SUFFICIENTLY NONINFORMATIVE PRIORS FOR THE
SECRETARY PROBLEM; THE CASE: n =3

by
Stephen M. Samuels
Purdue University

Technical Report #94-20

Department of Statistics
Purdue University

August 1994



SUFFICIENTLY NONINFORMATIVE PRIORS FOR THE
SECRETARY PROBLEM; THE CASE: n =3

STEPHEN M. SAMUELS

ABSTRACT. The premise of the so-called secretary problem is that “all we observe
are the relative ranks” of a sequence of items. As pointed out by Ferguson, in
his 1989 Statistical Science article, and Samuels, in his comments on that article,
this begs the question of whether it is possible to have an exchangeable sequence,
X1,X,,...,X,, for which a stopping rule based only on relative ranks is indeed
optimal. For n = 2, the answer is no, by a well-known simple argument which
is repeated in this paper. For n > 3, the answer is now known to be yes for the
special case of the “best choice” problem; i.e., the problem of finding a stopping
rule which maximizes the probability of selecting max(X;, X3, X3). Silverman and
Nadas (1992), for n = 3, and Gnedin (1995), for all n > 3, gave solutions with
X:’s which are conditionally i.i.d., uniform on (0, ©), where © has any of a class of
appropriate prior distributions. Given their effect, these priors deserve to be called
“sufficiently noninformative.”

In this paper, a general payoff function for n = 3 is considered. Without loss of
generality, we can take the payoff to be 1 for selecting the largest, 0 for selecting
the smallest, and ¢, 0 < ¢ < 1, for selecting the middle value of {X;1, X5, X3}. Then
¢ = 0 is the best choice problem, ¢ = 1 is the problem of maximizing the probability
of not getting the worst item, and ¢ = 1/2 is the so-called “rank problem.” A
tantalizing extension of the argument for n = 2 seems to suggest that no such
exchangeable distribution exists for ¢ > 0; but the argument fails. Indeed, the
sufficiently noninformative priors of Gnedin are shown to work also for any ¢ < 1/2.
For ¢ > 1/2, the problem remains unsolved.

1. INTRODUCTION

Secretary problems are those sequential selection problems in which the payoff
(or cost) depends on the observations only through their ranks. A subclass of such
problems allows only selection rules based on relative ranks. A question which may
be asked is this: Are there secretary problems in which a rule based only on relative
ranks is optimal in a strictly larger class of all stopping rules adapted to the sequence
of observations?
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For example, consider Martin Gardner’s presentation of the following problem,
called Googol, in his Mathematical Games column in the February, 1960 Scientific
American.

Ask someone to take as many slips of paper as he pleases, and on each
slip write a different positive number. The numbers may range from
small fractions of one to a number the size of a googol (1 followed by
a hundred zeros) or even larger. These slips are turned face-down and
shuffled over the top of a table. One at a time you turn the slips face
up. The aim is to stop turning when you come to the number that you
guess to be the largest of the series. You cannot go back and pick a
previously turned slip. If you turn over all the slips, then of course you
must pick the last one turned.

The “solution” in the March, 1960 column, took it for granted that only stopping
rules based on the relative ranks of the numbers need be considered. (That was, after
all, the point of calling it “Googol,” wasn’t it?)

But this begs the question of whether there is any exchangeable distribution for
which it is optimal to consider only the relative ranks. (It is implicit in the statement
of Googol that the numbers are exchangeable.) Samuels (1989) posed this question
and called it Ferguson’s Secretary Problem because Ferguson (1989) showed that for
any € > 0 and for any n, there is a two-parameter Pareto prior distribution on 8 such
that, when sequentially observing n uniform r.v.’s on [0, 8], the best rule based only
on relative ranks comes within € of being optimal. See also Samuels (1991).

