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In this paper we discuss the sample size problem for balanced one way ANOVA un-
der a posterior Bayesian formulation of the problem. Using the distribution theory of
appropriate quadratic forms we derive explicit sample sizes for prespecified posterior
precisions. Comparisons with classical sample sizes are made. Instead of extensive ta-
bles, a MATHEMATICA program for sample size calculation is given. The formulations
given in this article form a foundational step towards Bayesian calculation of sample
size, in general.
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1 Introduction

The decision about the size of a sample is one of the main components in planning a
statistical inference. Too small a sample may give unsatisfactory statistical results while an
unnecessarily large sample wastes money and resources. The problem of determining sample
sizes that give an assurance of a prespecified accuracy (in whatever relevant way accuracy
is defined) has assumed the status of textbook material in classical statistics. Typically, for
instance, one may ask for a power (1— () of .95 at a type 1 error level of oo = .05 in standard
hypotheses testing problems. We routinely teach our students in most elementary classes
about such classical sample sizes. Several books and monographs testify to the value that
practitioners assign to sample sizes as a preexperimental design component; see for instance
Kestanbaum et al. (1970) and Odeh (1991). ‘

Two main steps dominate in the procedure for determining the sample size:

(i) A requirement in terms of desired precision

(ii) A mathematical connection between the sample size n and the required precision
in a form of an implicit or explicit equation must be determined. By solving this equation
the minimal sample size is obtained.

1Research supported by NSF Grant DMS-9307727 at Purdue University and NSF Grant DMS-9404151
at Duke University.



1 INTRODUCTION 2

In the case of random effects ANOVA, the error of second kind, 3, can be expressed
in terms of a central F distribution, while in a fixed effects ANOVA, § is a quantile of a
non-central F' distribution. The power 1 — 3 is compared with the non-centrality parameter
® that measures the extent to which Hy is false. Since ® depends on n, fixing the power
against some common alternatives gives the required sample size. Charts for determining
the sample size are given in Pearson and Hartley (1951).

It is somewhat curious that barring a recent outgrowth of interest and activity, deter-
mination of sample sizes correct according to a Bayesian formulation has been more or less
a nonexistent topic in Bayesian research. First, one needs to understand that a new and
careful formulation consistent with a Bayesian view is necessary. The Bayesian has little
primary use for sample sizes that assure low type 1 and type 2 error probabilities. In the
Bayesian’s mind, the correct accuracy measure is a posterior accuracy: one accepts the
hypothesis with a larger posterior probability. At the same time it is desirable that the
rejected hypothesis has small posterior probability. That is the criterion that will lead to a
sample size determination.

Let y be a vector of sufficient statistics for the problem. The posterior risk (under the
’0-1" loss) is min{Pr(Hol|y), Pr(H1|y)} and the condition

min{Pr(Holy), Pr(Hi|y)} <€ (1)

imposed on the risk is a natural one. The rejected hypothesis should have small posterior
probability. This, however, is rather subtle; sample size determination is a preexperimental
exercise. What data will come our way is anybody’s guess; posterior accuracies are by
nature functions of the obtained data. One can and must therefore either seek an assurance
of posterior accuracy for all possible data or at least all probable data: data that are likely
to be seen once the prescribed sample size is used and data are obtained.

Condition (1), however, is usually impossible to satisfy for all possible data y. In such
a case, a set T should be chosen such that

Pr(y¢T)=Pr(y € K) <6, 2)

for some small §, where K = T° and condition (1) is satisfied for all data y in the set 7.
The probability in (2) is expressed in terms of the marginal distribution of y.

It is important to understand that 7' is not a preferred set of samples; it is simply
an appropriate set of samples for which a prespecified posterior accuracy is guaranteed and
using such a set T is essential in the Bayesian formulation of the sample size problem because
a guaranteed posterior accuracy for all samples is simply impossible. The results here thus
give a preposterior guarantee of posterior accuracy with a large predictive probability. If
by chance the obtained data happen to be one of the samples we were not preprotected
against, the automatic accuracy is invalidated. Of course, that may also mean the modeling
was wrong and careful rethinking about the model is necessary: why did such unanticipated
data even arise? The exact sample size is found by solving a moderately messy equation
treating the sample size n as a variable. The user uses his/her own parameters for the prior,
and a computer code built for the purpose solves the relevant equation.

Several critical questions deserve thinking. Is it important to have flexibility in the
functional form of the prior as well? In principle, the answer has to be ’yes’. Who knows
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what prior is deemed appropriate in a given problem? But it is quite plainly a fact that
the associated mathematics changes completely with a change in the functional form of the
prior. Also, confronted with prescriptions of different sample sizes for different kinds of
priors, it is very likely that the reaction will be one of resignation. It therefore appears to
be natural that one writes a computer code for Bayesian sample sizes only for conjugate
priors: the code will allow flexibility in the hyperparameters of the prior to suit the need of
the individual user.

