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Summary

Solving Bayesian decision problems usually requires approximation procedures, all
leading to study the convergence of the approximating infima. This aspect is analysed
in the context of epigraphical convergence of integral functionals, as minimal context for
convergence of infima. The results, applied to the Monte Carlo importance sampling,
give a necessary and sufficient condition for convergence of the approximations of Bayes
decision problems and sufficient conditions for a large class of Bayesian statistical decision

problems.
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1. Introduction and Problem Setting

Decision problems under uncertainty from a Bayesian perspective require to solve the

minimization problem.

(1.1) inf / L(a, 6)TI(d6)

where A is the space of possible actions or decisions, 6 is the “unknown” quantity affecting
the decision process, commonly called state of nature, taking values in a given space O;
the function (a,8) — L(a,) expresses the loss incurred when the chosen action is a and
the true state of nature is §. The function II is a probability measure on the class of events
B(©) of ©; it can be the prior probability measure on B(0©) or, in statistical decision
problems, the posterior probability measure on B(O) after seeing the data: in the last

case II then combines the prior distribution on © with the likelihood function according
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the Bayes theorem; in view of the approximation procedures to solve (1.1) discussed here,

it is not relevant to distinguish between II representing a prior or a posterior distribution.

Even if approximation and convergence results presented here can be extended to

more general situations, we assume that © is a finite dimensional euclidean space, B(0)

the Borel field on © and II a probability measure on B(O).

The decision space A is metric separable and, as in all problems of interest, the loss

function (a,60) — L(a,0) is

A1l lower bounded on A x O, without loss of generality: L(a,6) >0, V(a,6) € A x O,
A2 lower semicontinuous on A x ©,
A3 measurable in 6 for every a € A.

Many problems in Bayesian analysis, and in particular the minimization problem (1.1),
rarely can be solved explicitly. In fact, in all but very specific problems, solving the problem
requires analytic or numerical approximations. The developing of suitable approximation
techniques has focused on the Monte Carlo approach. This can be pursued estimating
[ L(a, 0)I1(d6) by using samples 61,6,,...,6,,... drown from the probability measure II
when possible and not expensive; or by using reweighted samples drawn from some other
appropriately chosen distributions P such that [ L(a,8)II(df) = [ L(a,8)w(8)P(df), as in
the versions of the Monte Carlo importance sampling.

In these approximation procedures we have a sequence of random vectors {6;,0s,...}
all defined on the same probability space, say (2, 4, 1); f(a) = [ L(a, 8)II(d6) is approxi-
mated by

(1.2) Ful@0) = = 3 g(a,6:(w))

i=1

and the minimization problem (1.1) by
(1.3) min fu(a,w).

In (1.2) g(a,0) can be simply L(a, §) as in the direct sampling from II; or, as in the Monte
Carlo importance sampling, g(a,0) = L(a, §)w(8).
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The major convergence question entailed by solving (1.1) through the approximations

(1.3) concerns the almost sure (a.s.) convergence of the stochastic infima
(1.4) inf fn(a,:) — inf f(a) a.s.,asn — oo

and the related convergence of the optimal solutions.

Under mild conditions the approximation scheme (1.2) provides the a.s. convergences
(1.5) fala,:) = f(a) as., Va€A.
From (1.5) it is easy to derive

(1.6) lim sup ;relifn(a,-) < ;Ielgf(a) a.s..

n—oo

Thus the major mathematical aspect for answering the convergence question (1.4) is to

state the minimal set of conditions which guarantee
(1) s, /() < ol laf fula, ) s

In view of that observe that for every realization, say {6;(w),82(w),...} of the sequence

{6., n=1,2,...} we have

Fula,w) = / 9(a, 6)Pa(db,w)
where Pp(-,w) is the empirical probability measure on B(©) determined by (6;(w),...,
On(w)).

