to results about the limit process, and some of the resulting formulas are quite

pretty. See, for example, the gambler’s ruin probabilities given in the next to the last line

of the text of this paper, which follows from Theorem 2.3 i) of Nester (1994).

As mentioned, §-RRW behaves like fair random walk except at maxima and minima,
where it goes up with probabilities 1 — p and p respectively, p = ;—1% > 1/2. Harrison
and Shepp (1981) show path convergence for the Markov process which behaves like fair

random walk except at 0, where it goes up with a probability which is not one half.

Let p > 1/2 and consider the queueing-type process on the nonnegative integers which

reflects completely at 0, which behaves like a fair random walk between 0 and its maxima,



and at a maxima goes down one with probability p, and up one with probability 1 — p.
Processes resembling this might result if new storage capacity for the queue is added only
when existing capacity is full, and then not immediately. The proof of Theorem 4.1 extends
without substantial changes to prove path convergence here, as well as for processes with
any two different “reflection rates” pmax > 1/2 and ppmin > 1/2, which behave like fair

random walk away from extrema. We do not, and cannot, prove path convergence for the

negatively reinforced analog of -RRW, defined the same way but with —1 < 6 < 0.

Now we sketch the proof of Theorem 4.1. First we study a one-sided version of §-RRW
which we call - PRMP, PRMP standing for partially reflecting at maxima process(es). A
8-PRMP Xy, X1,... satisfies P(Xy41 = Xn+1|Xi,i <n)=1—-P(Xp41 = X, — 1|X;,1 <
n) = 1/2 unless X, = max{X;:¢ < n}, in which case 1/(2 + §) replaces 1/2. For a

continuous time process Fy,t > 0, Fy designates sup F;. Let Wy, t > 0 be a standard
0<s<t

Brownian motion started at 0, let r € (—1,0), and put Z; = W, +rW;. Note that Z, = Z}
if and only if W, = W}, and that if Z, < Z;, a < s < b, then Zy — Z, = W}, — W,, while
if Zy > Z} then Zy — Z, < Wy — W,. The processes Z behave like Brownian motion
except at a maximum, where they are sub-Brownian, and they are shown to be the limits
of scaled §-PRMP. The proof is short. These processes Z have been intensively studied.
See Yor (1992), Carmona, Petit, and Yor (1994), and the references therein.

The limit processes for -RRW are in fact two sided versions of the processes Z of the
last paragraph, as constructed in Carmona, Petit, and Yor (preprint 12/1993). See also Le
Gall (1986). We give a different construction in Section 3, closely connected with the rest
of the proof of Theorem 4.1. The Carmona-Petit-Yor construction is more general than
ours, in that processes which are in all likelihood the limits of 6-RRW for some negative
8, not too close to —1, are constructed. Knowledge of the existence of these processes
does not enable us to extend the proof of Theorem 4.1 to any negative §, however. The
last section, Section 4, is devoted to showing that the Carmona-Petit-Yor processes are in
fact the limits of -RRW. One of the easiest ways to prove that scaled fair random walk
converges to Brownian motion is to start with Brownian motion and use the fact that the
embedding scheme, based on successively stopping Brownian motion when it equals an
integer different than the one it was at the previous stopping time, yields a fair random

walk. We try to mimic this proof with our candidate process in place of Brownian motion,
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but the embedded integer valued process is not quite a -RRW. Close enough, though,
which is shown in the following way. We start with a fair random walk, and alter it one
way to get a -RRW and another way to get a copy of the embedded process. Then we show
that these two alterations stay close enough to each other, with high enough probability, to
guarantee that the 6-RRW converges to the candidate process, since the embedded process

does.

2. Notation and Reflection at Maxima.

From now on, § is a positive number and 8(8) = 6§ = —§/(1 + 6). Even when 0 is used
without any é connected to it, it always stands for a number in (—1,0). C and ¢ are positive
constants which may change from line to line, and may depend on é§ or @ but nothing
else. Dependence of constants on quantities other than § and 6 is shown by subscripts. A
discrete time stochastic processes X,,,n > 0, is identified with its extension to a continuous
time processes given by X; = Xp;,t > 0, where [ | is the greatest integer function, and
this process is denoted by X. The process X" is defined by X,/,/v/n = X, t > 0.
W = W;,t > 0, is always standard Brownian motion started at 0, and F; = o(Ws,s < ?).
When we say a sequence of stochastic processes converges to a process we always mean
convergence involviﬁg the usual metric connected with uniform convergence of functions
on all compact intervals (see Chapter 5 of Pollard (1982)). The maximum of a and 0 is
denoted by a*.