It is a natural curiosity and question of simple pragmatism to ask if adoption of the
classical sample size will provide any kind of acceptable posterior accuracy. If in a series of
problems, evidence accumulates that classical sample sizes are not really too bad as Bayesian
sample sizes, it would be, realistically and pragmatically, time to stop solving complicated
mathematics problems and writing involved computer codes for Bayesian sample sizes. As it
turns out, quite typically, classical sample sizes do not seem to provide very good posterior
accuracy; further elaboration and discussion of this issue is given in Section 4.

Section 2 describes the exact problem and the exact priors we use and identifies the
set T'. This is done by deriving a formula for the Bayes factor. Section 3 gives the exact
equation to be solved for determination of the sample size by using distributional theory of
appropriate quadratic forms. Section 4 gives some explicit examples, and comparison with
classical sample sizes. We conclude with some brief general remarks. A MATHEMATICA code
for general use is given in the Appendix.

Hutton and Owens (1993) suggest Bayesian designing of sample size through the lengths
of credible sets. DasGupta and Mukhopadhyay (1994) address the problem of determining
the sample size in Bayesian fashion which ensures robust posterior inference. Sample size
problems from the Bayesian perspective are also discussed in Berger (1985) and Lee et
al (1993). Of course, the Bayesian sample size problem is really a Bayes design problem;
the literature on Bayes design is quite rich and includes Chaloner (1984), DasGupta and
Studden (1991), Pilz (1991), among others.

This is a first formal attempt to give Bayesian sample sizes in one way ANOVA, one of
the most used statistical methods. We give a clear theory, give explicit sample sizes and give
a computer code for sample size calculations for general use. Tools such as Bayesian sample
sizes may look esoteric to some right now, but will be even more valuable to practitioners
as Bayesian statistics becomes more accepted. Applied Bayesians would naturally want a
guideline regarding sample size in actual problems, and this article exactly gives them such
a guideline. Bayesian sample sizes are also of value to classical statisticians; if Bayesian
sample sizes for reasonable prior distributions severely conflict with sample sizes being used
by a classical statistician, there is a reason for concern and reevaluation of the sample size
being used in the problem.

Other models are currently under active investigation.

2 Mathematics of the problem

We consider a simple case of balanced one-way ANOVA where the variance of the observa-
tions, o2, is given. Since the effect of a large value of 62 on the exact sample size is one of
the most interesting issues in a sample size problem, we feel that this is a better formulation
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than the alternative of putting, say, a noninformative prior on 2. Using a prior on o2 will
also lead to a different analytical problem and may be treated separately.

We derive the sample size for a variety of os, keeping all other parameters in the problem
fixed. Sample size is not expected to be robust with respect to drastic changes in o2. If
the exact value of o2 is unknown, a reasonable strategy is to choose n corresponding to the
largest probable value of 0. If no finite upper bound on o2 is available, the exact calculations
that we are able to do would have to be replaced by purely numerical calculations after giving

o? a prior.

The matrix algebra of the problem involves only k¥ X k matrices of the form al + bJ,
where [ is the identity matrix, J is the & X k matrix of ones (J = 11'); and @ and b are real
numbers.

2.1 The problem
Let

Vi =H+Tite;; 1<i<k, 1<j<n, 3)
be the observations for which
€i; % N(0,0). (4)
We assume o2 is known. Additionally, let

N(0, 01)

and let
T = (715, 7k) ~ Tol(T = 0) + 1 MV Ny(0, 03 I)

be the priors on y and 7, where m(7y) is the prior probability of hypothesis Ho : 7 = 0
(H1:7 #0) (ro + 7 = 1). We assume that u and 7 are independent. The choice of priors
was made having the following two considerations in mind:
(i) A point mass at T = 0 is needed since we want to test a precise null hypothesis, and
(ii) The problem should stay mathematically manageable, so explicit sample size pre-
scriptions can be made.

2.2 Bayes factor

Let y = (%1,%2,---,Jk), where §; = 2X,y;;. The likelihood f(y,7|y) for the above model
is proportional to [%_, o~ 5o Gimu—i)?
and o?.

Let 6 = (u,7).

, with a constant of proportionality depending on ¥;
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Theorem 2.1 For testing
Hy:7=0 w.s. Hy:T#0Q,

the Bayes factor (in favor of Hy) is

1
B = %e—%y’(z;l—zo‘l)y, (5)
|Z4]2

where Y9 = ”—:I-{— o] and 1 = (% + 02)I + 0% J.