Under rather general conditions, in the Monte Carlo approximation schemes, a.s. on
Q, i.e. for all w € Q\N, u(N) = 0, the sequence of probability measures {P,(-,w)} weakly

converges to P:
(1.8) P.(-,w)-P.
In view of all the above, in particular taking into account of (1.5) and (1.8), the key

question about a.s. convergence of the stochastic infima (1.4) can be rephrased in the fol-

lowing setting: Let irelg fla) = ixelgfg(a, 0)P(df) be a minimization problem approzimated
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by the sequence irelgfn(a,w) = irelgfg(a, 0)P,(df,w), n = 1,2,..., with fn(a,) — f(a)
a.s. for all a € A and Po(-)—5P a.s.; under which minimal conditions we have i1€1£1 fla) <

o e e . o
lim inf «:Ielfcl fal(a,-) a.s.”

n—00

This question is fully answered in section 2: a necessary and sufficient condition for
the convergence of stochastic infima is given and sufficient conditions are also provided.
In Section 3 the result is applied to the Monte Carlo importance sampling for Bayesian
decision problems. This problem has been considered in the Bayesian literature under
particular assumptions [7]. The result of Section 2 enlarges the applicability of Monte

Carlo importance sampling to Bayesian decision problems.

2. Convergence of Infima of Integral Functionals

For a family {f; fn, n=1,2,...} of (possibly extended) real valued functions defined

on a metric separable space A, the convergence of infima
(2.1) inf fu(a) — inf f(a)
is strictly related to the epigraphical convergence of the sequence {f,} to f; (for an ex-

tended presentation of epigraphical convergence see [1] and references therein).

Epigraphical convergence, or epi-convergence, of the sequence {f,} to f, denoted
o2, f, means that the following two conditions are satisfied at every a € A:

Va€ A, 3a, — asuch that limsup fn(a,) < f(a),
Va€A, Van — a, V subsequence {n,} C {n}, it is f(a) < iminf f,_(am).

We refer to these relations respectively as

epi-limsup f, < f and f < epi-liminf f,.

With respect to the convergence of infima (2.1), it is immediate to verify that
(2.2) epi-limsup f, £ f = limsup inf f, <inf f.
The opposite relation inf f < liminf inf f, is strictly related to the relation f <

epi-liminf f, but in general not implied by it. However it is known, and easy to show,

that
(2.3) f <epi-liminf f, = inf f <liminf inf f,
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if, for any € > 0, the sequence {inf f,} has a bounded sequence of c-optimal solutions; this
means that for any ¢ > 0 there exist a compact subset K. C A and a sequence {a,} such

that for all n

(2.4) falan) < ir€1£1 fa(a)+¢ and a, € K..

2.5 Remark: It can actually be shown tl.lat in presence of epi-convergence fne—pl+ f,
condition (2.4) is also necessary; i.e. if anEi f then inf f, — inf f if and only if (2.4)
holds. ‘

In the case of interest here, f,, and f are integral functionals defined by
fla) = /g(a,G)P(dG); fala) = /g(a,@)Pn(dG), n=12,...

where {P; P,, n = 1,2,...} is a family of probability measures on (0,B(0)) and the

sequence {P,} weakly converges to P, P,——P.

The epigraphical convergence of {f,} to f and the related convergence of their infima.

rely, as natural to expect, on the convergence P,—— P and on the properties of g.
The integrand (a, ) — g(a,0) is assumed to be
A1l lower bounded on A x ©; without loss of generality: g¢(a,6) >0,V (a,6) € A x O,
A2 lower semicontinuous on A x O,
A3 measurable in 8 for each a € A.

The epigraphical convergence of integral functionals is widely analyzed in [4] and
[5], in the last with special reference to Bayesian decision problems. In particular [5,

Proposition 2.13] we have:
2.6 Proposition: If g satisfies A1-A3 and P,—P then
f L epi-liminf f,.

2.7 Remark: The opposite relation epi-limsup f, < f does not follow in general from

P,—5P; here we simply register that if f, — f pointwise on A then fnﬂ)if. For,
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just observe that pointwise convergence, and in particular limsup fr(a) < f(a), V a €
A, implies that epi-limsup f, < f; this, together with Proposition 2.6 gives the epi-

epi
convergence fn—P> f.

The convergence of infima of integral functionals, according (2.3), depends on the
existence of bounded sequences of ¢-optimal solutions. It is obvious that if A is compact
then the epigraphical convergence fnﬂ f implies the convergence of the infima inf f, —

inf f.

When A is not compact the existence, for every ¢ > 0, of a bounded sequence of ¢-
optimal solutions, or more specifically the convergence of infima, depends on the behaviour

of g on the tails.

2.8 Proposition: Suppose that g, in addition to A1-A3, satisfies the following condition:
for every compact subset T of © there exists a compact subset K of A such that for all

a¢ K
(2.9) g(a,8) > ilelf/; f, VOeT.