For a function f on [0,00) we denote f*(t) = Sup f(s) and f#(t) = oigrifgt f(s), and
for a sequence @ = agp,a,,... we put aj, = 01%11;@%(” ar and a¥ = Og}cign ar. A sequence y of
integers is called a nearest neighbor path if |y; —yi—1| =1, ¢ > 1. If 2 is a nearest neighbor
path, and if e = ey, e2,. .. is a sequence of integers, each of which is either 0 or —2, we define
the nearest neighbor path » = rg,7y,..., which we call z reduced by e, by r¢ = 29,71 = 23
ifz; = 29—1,m = z1+e1if 21 = zp+1,andforn > 0, rpg1—"n = 2Zp41—2n, if eitherr, <7}
OF Zpt1 —2p = —1l,and if rp, =1} and zp41 — 2, =1 bY rpg1 —n = Znt1 — 2n + €3 (n)+1
where ®(n) is the number of k, 0 < k < n, such that both ry = r§ and zx41 — 2x = 1.

Thus if all the e; are 0, » = 2, while if all ¢; are —2, r; <rg, ¢ > 0.
If z and e are as above, and if in addition f = fi, f2,... is a sequence of integers
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each of which is either 0 or 2, we define the path s, called z reduced by e and increased
by f, by so = 20, 831 = z1, and if n 2> 1, Sp41 — S = Zn41 — Zn unless either both
sp = 8% and zp41 — zn = 1, or both s, = s and 2p—1 — 2, = —1. If s, = s} and
Znt1 — 2n = 1, we define sp41 — Sn to be zp41 — 20 + €4(n)+15 where A(n) is the number
of k=1,...,n —1 such that s, = s} and zz41 —2xr = 1. Ifsn—s and zp41 — zp = —1,
we define sp41 — $p = Zn41 — Zn + fB(n)4+1 Where B(n) is the numberof k =1,...,n—1
such that s = s# and zx4; — 2x = —1. Note that here, as opposed to the definition of the

previous paragraph, s; is always 2, regardless of e and f.

IfT,, t > 0, is a process with continuous paths which starts at 0, we put 7o = 7o(I") =

0, Ti = T,'(F) = inf{t > Ti—1: |Pt - FT.‘-1| = 1}, 12> 1.

We first prove a result about §-PRMP, which were defined in the first section.

Proposition 2.1. Let X be a §-PRMP. Then X™ converges in distribution to Wy+0W/,
t >0, where Wy, t > 0, is standard Brownian motion started at 0.

To prove this proposition we use a lemma about (non-random) sequences of numbers.
Let » be z reduced by e, as defined above, and let ® remain as it was defined in the same
place. Then z, — ry, is a nonnegative even integer, which we denote by 2J(n). J(n) is the
number of those e;, 1 <1 < ®(n), which equal —2. Of course there are exactly 2, integers
0 < k < n such that z; = z} and zx41 — zx = 1. ®(n) is either 2}, — J(n) or 2}, — J(n) +1,
since each of the negative twos added, except perhaps the last, lowers the resulting ®(n)
by one. The proof of the following lemma has a lot to do with the proof of Proposition 2
in Revesz (1981).

Lemma 2.2. Let —1 < z < 0 and suppose zp = 0. Then

. - < ;
(2.1) 1r<n,§>,x Ik — (2k + z2%)| gllcaéx‘ |Z e; k | + 2.

Proof: We prove

: - <
(2:2) Ire — (2 + z2)| < B |iz_: €



Suppose first that ®(k) = 25— J (k). Put a = J(k)/z}, so that ri—(zx+x2}) = 25(—2a—2z).
Then -

2y —J(k)
> e,—(zk—J(k))(Hz)
= —2J(k) — (2
223
= 9 _I_kx(—za - z)a

and so, since of course z} — J(k) € {0,1,...,2;} and 0 < (2+z)/2 < 1, the truth of (2.2),

even without the final +2 follows.

25— J(k)
If ®(k) =zt — J(k)+1, ). e equals either —2J(k) or —2J(k) + 2, and so (2.2)

i=1
follows, from the algebra just done, the 4+2 being necessary here. O

Now if f and f,,n > 1, are functions on [0,00), and f, — f uniformly on compact
intervals, then f, + 8f% — f + 6f* uniformly on compact intervals. We also recall that if
Y is fair nearest neighbor random walk then Y™ converges in distribution to the standard
Wiener process Wy, t > 0, started at 0. Thus (Y +60Y *)™ converges to Wy +0W;,t > 0. Let
E = E;, i > 0, be iid random variables independent of Y, with P(E; =0) =1— P(E; =
—2) =2/(2 + §). Then Y reduced by E, which we call R, is a 6-PRMP. To complete the
proof of Proposition 2.1 we will show that for any ¢ > 0 and any € > 0,

(2.3) lim P( sup |Ry — (Y +0Y ") >¢e)=0
n—oo  g<Lg<t

The proof is essentially the same for each ¢, so we just give it for ¢ = 1. We have, for n > 1,
(2.4) P( sup |Ry — (Y, +0Y;™")| > ¢)
0<s<1
= P( max |Rr — (Y& + 0YF)| > ev/n)

< — —_
e\/‘EoIE’z?X |Rk — (Y + 6Y)))]

7 Eoér,:gy‘ ZE - —k| + 2) by Lemma 2.2
C E(y*)l/z

= om

= O0(n"Y*) as n — co.