For the case n = 2, the answer to the above question is NO; there is no exchangeable
distribution for which it is optimal to consider only the relative ranks. This is easily
seen by the following simple and well-known argument: Let X; and X, be the first
and second numbers examined, respectively. Now let Y be any random variable,
independent of the X’s, with support on the whole real line, and choose Xj if X; >
Y; otherwise choose X;. If both X; and X; turn out to be bigger than Y, or if
both are smaller than Y, then (by exchangeability) this rule selects the larger of the
two with probability 1/2, while, if one random variable is larger than Y while the
other is smaller, the larger one is sure to be chosen. Thus, setting the unknown
P {min(X;, X;) < Y < max(X;3,X2)} equal to p, say, we have

P (X, = max(X1, X2)) = p + (1 - p)/2 = (1/2)(1 +p),

which is strictly greater than 1/2. This beats rules based only on relative ranks,
which, for n = 2, are necessarily constants, so have probability 1/2 of success.
Recently Silverman and Néadas (1992) have shown, to the surprise of many, that,
for n = 3, there are such distributions, in the special case of the “best choice”
problem; i.e., the problem of finding a stopping rule which maximizes the probability
of selecting max(X;, X2, X3). They conjectured that such distributions also exist for
the best choice problem for all n > 3 and that they would be found within a specified
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family. That conjecture was indeed correct, as shown by Gnedin(1995). His Markov
chain argument is quite elegant, but cannot be extended to arbitrary payoffs.

In the next section we will consider the n = 3 problem with arbitrary payoff. First
we will examine a simple “extension” of the negative result for n = 2, which seems to
suggest that the best choice problem is the only payoff for which such distributions
can exist, but is fatally flawed. Then we will take a close look at the same family
of distributions from which Gnedin found his exchangeable distributions as mixtures
with respect to what we call “sufficiently noninformative” priors. As will be seen, the
same family yields part but not all of the solution to the general n = 3 problem. (In
an earlier version of this paper, Samuels (1992), before Gnedin’s result was available,
the Silverman and Nadas distributions were used, yielding a similar but somewhat
weaker result.) '

2. THE CASE: n=3

Let Xy < Xz < X) be the order statistics of Xj, X3, X3, assumed jointly
continuous because we want the probability of ties to be zero. Let the payoffs for
selecting X(1), X(2) and X3) be c1,¢; and cs, respectively, with ¢; < ¢; < ¢3 and
c1 < cs. Without loss of generality, we can (and will) normalize these payoffs to 0,
c=(cg—c1)/(cz—c1)and 1, with0 < e <1.

Let r(X;) be the rank function: r(X;) = j if X; = X(;); and ¢(-) be the payoff
function: ¢(1) =0, ¢(2) = c and ¢(3) = 1.

Proposition 1. For any ¢, 0 < ¢ < 1, the optimal stopping rule, T, based only on
relative ranks, is

1)

3 otherwise.

{2 if Xo > Xa
T =

Proof. By exchangeability,

2 1 04+c+1
Blg(r(Xa))|Xa < Xi] =5 -0+ 3 c= 3 < ——— = Elgr(Xa))|Xz < X}

1 c+2 e¢+1

Elg(r(X2))|Xz > Xa] = g At gee= 225 S Bl ()X < X
BlaGr()] = 52 < -S04 222 o O < X)Bl( (X)X < Xi]

+ P(X,; > X1)E[q(r(X2))| X2 < Xi].
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Here is a tantalizing argument which seems to suggest that the best relative ranks
rule, 7, can be beaten for any ¢ > 0: Choose any number, say y, and consider the
stopping rule

(2)

2 fX;>Xjorify <X, <X,
n= .
3 otherwise.

By examining the six equally likely (by exchangeability) orderings of X3, X,, and
X3, one can show that the expected payoff using 7 is larger than using 7 if and only
if

P(Xy<y<X 1

3) X <y<Xg) 1
P (y < X(l)) c

For i.i.d random variables, and any ¢ > 0, such a y always exists, since the left side of

(3) goes to oo as y — oo. (Here, the y depends on the distribution, unlike the n = 2

argument where there is a “universal” Y.) But, in the larger class of exchangeable

random variables, there need not be such a y; for example, with the priors (6), the
left side of (3) is identically a for all ¥ > 1. So the tantalizing argument fails.