If P,—5P then

i < liminf inf f,.

s =t f g
Proof: Arguing by contradiction, assume that liminf inf f, <inf f—e¢, for some ¢ > 0.
Then there exist a subsequence {n,,} and a corresponding sequence {am} of §-optimal
solutions such that

3

(2.10) fam(am) <inf f, + 5

<mff—§,Vm.

Let 6 > 0 be such that ¢ -inf f < £ and let T be a compact subset of © such that

Po(T) > 1 — 6 for all n; let K be the corresponding compact subset of A according (2.9).

If a € K for all but finitely many m then the sequence {a,,} possesses a conver-
gent subsequence, say an,+ — a'. In this case, Proposition 2.6, through (2.10), gives the
contradiction

nﬁfgf@qghmmfhwmw)gmff_g
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On the other hand if there exists a subsequence of {an}, say {am’}, such that a, ¢ K,
V m', then by (2.10) and (2.9) we have

inf f——;-> fa(am) > inf f-P, (T)>inf f - Z
This is a contradiction and it completes the proof.

As a consequence of Proposition 2.8, more interesting from the applications viewpoint,

we have the following result valid for A normed space.

2.11 Proposition: Suppose that g, in addition to A1-A3, satisfies the following condition:
for every compact subset T of O

(2.12) lim g¢(a,6) > irelf4 f(a) uniformly on T

lla]|—o0

if P,——P then
inf f(a) < liminf i2£ ful(a).

a€EA n—o00

Proof: Just observe that condition (2.12) states that there exists M > 0 such that for
all a with ||a|| > M we have g(a,0) > inf f(a), V 8 € T. The result follows then from the
Proposition 2.8 with K = {a € A: ||a|] £ M}.

2.13 Remark: It can be observed that in Proposition 2.11, if limsup inf f, < inf f,
condition (2.12) implies that for every ¢ > 0 there exists K such that for n sufficiently

large we have

{a € A: fn(a) <inf fr+e} C K.

We consider now the stochastic setting: (£, A4, p)i is a given probability space; for every
n, w — P,(w) maps w into a probability measure on B(0©), P is a probability measure on

B(0); the integral functionals f, and f are defined by
f(a) = / o(a,0)P(d6); fa(a,w) = / g(a,0)Pa(db,w), n=1,2,... .
The objective is the a.s. convergence of the stochastic infima
;lélg fa(a,:) — (:lélg f(a) a.s., as n — oo.
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2.14 Proposition: Let g satisfy conditions A1-A3. If

(2.15) fala,”) = f(a) a5,V ac A
and

(2.16) P.(-)-5P a.s.

then

inf fu(a,") = inf fla) a.s.
if and only if as., t.e. at every w € Q\N, u(N) = 0, for every ¢ > 0, the sequence

{inf fn(a,w), n=1,2,...} has a bounded sequence of e-optimal decisions.

Proof: For the direct part observe first, as stated in Section 1, that (2.15) implies

(2.17) limsup inf fn(a,w) <inf f(a), Yw € Q\Ny, u(N;) = 0;

n—oo

condition (2.16) and Proposition 2.6 imply

(2.18) f £ epi-liminf fo(-,w), Vw € Q\N2, u(Nz) =0.

Let N3, u(N3) = 0, be such that at each w € Q\N3, for every € > 0 the sequence
{i1€1£ fa(a,w), n=1,2,...} has a bounded sequence of e-optimal solutions. Then by (2.3)

we have

i1€1£ f(a) <liminf f,(a,w), Vw € Q\No U N3.

This relation together with (2.17), gives the convergence of infima on Q\(N; U N, U N3)

and completes the direct part.

For the vice versa let Ng, u(n¢) = 0, be such that
(2.19) ;Ielfclfn(a’w) — ;r’elgf(a), w € Q\Np.
Let 6 | 0 as k — oo and for each k let ax be §i-optimal for inf,c4 f(a), i.e.
(2.20) flar) < igg f(a) + 6.
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Let Ni, u(Ni) = 0, be such that, according (2.15),
(2.21) Y w e Q\Ng, fa(ar,w)— f(ar) asn — oo;

oo

Set N = |J Ni so that u(N) = 0. Let w € Q\N; for any fixed ¢ > 0 let k. be such that
k=0

6k, < £. For n sufficiently large, by (2.19), (2.20) and (2.21), we have

€ . 2 .
falak, ,w) < f(ax, )+ 3 < ;relgf(a) + 3¢ < ;22 fala,w) + €.