The last two lines need some justification.

k k

First we note that iZIE,- — %k = ZI(E', - 5% : = I't is a sum of iid random
= 1=

variables of mean 0 and variance not exceeding 1, and so Doob’s inequality (see Doob

(1951) p. 317) gives the second inequality in
(2.5) E|T%| < (ET¥2)Y? < (4ET2)Y? = Cn'/2,

Since Y;* is independent of E, the last inequality in (2.4) is valid since it is valid conditioned
on Y} on {Y;} > 0}. To establish the last line of (2.4), we note that by the reflection
principle, P(Y* > a) < 2P(|Ya| 2 @), a > 0, so E(Y;¥)}/? < 2E|Y,|'/? < 2(EYZ)/* =

nt/4,

Next we let Z; = W, + 0W}, for t > 0, recalling W is standard Brownian motion
started at 0, and —1 < § < 0, and let 7; = 7(Z) be the canonical times defined before the
statement of Proposition 2.1. Let Hy = Z,,, k > 0, and Dy = Hy — Hr_;. Let p be the
distribution of the first exit time of W; from [—1,1], and let v be the distribution of the
first exit time of W from (—1,(6+1)~!). Then 7x+1 — 7% has conditional distribution, given
Fr., equal to g on {Hy < H}}, and has conditional distribution on {Hy; = H}} which
puts smaller probability on [y,00) than vy, o), since Tp41 < inf{t > 7: W, — W, ¢
(-1L,(8+1)"H}

Now let w(y) be the probability that W; +6(W; —y)*, t > 0, equals 1 before it equals
—1. It is easily checked that 0 < w(0) < w(y), if y > 0. Let N(k) be the number of j < k
such that H; = Hf. The strong Markov property implies that the conditional distribution
of Z} — Hi, given N(k) = m and H; = H}, depends only on m, and not on k or Hy, and
furthermore that on {Hy = H}}, P(Di41 = 1|Fr,) = w(Z7}, — Hi). Thus

(2.6) P(Deyr = 1{Hy = HE, N(k) =m) : = A(m) > \(0) = w(0) > 0.

Clearly A\(m) < 1/2 since, roughly, something negative is added to the Brownian paths.
Now [;° zdu(z) =1 and J° zdv(z) = r € (1,00). Thus E7, < nr, and so using the
Burkholder-Gundy inequalities (see Burkholder (1973)),
EH: < EZ! < cE\/f, < c(Ery)'/? < Cy/n.
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Thus o
Cvn> ) E(H} - Hi_,)
k=1
=Y EP(D =1|Hj,j < k— \)I(Hi-1 = Hy_;)
k=1

n
>c) P(Hy-1 = Hi_,).
k=

Now if i41 — i = (rit1 — ) [(Hi < H}) + ViI(H; = H}), where V;,¢ > 0 are iid and

independent of W and have distribution 4, then i1 — 7; are iid with distribution u, and
n—1

SO Tp/n — 1 in probability as n — oco. But |7, — 7| = | E (Vi — (k41 — T ) (Hi = HY)|

and thus E|r, — 7| < E (1 + r)P(Hy = H}) < Cy/n, and so 7, /n approaches 1 in

probability. Similarly 7, / n — t in probability. From this it easily follows that H™ — Z.

Now let A;, ¢ > 0, be iid positive integer valued random variables such that
(2.7) P(A; =1)=2)\0),P(Ai=k|Ai>k—-1)=2\k—-1), k> 1

Put EA; = n and M = EA Let G =01if i € {U M}, i > 1, and otherwise let
G; = —2. Let Yy, 11,Y5,.. be fair random walk, 1ndependent of G. Then Y reduced by
G has the same distribution as H.

In the long run, (n — 1)/n : = f of the G; are —2, and the rest are 0. The following

lemma is one way to state this more precisely.

Lemma 2.3. Let 7 be a positive integer valued random variable which satisfies {r =n} C

o0(Gi,t <n)=Gn,n > 1. Then

k
. T4t < ) Z .
(2.8) El?gJ‘;GJF +28k| < Cyn, n>1
Proof: Let Ty =inf{t > 1: M; > 7} and T3 =inf{i > 1: M; > 1 +n}.