Proposition 2. A sufficient condition for the T in Proposition 1 to be optimal among
all stopping rules is that each of the following hold with probability one:

(A) (1 = 3¢)P(Xy = X1 X1) + (4 — 36)P(Xy = X5)|1X1) < 2(1 — ¢);
(B-].) 2CP(X3 = X(]_)le,Xz) - (1 - C)P(X3 - X(3)|X1,X2) S (4

(B—2) 2(1 — C)P(X3 = X(3)|X1,X2) - CP(X3 = X(l)le,Xg) S 1-ec
Conditions (B-1) and (B-2) are also necessary.

Proof. A sufficient condition for not stopping with Xj is that its payoff be smaller
than the payoff for using the 7, given by (1), which is the optimal rule based on
relative ranks. This inequality is
P(X1 = X(3)IX1) + CP(Xl = X(g)lX]_) S

CP(X1 < Xy < X3|X1) + 1P(X1 < X3< X2|X1)

+ 1P(X2 < X1 < X3|X1) + 1P(X3 <Xi< X2|X1)

+ CP(X2 < X3 < X1|X1) + 0P(X3 < Xy < X1|X1)

1+c¢ c

= 5 P(X; = X(1)|X1) +1P(X; = X(z)le) + EP(XI = X(3)|X1).

The last equality follows from exchangeability. Substituting 1 — P(X; = X(3)|X1) —
P(X; = Xg)|X1) for P(X; = X()|X1) gives condition (A).
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The necessary and sufficient condition for not stopping with X; < X; is that the
payoff for stopping always be smaller than the payoff for continuing. By exchange-
ability, this inequality is

CP(X3 = X(1)|X1,X2) S CP(X3 = X(z)le,Xz) + P(X3 = X(3)|X1,X2),

which, after rewriting, becomes condition (B-1). Similarly, the necessary and suffi-
cient condition for stopping with X; > Xj is.

cP(Xs = X X1, X2) + P(Xs = X3/ X1, Xa)
< cP(X3 = Xl X1, X2) + [1 - P(X5 = X(3)| X1, X3)),

which becomes condition (B-2). O

Here is what conditions (A), (B-1) and (B-2) become in special cases:

Best Choice (A) P(Xl = X(3)|X1) + %P(Xl = X(I)IXI) S %
(¢=10) (B-1) always true
(B-Q) P(X3 - X(3)|X1,X2) S %
Rank (A) %P(Xl = X(3)|X1) — %P(Xl = X(1)|X1) < -;—
(C = %) (B-l) P(X3 = X(1)|X1,X2) — %P(X3 = X(3)|X1,X2) S %
(B-2) P(X3= X(|X1,Xa) — 1P(X5 = X(1j| X1, X5) < 3
Not Worst Choice (A) P(X; = X3)|Xy) < 2P(X; = X(y|Xa)
(c=1) (B-1) P(Xs = Xp)lX1,X2) < 2
(B-2) always true

Now suppose that the X;’s are conditionally i.i.d., uniform on (0, ©), where © has
some prior density. Then the posterior density of ©, given X;, X3, depends only
on U = max{Xy, X;}. Denote these densities by h(f|U) and let V = min{X;, X,}.
Then

oV

1%
4)  P(Xs = XulX1,Xz) = ] Zh(OU)d = Z[1 = P(Xa = X9 X1, Xa)].

U

Proposition 3. If the X;’s are conditionally i.i.d., uniform on (0,0), where © has
some prior density. Then a necessary condition for the T in proposition 1 to be
optimal among all stopping rules is that, with probability one,

c
14+¢

1/2 0<e<1
1 c=1.

(B) < P(Xs = X5)| X1, Xz) < {
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Proof. By (4) conditions (B-1) and (B-2) become, after substitution and rearrange-
ment,

26(%_%) 14 - Y
( ) 1+2c(%——%) ( 3 (3)| 1y 2) 2+_1,;Tc% {0<c<1} {c=1}

But P(X3 = X(3)|X1,X2) depends only on U, while V/U is independent of U with
support on (0,1], so the above inequalities hold with probability one if and only if
they continue to hold when we take the supremum of the left side and the infimum
of the right side over {V/U : 0 < V/U < 1}. The sup of the left side is ¢/(1 + ¢),
attained at V/U = 1, and the inf of the right side, for ¢ < 1, is 1/2, attained as
ViU —-0. O