The argument shows that, at every w € Q\N, for any ¢ > 0 there exists ar, which is

e-optimal for inf f,(a,w) for all n sufficiently large and completes the proof.

The theorem just proved states the minimal conditions for convergence of stochastic
infima. From the operational viewpoint however the result could be not immediately appli-
cable. The existence of bounded sequences of e-optimal solutions is obviously guaranteed
when A itself is compact. Out of this case, in the conditions of Proposition 2.14, condition
(2.9) in Proposition 2.8 or condition (2.12) in Proposition 2.11 are sufficient conditions for
a.s. convergence of the stochastic infima. The observation wants to point out that condi-
tions (2.9) and (2.12) concern only the integrand g, not the approximations, and they are
satisfied by a large class of loss functions in Bayesian decision problems as it will be seen

in the next section.

3. Monte Carlo Approximations of Bayesian Decision Problems

Consider the Bayesian decision problem

(3.1) inf / L(a, 6)r(6)d0

a€A

with L satisfying the assumptions of Section 1 and 7 density function on © of the proba-

bility measure II.

A Monte Carlo method for solving this minimization problem based on the importance
sampling can be described as follows. Let h be a density function, the importance function,

with h(#) > 0 and support including the support of 7. Note that

fla) = /L(a, 0)n(6)d = /L(a, 6w(6)P(df)
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where P is the probability measure with density h and w(0) = n(6)/h(6).

Suppose that it is possible, in the sense that it is easy and not expensive, to generate
a sequence {0,, n =1,2,...} of random variables, independent and identically distributed
(iid) with common density h. Let (£, A, 1) be the underlying probability space to which
the sequence {0,} is referred. For a fixed n and w € Q let

| fola,w) = %ZL(a, 0;(w))w(;(w)) = /L(a, 6)w(6) P (db,w)

where Pp(-,w) is the empirical probability measure on B(©) determined by (6;(w),...,

0r(w)). The minimization problems
(3.2) ;Ielqun(a,w), n=12,...

approximate the original problem (3.1) and the key convergence question concerns the

convergence of infima
(3.3) :relgfn(a,-) — ;relgf(a)a.s. .

The way to choose the importance function h for the approximation procedure is obvi-
ously quite relevant and extensive discussions on the choice of h in Bayesian computations

can be found for example in [3].

Here we limit ourselves to assume that w(#) is lower semicontinuous and bounded on
©, a condition satisfied in all the problems of interest. Thus the function (a, ) — g(a,0) =
L(a,0)w(0) satisfies conditions A1-A3 of Section 2.

In view of the a.s. convergence (3.3) observe first that since the {6,} are iid, for each
a € A, the random variables {¢(a,0,) = L(a,6,)w(6,), n = 1,2,...} are also iid with

expectation f(a); the strong law of large numbers then implies
(3.4) fnla,-) = f(a) a.s. Yae€ A
Moreover, by Glivenko-Cantelli theorem we have a.s. on §2

(3.5) Po(-yw)-P.
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It follows from above that the Monte Carlo approximations (3.2) satisfy all the as-

sumptions of Proposition 2.14 and we can conclude:

3.6 Theorem: The Monte Carlo approzimations {;I€1fA fala,"), n=1,2,...} a.s. converge
to 51615 f(a) if and only if a.5. on Q, i.e. at allw € Q\N, u(N) = 0, for every € > 0, the
sequence {;1615 fa(a,w), n=1,2,...} has a bounded sequence of e-optimal solutions.
This result and the following sufficient conditions are here obtained as particular case
of the more general approximation scheme described in Section 2. However it is relevant to
observe that the convergence of the Monte Carlo approximation procedures can also be ap-
proached through the epigraphical law of large numbers for random lower semicontinuous
functions developed in [2] and [6], once stated that {L(-,8,(-))w(6,), n=1,2,...} is a se-
quence of random lower semicontinuous functions, independent and identically distributed

in the appropriate epigraphical setting.