Let M! = M;—7 and let oy = Z Gr4i+2PBk. Then apyr < ap if M <k < M -1,
t>Ty,and apy; < o if1 <k < MT — 1. Furthermore |ag4; — ax| < 2 for all k > 1.
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Thus

2R, ax |ax| < ma,x({|a1|}U{|aM/| Ty <:< T2}U{|0M' 1171 £i < Te})
(2.9) < max({|oa |} J{laasl: Th i< Tp}) +2
< lany, — 1| + max{lap: Ty < ¢ < To}) +2

< max{IaM:|'T1 <i1<T}+2(Mr,—7)+2

T k2T, lZG +28(My — )|+ 2(Mr, —7) + 2

< max | Z Gi +26(My — M)+ 4(M1, —7)+2

T, <k<T;
T1 41
= 285 | — 2[(My — Mr,) — (k — T1)] + 26(Mi — Mry)| + 4(Mr, —7) + 2
= ey 128 — 2||(My — Mr,) — n(k —T1)| + 4( M1, — 7) + 2.

Now P(Gpi1 = 0|Grn) > 2X(0) = 2w(0). Thus P(Mp, —7 > k) < (1—-2X(0))* , k > 0,
and similarly P(Mr, — (7 +n) > k) < (1 — 2X(0))*, so we have

(2.10) E(Mr, —7)<C  and  E(Mg —(r+n)) <C.

If My, 4x — M1, —nk = hg, k > 0, then given gMT1+k = 0(Ai,t < Ty + k), hgyr — b,
k > 0, has the same distribution as (A; — 7). Thus A, k > 0, is a martingale with respect
to Gumyp, +k k > 0, and so its differences are orthogonal, and putting p = E(Ay —1n)?, we

get
Eh, 1, = E(Ta —=T1)p < pE(Tz — (T +n)) + pn

< Cn, n>1, using (2.10).
Now by Doob’s inequality, E maxo<k<T;—T; b} < 4Cn, so E maxo<i<T,~T) |h&| < 2(Cn)'/2,

and this together with (2.9) and the first inequality in (2.10), gives (2.8). O

We here include a paragraph which will not be referred to until much later, and then
in a concrete case which may be easier for some to think about than the generality treated
below. Note that in the proof above we can relax the requirement that the arrival time
A; of the first 0 has the distribution given by (2.7), so long as the other A; still do. It is

enough to have a condition on the distribution of A; to control the overshoots T; — 7 and
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T — (7 + n). One such condition is P(A; = k|Ay > k—1) > ¢ >0, k > 1. Furthermore,
the proof of (2.8) shows that it holds conditioned on G,. Also, the o-fields G, could have
been replaced by Dy, : = d(Gn|J¥), where ¢, is a o-field independent of each G,,. In fact,
if A; satisfies the condition above, and 7 is a stopping time with respect to D,, n > 1,

then (2.7) holds conditioned on D-.

Now (2.8) holds also in the case 7 = 0, by the same proof, and this together with
Lemma 2.2 may be used, as (2.5) and Lemma 2.2 were used to prove Proposition 2.1, to
prove that H™ converges to Wy — (48/(2 + 28))W;, t > 0. (Note the inverse of y = 2%
isz= 2—2_%, which gives —43/(2+20) if y = —23.) But we already know H" converges to
W, + 6W¥, t > 0. Thus

(2.11) 8 = —48/(2 +28).

3. Construction of the Limit Process.

We define class B to be those continuous functions f on [0,00), such that f(0) =0
and such that f is not constant on any nonempty open subintervals of (0,00). We could
extend the results of this section to functions that aren’t in class B, but since we are only

going to apply them to Brownian paths, this is unnecessary.

Definition. Let —1 < ¢ < 0 and let f € B. The function g on [0,00) i3 called the €
contraction of f if g € B and if both the following hold.
i) If [a,b] C (0,00) and g(z) > g#(a), z € [a,b], then g(b) — g(a) = f(b) — f(a) +
s (9%(b) — g%(a)).
i) If [a,b] C [0,00) and g(z) < g*(a), = € [a,b], then g(b) — g(a) = f(b) — f(a) +
(9% (0) — g%(a)).

Conditions i) and ii) are rephrased at the beginning of the proof of Theorem 3.1.

If h is a function on [a, ] let h*([a,b]) = sup h(z) and h#([a,b]) = inf h(z).
a<z<b a<z<b

10



Theorem 3.1. If -1 < ¢ < 0 and f € B, there i3 a unique € contraction g of f.
Furthermore, if [a,b] C [0, 00),

(31)  g(fa. ) — (a8 < F*(aB) — F#(la,¥) < (5" (a8 — g#(a, )

Proof: We note that condition i) of Definition 3.1 can be rephrased as

i') If [a,b] C (0,00) and if g(z) > g#(a), z € [a,b], and if s = inf{t € [a,b]:g%(a) =
g(t)} < b, then g(t) — g(a) = f(t) — f(a), a < t < s, and g(t) — g(s) = f(t) — f(s) +
e (f*(t) — £(s)), s < t < b, while if s > b, g(t) — g(a) = £(t) — f(a), a St b

Condition ii) can also be similarly rephrased as ii'). It is easy to see i) and ii’) imply i)
and ii), and while more difficult to show i) and ii) imply i) and ii'), this is not too hard.
We omit this argument, but note that the verification of i) is based on the easy cases
when either g*(a) = ¢*([a,b]) or g*(b) = ¢*([a,b]): if v = inf{t > a: g(t) = g*(a)} <},
put v = sup{t € [u,b]: g(t) = g*(b)} and use i) and ii) on [a, u], [u,v], and [v,}], to verify
that if i) and ii) hold then g(b) is as described in i').