Silverman and N4das (1992) found sufficiently noninformative priors for the best
choice problem, with n = 3, within the following class of prior densities for ©:

84
(6) g(0) = tloco<1y + (1-— t)-—I{g>1} a>0,0<t<1.
01+a

They conjectured a solution for all n > 3 within the larger class:

1-3 «
g(0) = t-e—ﬁ'l{0<051} + (1 - t)m[{g>1} o > 0, 0< ,B < 1, 0<t<L 1.
Gnedin(1995), in effect, verified this conjecture by showing that, for any n > 3, the
prior

e3—e¢ e(3+e¢
(7 9(0) = (601_5 )I{0<9_<_1} + —(6—-01:;—)1{9>1} e>0,

is sufficiently noninformative if ¢ is sufficiently close to zero. (Gnedin did not explic-
itly name his prior. He specified marginals

(@ V- Va) ™ 0<z V- Ve, <1
(Ve Vo)™ m VeV, >,

e |

which, for n = 3, are equivalent to i.i.d. uniforms with prior given by (7).)
By routine calculations, using (7), the posterior density of OlX;==zis

[(3—5%?;:231::?1)‘—45] 0—2+E 0 S z S 0 S 1

f(elx) — [ (34€)(1—¢?) ] p—2—= 0 <z<1< /]

(3—c)(1+e)z— 1+ —4e

(1 + &)gi+eg=2-* 1<z <.
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Also, the posterior density of O|(X1 = z1, X2 = 23, u = max(z1, 2)) is

—g)(4—¢2 —34¢
(3—5()?2-}-)5()‘111._2"')&—26] o3+ 0<uc< 0 <1

£ —52 —3—¢
B(Olu) = { [odi=g) ] 93 0<u<1<96

(2 + g)u?tf—3* 1<u<é.

Then, for this family,

() POG=XglXi=2)= [ 5 f(0la)ds

1-¢ 1+e
(3—¢)(1+e)—4ex'~ {o<e<} t 3 o e21h

6) 1- PO =XplXi=2)= [ [1-(1= 3| F0l)as
1-¢? [4—6 4e (1+e)(d+e)

2—¢ I :z: ~ 2 T
sz ] {o<z<1} + (2+6)(3+6) {z>1}»

T (B—e)l4e) —deat<l2—¢ 4-
and
10 I—PX3:X3 X1=w17X2:m27U’=ma,X$1’x2 _ wzhouda
© o 6@
4-¢ 2+e
T (3-¢e)2+¢) - 2eur Locusay + 37 Ty

We can now extend to 0 < ¢ < 1/2 what Silverman and Nédas (1992) and Gnedin
(1995) did for the case ¢ = 0.

Proposition 4. If 0 < ¢ < 1/2, then conditions (A) and (B) are satisfied for prior
densities of the form (1) if € is sufficiently close to zero.

Proof. When ¢ = 0, the right sides of (8) and (9) become identically 1/3 and 1—-1/3,
respectively. When these values are substituted into the left side of condition (A), it
becomes (5 — 6¢)/3, so condition (A) is satisfied for all ¢ for sufficiently small e.

;From (10), we see that P(X3 = X(3)|X1, X;) would be identically 1/3 if & could
be taken to be zero, and can be kept, with probability one, as close as we like to 1/3
by choosing a sufficiently small . Hence condition (B) is satisfied almost surely if
and only if c < 1/2. O

The failure of these priors for ¢ > 1/2 should not surprise us. As formula (4)
shows, if ¢ > 1/2, then, when 1 < X; < Xj, but X;/X; is close enough to 1, it
would be wise to stop with X, since X3 is nearly twice as likely to be smallest as
to be largest. Could some other mixture of i.i.d. uniforms on (0,0) do better?
The answer has to be no, because for any mixture, P(X3 = X(3)| X1, X3) must be
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non-constant with mean 1/3. Gnedin(1995) points out that the class of all such
mixtures of i.i.d. uniforms is equivalent to the class of all densities of the form
p(T1,..-,20) = g(z1V, -+ V,Zs), z; > 0; hence, obviously, the same applies to the
latter. :
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