As application of Propositions 2.8 and 2.11 we have

3.7 Theorem: Suppose that for every compact subset T of © there exists a compact subset
K of A such that for all a ¢ K we have

(3.8) L(a,0)w(6) > irelgf(a), VoeT
then
algg fala,:) — ;lélg f(a) as. .

On the applicability of (3.8) it can be objected that inf f(a) is unknown; however
inf f could be replaced by f(a@) for some @ where f(@) is easily computed. For A = R?

(but more generally in a normed space), (3.8) is implied by the assumption

lim L(a,0)w(8) >r uniformly on T

llal]—o0
with r > ;ggf(a)
In fact condition (3.8) can be replaced by the simpler condition

S
L(a,0) > :relgf(a), VéeT.
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as next theorem shows.

Observe first that since § — w(6) is lower semicontinuous and bounded and P,(-,w)—

P(:),Vw € Q\N, u(N) =0, then
(3.9) / w(6)P(d6) < lim inf / w(O)Pu(df,0)  w € Q\N, u(N) = 0;
moreover, for every § > 0 there exists a cdmpact subset T of © such that for all n
) 6
1--< / w(0)P(df) and / w(0)P,(df,w) < =,
2 T Tc 2
T denoting the complement of T, so that (3.9) gives
§ PR §
(3.10) 1-— 3 < w(0)P(df) < liminf [ w(6)P,(db,w) + 7"
T n—ee Jr

We have then

3.11 Theorem: Suppose that for every compact subset T of © there ezists a compact
subset K of A such that for all a ¢ K we have

(3.12) L(a,0) > airelif(a), VoeT.

Then

i fu(a, '.) — inf f(a).

Proof: It is sufficient to prove that

(3.13) :Ielg fla) < llnn’_l’loléf :Ielﬁfn(a, ) a.s

Arguing by contradiction, suppose that (3.13) does not hold for some w € € where
fa(-yw0)25£(-). Then for some e > 0 there exist a subsequence {n,} of {r} and a sequence

{am} of e-optimal solutions such that
(3.14) Fan(ams) < 08 fon(a,0) +¢ < inf f(a) ~<, ¥ rm.

Let § > 0 be such that 6-inf f < § and let T be the compact subset of © satisfying (3.10);
let K be the corresponding subset of A satisfying (3.12). If a,, € K for all but finitely
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many n then the same argument used in the proof of Proposition 2.6 gives a contradiction.
On the other hand if there exists a subsequence of {am}, say {am }, such that a., ¢ K,
V' m/, then along this subsequence relations (3.10) and (3.14) give

ilél£ f(a) — e > liminf f, ,(am:,w)=liminf/ L(am:,0)w(6)P, ,(df,w)
a m'—o0 m m! —o0 T m

>inf f - liminf / w(8)Py_, (d6,w) > inf f-( / w(6)P(d6) — g)
>inf f-(1—6)> inf f—%.
This is a contradiction and completes the pfoof.

It is relevant to observe that condition (3.12) is satisfied by a large class of loss
functions of the Bayesian statistical decision theory. When A = © = RY, as in the point
estimation, the typical loss function is a non decreasing function of the distance between

a and 6, here denoted ||a — 8]||. For it we have:

3.15 Theorem: Let L(a,0) = ®(|la — 6]]) with ®: Rt — Rt non decreasing in the

argument and

—

(3.16) /tI)(HGH)w(G)P(da) < ||91|ilm 2(|1611).
Then

;Ielg fala,:) — ;1612 f(a) a.s. .

Proof: From (3.16), for ¢ < |I01Iilm ([1611)— J (|16]]) w(6)P(dh), recalling that J @19
w(6)P(df) = [ ®(||6]|)TI(df), there exists k. such that for all k > k, we have

(3.17) £(0) = / 2(118])w(6)P(d8) < B(zR)I(I6I] < 1) <.

Let T be a compact subset of © and let & be such that k¥ > k. and T C B(0, 3 k), the
ball with center at the origin and radius %k; let K = B(0,k). Then for a ¢ B(0,k) and
6 € B(0, 2k) we have ||a — 6| > 3k, and by monotonicity of &, ®(|la —6]]) > ®(5k). This
last relation, together with (3.17) states that

L(a,6) = ®({la—8[)) > @(;4) 2 SR < k) > F(0) +& >inf f Vo,
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i.e. condition (3.12) is satisfied. The result follows then from theorem 3.1.
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