For § > 0, let g5 be the continuous function on [0, 00) which equals f on [0, 6] and
which, when substituted for ¢ in i) and ii) (or i') and ii')), satisfies these conditions not for
all intervals [a,b] C (0, 00), but only for [a,b] C [§,00). It is easy to show gs exists and is
unique, since i') and ii') for [a, b] C [6, 00) provide a recipe for constructing gs(t), t > 6: If,
for example, g5(8) € (f#(6), f*(6)), either i') or ii') guarantees gs(s)—gs(8) = f5(s)— f5(6)
until g5(s) equals either f# (&) or f*(6), after which either ii’) or i'), respectively, determines

the increments of g5 for a while, and so on.

We have, for any § > 0, if [a,b] C [, 00),

(32) a3t — g (fa,b) < £(fa, ) — (1o, 8) < (5w los ) — g (e, B)).

The left hand inequality is almost immediate: Suppose a max of g5 in [a, b] occurs before
a min, that is there exist @ < s; < s2 < b such that gs(s1) = g;5([e, b]). and gs(s2) =
g#(la, ). Then f(2) — f(s1) = 5(t) — gs(s1)s 51 < t < 52, 50 F*([ab]) — F#([a,B]) 2
|£(s1) — f(s2)| = 95([a,}]) — 9¥([a,b]). If a min occurs before a max the argument is

similar. To prove the right hand inequality, assume with no loss of generality that there
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exist @ < t; < £ < b such that f(¢;) = f*([a,b]) and f(t2) = f#([a,d]). Let t; = ¢o <
¢1 < ...< c¢p = ty, where the ¢; are picked so that each pair ¢;, ciy1 satisfies one of the

following conditions

(a) 9(s) € [g#(ci), 9% (ci)l, ¢i < s < cign,

(b) g(ci) = g%(ci) and g(ci+1) = g%(ci+1), and g(s) < g*(ci), i < s < €ita,
(c) g(ei) = g*(ci) and g(cit1) = g*(cit1), and g(s) = g%(ci), €i < s < i

It is easy to show such c¢; exist. We may take ¢; = inf{t: g(t) & (9%(co),9*(co))} or
b, whichever is smaller. If ¢; < b and, say, g(c1) = g*(c1) then if there is a number
in (c1,b] such that g(t) = g#(t), we may take cs to be the smallest such number, and
¢z = sup{s € [c1,]: g*(s) = g(s)}, while if there is no t € (c1,b] such that g(t) = g#(t), we
may take c; = sup{s € [e1,b]: g*(s) = g(s)} and ¢35 = b. In case c3 < b, we continue in this
manner. Now the g5 versions of i) and ii) imply gs(ci) — gs(ci+1) > (1 +€)(f(ci) — f(ci+1)),
for all = 0,1,...,n — 1. Adding these n inequalities gives the right hand inequality in
(3.2).

To prove the existence of the function g of Theorem 3.1, we note that the left hand
side of (3.2) guarantees that for any ¢t > 0, the functions g,-1, n > 1, are equicontinuous
on [0,%], and the usual diagonalization argument gives a subsequence uniformly convergent
on compact intervals. The limit function is g. That g is not constant on any interval
follows from the right hand side of (3.2). That i) and ii) are preserved under the uniform
convergence of g,-1 is most easily seen by decomposing, for each n, the interval [a,b]
into subintervals in a manner similar to the decomposition of [t;,%2] in the preceeding
paragraph, using g,-1 in place of g, and showing that if g(s) > ¢g#(a), @ < s < b, then
gn-1(b) — go-1(a) is almost f(b) — f(a) + t55(95-1(b) — g;-1(a)) if n is large, by using i)
and ii) for g,-1 on each of the subintervals, and adding.

To prove uniqueness, suppose both g, and gz are € contractions of f. That g; = g2
follows from the fact that ¢(s) = |g1(s) — g2(s)|* (= supo<i<s |91(t) — 92(?)]) is a monotone
decreasing (i.e. non-increasing) function on (0, 0c), and so since it is also continuous and
vanishes at 0, it must be identically zero. To prove ¢ is monotone decreasing, suppose

by way of contradiction that there is ¢ > 0,.such that ¢(t 4+ 8) > ¢(t), § > 0. Suppose
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without loss of generality that g;(t) > g2(t). Clearly then () = ¢1(t) — 92(¢), and i) and
ii) and the assumption we are trying to contradict imply that either both g1(t) < g5 (?)
and ga(t) = g2(#) or both g;(t) = ¢ (¢) and g2(t) < g§(¢). In the first case, however, if
to < t satisfies g1(to) = g7 (t), we have

@(t) = p(to) > g1(to) — g2(t0) = 91(t) — 92(t) > g1(2) — 92(2) = (2)-

A similar contradiction holds in the second case. O
4. Convergence of 6-RRW.

For the rest of this paper, ¥:,t > 0, will stand for the 6 contraction of standard
Brownian motion W;,t > 0, (recall 8 = —§/(1 + §)), and 7, will stand for T,(¥), as
defined after the proof of Proposition 2.1. We prove the following theorem.

Theorem 4.1 If X i3 §-RRW then X™ converges to V.

Let T'; = t,,. We will prove
(4.1) I'" - ¥ asn— oo.

We will be brief, as this argument is closely related to the proof of Section 2 that H™ — Z.
The definitions of y,r, and A, symbols which appear below, are given in the vicinity of
(2.6). We have P(T'i41 =i+ 1|F5,) = 1/2 on {T¥ < T'; < T't}. Furthermore, if N*(3) is
the number of j,0 < j < 7, such that I'; =T}, and if N~ (%) is the number of j,0 < j < ¢,
such that T'; = T'¥, then

(4.2) P(Tiy1 =Ti + 1Tk, k < i) = A(N*t(z)) on {T; =T¢ > 0}.
and
(4.3) P(Tiy1 =T — 1|Tx, k < i) = A(N~(:)) on {I; = T¥ < 0}.

On {T'; = I'f = 0}, the conditional probability in (4.2) is bounded below by w(0) =
A(0), which is also a lower bound for the conditional probability in (4.3) on {T; = I‘? = 0}.
On {I‘zl’E < I'; < T}, the conditional distribution of 741 — 7; is p, while on {I'; = I'}}
U{T; =TF}, i > 0, E(rigr — il Fr) <.
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The right side of (3.1) with a = 0,b =1 gives
¥ 2 1+ )Wy - W)

This implies 7 < inf{t : W & (—2/(1 +¢), 2/(1 +¢))}, so Emy < oo. Also, using (4.2)

and the Burkholder—-Gundy inequalities as in Section 2, we have

n—1
and using this to control kzo P(Ty =T% or I‘f) in a manner very similar to the way
n—1
3" P(Hy = H}) was controlled in Section 2, (4.1) follows by a minor modification of the

k=0
argument in Section 2.

Now let Y = Y,, Y, ... be the fair random walk of Section 2. Let T = T, T5,... and
B = By, B, ... have the distributions of E and —E, respectively, where E is the sequence
defined in Section 2, and let Y, T, and B be independent. Let M be Y reduced by T
and increased by B. Then M is 6-RRW. To help in remembering the notation, T is for
top and B is for bottom, since that is where, on the path of M, they act.

Next we discuss how to make a copy of I' by reducing and increasing Y. I' behaves
like a fair random walk unless at a max or min. At a max or min which is not 0, (4.2) and
(4.3) govern its behavior. We also have P(T'; = 1) = 1/2, and for k > 0 we define NOR
: >0 by

P(Ti41 = 1|1, 5 < k) = \N*F(k)), on {T =0,T; = 0}

and so, by symmetry,
P(Tiy1 = —1|Tj,j < k) = A\(N~(k)), on {Tx =0, T} =0}
Here, by the same argument that gave (2.6), we have

(4.4) w(0) < A(j), § = 1.

Now let A = A;, i > 1 be as in Section 2. Let A/ have the distribution of A and
let Y, A, and A/ be independent. Let X be positive integer valued and independent
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of (Y, A, Ar), and have distribution given by P(X = 1) = 2X(1), P(X = k|X > k —

1) = 2X\(k), k > 2. Let T = Ti,i > 1, be defined on {Y; = —1} by Tk = —2 unless

ke {X+3 Ain>1} J{X}, in which case T; = 0. Let 7" be defined on {¥; = +1}
i=1

by Tk = —2 unless k € {E A;, n > 1}, in which case Tp = —2. Let B=B;, i > 1, be

=1

defined on {Y; = +1} by By = +2 unless k € {X + fn: Al n > 1}|J{X}, in which case
i=1

Bi = 0, and be defined on {Y¥; = —1} by By = 2 unless k € {3, A}, ¢ > 1}, in which
i=1

case By = 0. Then Y reduced by T and increased by B , which we denote by M , has the

same distribution as I'". (Recall that the definition of a sequence y reduced and increased

left the first jump of ¥ alone, as opposed to the definition of a sequence reduced only.) We
assume that Y, T, B, A, A’, and X are independent.

Let J, = |M, — Mnl*. We will prove
(4.5) EJ./v/n— 0asn — oo,

which together with (4.1) will complete the proof of Theorem 4.1. The following lemma is
concerned with (non-random) sequences of numbers, and its proof recalls the proof of the

uniqueness part of Theorem 3.1.

Lemma 4.2. Let r be z decreased by e and increased by f. Let w be z decreased by e
and increased by f. Let A\p = |rn — zp|*. Then A, = Any1 unless esther both rp, > 1) — 1
and w, > w; —1, or bothwngw#-!-l and r, Sr#+1.

Proof: Clearly, rn41 — Zp41 = r'n — 25 unless at least one of r, =71}, rp = r#, Wy = W),
or w, = w# holds. Suppose that r, = r%. (The other three cases are similar.) We will
show that if w, # r, and w, < r} — 1, then A\, = A,41, while if w, = r, then either
Wy = W), Of A, = Ap41 or both. If w, < r, but w, is not w}, then it can happen that
Tn+l —Tn < Znt1 — 2 but not that wy41 — w, < 2p41 — 24, 50 Apg1 = Ap. fw, > r, but
Wy, < wy — 1 then wp4q — wy, could be 2,41 — 2, while rp41 —rp, could be 2,41 — 2, — 2,
0 [Wp+1 — rp41] could be as big as (w, —r,) + 2. This still would not result in A,41 > A,

however, since A\, > w} — r} > (wy +2) — ry.
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If w, =r, and A\, = 0 then w* = r}, w, = w}, while if w, =r, and A, > 0 then A,
is at least 2, 50 Ap41 = max(An, [Wnt1 — Tat1]) < max(Ap,2) = Ap. O
Now let L, = M* — M¥, and L. = M* — M#. Fix the integer m > 3, and define
nt(m) =N 12> 1, by
m = inf{k: Ly > 2m and Li> 2m},
n; = min(inf{n > ni_1: M;, — M, <1 and M* - M, <1},
inf{n > ni_y: M, — M# <1 and M, — M# <1},
if ¢ is even and positive, and

ni = Ni—1 + m, if 7 is odd and exceeds 1.

In view of the last lemma,

o0
(4.6) In = Imin(ny,n) T Z(']min(nzq.l,n) — Jpoi ) (n2i < m)

=1
[o%)

= Z(Jﬂ2i+1 - an.-)I(Uzi <n-— m) + Xa,

i=1
where 0 £ X, < Jy, +2m.
It is not difficult to show En; < oo, one way being to show P(py > k-2m) <

(1= X(0)*™)F and so EJ,, < 2En; < co. We will prove that there exist absolute constants

¢, C, not depending on m, such that

(47) E(ani+1 - Jﬂz-’)I(n2i <n— m) < cm1/4P(172.- <n-— m)vi 21,
and
(4'8) E(Lﬂzi+1 - Lﬂz-‘)I(nﬁ <n-— m) 2 le/ZP(ﬂzi <n— m)7i > 1

Before we prove (4.7) and (4.8), we show that they imply (4.5). That EL, — oo asn — o0
follows from 7;(m) < oo a.s. (for each m), since L, > 2m on n;(m) < n. Thus, using

(4.6), and the fact that

EL, > ZE(Ln2i+1 - Lﬂz-‘)I(UZi <n-—m),

i=1
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we get from (4.7), (4.8), and sup,, EX, < oo, that

limsup EJ,/EL, < ¢/Cm!/*

n—oo

Since ¢ and C do not depend on m,
(4.9) lim EJ,/EL, =0.

We have L, < Y* —Y# + 1, by essentially the argument which yielded (3.1), so EL, <
C+/n, which together with (4.9) gives (4.5).

Now define ®1(n) to be the number of T}, ¢ > 1, by which Yy, Y3,...,Y, is reduced to
get My, My,...,M,. Rephrased, ®r(n) is the number of i, 1 < 2 < n, such that M; = M}
and Y;y; — Y; = 1. Let ®p(n) be the number of B; by which Yy,Y3,...,Y, is increased
to get M, and similarly define ®+(n) and ®4(n). It is immediate that if 7 is a stopping
time with respect to H, = o(Y;,¢t < n, M;, i < n, M;, i < n) then Tor(r)+kr k 2 1,
has conditional distribution, conditioned on any of the atoms of H,, which is exactly the

distribution of T;, ¢ > 1, and a similar statement holds for B in place of T

Thus (2.5) gives both

29
(4.10) E(lléll?’éc |ZT‘I’T(7’)+1 - I Hr) < Cvn, n21,
and
(4.11) E( max IZB‘I’ +k— 20 H,) < Cy/n, n>1.
1<k<n B(7)+i 2186 T ) Z
We also claim
. 29
R i > 1.
(4'12) E(llélka.éi I;T‘I’T(T)'*'l k2 + 0' HT) < C\/I’_)ﬂ L 1
and
L 26
. . > 1.
(4.13) E(max. |;B<I>g(r)+t + k55l |Hr) < CV, n 21
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The proofs of these two inequalities are similar. We prove (4.12), which follows by
slightly different considerations on {¥; = 1} and on {Y; = —1}. Now ®;(7) is a stopping
time with respect to o(T}, i < n, Y, B, T, A'), n > 1, and the last four objects are
conditionally independent of T' given Y;. On {¥; = 1}, T' = G, G as defined in Section 2.
Thus the truth of (4.12) on {Y; = 1} follows from (2.11), Lemma 2.3, and the version of
Lemma 2.3 discussed just after its proof, although in this case the part of the discussion
concerning the distribution of the arrival time of the first zero is not relevant. The truth
of (4.12) on {Y; = —1} follows similarly; here the arrival time of the first zero is X,
which probably does have a different distribution than the other interarrival times. The
necessary control on the distribution of X so that the discussion applies, that is, the fact

that P(X = k|X > k—1)>¢ >0, k > 1, is provided by (4.4).

Next we prove (4.8), which will be shown to hold conditioned on H,,;. If A is an atom
of H,,;, then on A either M,,, > M, . —1 or M, < M,ﬁ'. + 1. Suppose the first holds
and that the inequality holds, so that M,,, = My .. Then My,;+r — My,;, 0 <k < m, has
exactly the distribution of the first k steps of a §-PRMP: since m1 < n2i, My, —M,ﬁ.. > 2m,
so My, +x > M7

7 0< k < m, and thus none of B increases Y between 7;; and n3; + m.

Thus, by Proposition 2.1, if m is large enough, and if E4 denotes conditional expectation

on A,

1 :
\/_E‘EA(anHm — Lp,;) =

1 * * 1 *
_\/E—EA(anﬁm - an.-) 2 __\/-n=7,EA(M"2"+m — My, )t > E(Wy + W7 ) /2> 0.

This proves (4.8) for all large enough m, in this case, which implies (4.8) for all m > 3. The
case My,; = My, —1 requires only minor modifications to this argument (Mpy,; ., —Mp,;,0 <
k < m, looks like a 6-PRMP except that jumps from 0 are fair), and the other cases are

similar.

Finally we turn to the proof of (4.9). Again, (4.9) holds conditioned on H,,;. Let
A be an atom of M,,;. On A, either both M,,, > My —1 and J\;I,,z,. > M;z.- -1, or
both M,,, < M#z', + 1 and an; < M,ﬁ' + 1. Suppose the former holds and suppose both
inequalities hold. Then on A, My, 44 — My,,, 0 < k< mis Y4 — Yy, 0 < k< m,
reduced by the sequence T, (p,:)+k> ¥ > 1 and ank+k_anka 05k m,isY ;4 — Yo,
0 < k < m, reduced by T¢T(n2.-)+k- Thus, using Lemma 2.2, (4.10), and (4.12), and the
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fact that given A, ¥ = Yy,.4% — Y3y, 0 < k < m, has the distribution of Yy, Y1,...,Yn,
and recalling that E./Y* < 2¢m (proved after (2.5)), we have,

EA(Jﬂz-'+1 - ani) <E\ lﬁa&xm I(Mﬂ2;+k - ani) - (Mﬂzi+k - Mﬂz-’)l

< E4s lg%caéxm I(Mflz.'-l-k - Mﬂz-‘) - ('»bk + 9¢7§)| +E4 lg}caéxm I(M'l2.'+k - M’lz-‘) - (¢k + 0"/’:)'

26 26

k k
< Ny — =" i Ny :—k-
<E4s 13122)12;. I;T‘I’T(ﬂz')+1 kz + al + E4 1312232;‘ | ;Td’r(’lz-)*‘] k 2+ 0' +4

< EA(CVdp + C/m +4)
<cym+4
<C%. m

We note that Theorem 4.1 together with the sentence after (4.9), or alternatively
using Nester’s result (Nester (1993)) that if X is 6-RRW and Y is fair random walk then
P(|X,| > ) £ P(|Ya| > a), a > 0, imply that nli_I':goE|Xn|P/np/2 = E|¥4|?, p > 0, where
¥ is the f-contraction of W, especially, they imply that this limit exists. A number of
Nester’s theorems translate immediately to results about the 6 contraction of Brownian

motion. The following is an example.

Theorem 4.2. Let ¥ be the § contraction of standard Brownian motion, —1 < § < 0. Let
a, b>0 and put 7 =inf{t > 0: Z, € (=b,a)}. Then

b/(a+b) 1
P(¥, =a) = / (1 - t)’sdt// t5(1 — t)dt.
0 0

Note that the limit as § — 0 (so § — 0) is of course b/(a + b), the Brownian probability.
Acknowledgement. Thanks go to the referee for a careful job, and for supplying a
number of references, including the very recent preprint Perman (1995), which may be

useful in studying the § < 0 question, and also Werner (1994), in which a generalization

of Proposition 2.1 to all § > —1 is proved, among other results.
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