Proof:  The posterior probability of Hy is

7o fo, f(01y)po(df)

P o) = oy T Yhodf) + 72 Jo, Oy (a8)’ ©

where

po(8) = po(u,7) = N(0,07) x (1 =0); 6 €@ = RxQ,
and
p1(6) = N(0,0%) x MV N(0,62I); 8 ¢c ©; = R x (R* - {0}).
Let ¢x(z) denote the pdf of MV N(0,X) distribution. Simple algebra gives that
Pr(Holy) = g0 @
1+2LB

where

JrJr 922 (y — 11 = 1)bo31(1)602 (k) dudr -

fR ¢gnﬁj(y - l”’l)qbaf (I‘L)d.u’

The integral in the numerator of (8) is the marginal density of y when u and T are
integrated out. Thus, the numerator is the density of MV N(0,X;) distribution, where
21 = (2 + o) + o2l

The integral in the denominator of (8) is the marginal of the conditional density of
y|T = 0 when p is integrated out. It is the density of MV Ni(0, Xo) with Zg = gﬁz—I + o J.

The claim of the theorem now follows immediately. [}

2.3 Geometry of the problem

The following theorem describes the geometry of points in the observation space for which
condition (1) cannot be satisfied.
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Theorem 2.2 The set K of y such that min{Pr(Holy), Pr(H1|y)} > €, can be described
as:

KE={y| ¥E'-Z")y—a|<p} (9)
where
@z tog I _ o 7800+ B (0% + kot + ) w0
7 { Zol 73(a2/n)*=1(c?/n + ko}) ’
and
8= 2log 1= (11)

€

Condition (2) on the probability content of the set K gives the relation from which
the sample size can be found explicitly. This explicit geometric description of the set K is
extremely useful also due to the fact that when data are actually collected using the prescribed
Bayesian sample size, whether or not the obtained data belong to K determines the validity
of the prespecified posterior accuracy. Of course, one hopes that the obtained data will not
belong to K.

Proof: The condition
T

Dt TrEplB< ) (12)

. 1
€ < min{Pr(Holy), Pr(H1|y)} = ml(B e Ry
o ™0

is equivalent to

€ 7o 1-emg
— 13
1—em € m’ (13)

1
Since In B =1n Eﬂl_i— ~ 1y/(Z7" - £51)y, by taking the logarithms in (13) we get (9).
1|2

a
Remark. Figure 1 depicts the posterior risk min{Pr(Ho|y), Pr(H;|y)} as a function of
Bayes factor B (relation (12)). We fixed mo = 0.7 and € = 0.1. Note that for 72 = 7/3 the
risk is 0.5. The set of Bs for which the risk exceeds ¢ = 0.1 level corresponds to the set K
in the observation space.

Geometrically, the set K is the region bounded by two nested k-dimensional ellipsoids

of rotation, centered at the origin. The larger ellipsoid has one semiaxis equal to %ﬁ,
2,2

— i atf i — n?g? _ n“o.
and & — 1 semiaxes equal to 4/ P with & = @ FEnoT)(o? FhnoZinol) and & = —3—;;5227%-

o

being the eigenvalues of X 1. %7 of multiplicity 1 and k — 1, respectively. For the smaller
ellipsoid the quantity a 4+ §# above is replaced by max{a — 3,0}.

It is important to demonstrate that the (marginal) probability content of the set K
tends to zero when n goes to infinity.
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Figure 1: Posterior risk (= min{P(Holy), P(H1|y)}) against the Bayes factor, 7y = 0.7,
e=0.1
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Theorem 2.3 Let P, be a tight sequence of probability measures on B, the Borel o-algebra
on R*, such that
Pa(4)
<
LA) — @

uniformly in n and in A € B, where £(A) denotes the Lebesgue measure of the set A. Then

P,(K)—0, n— oo.

Proof: We give a proof for k = 2. For general £ only minor modifications to the proof are
needed. The set K, which also depends on =, is a subset of the ellipse E whose semiaxes

have lengths equal to /%2 and a_gg The former behaves as O(y/logn) and the later as

&
0(y/logn).

It is enough to show that P,(E) — 0, for n — oo. Let € > 0 be fixed. Since the
family of probability measures P, is tight one can find a ball B, of radius p(B) such that
(Vn)Py(Be) 21— 5. Then P,(ENBS) < &.

Since one axis of the ellipse E has length O( \/lﬂg—n) one can find ng such that the length

of the axis is less than
€ 1 1

where () is a constant that bounds the ratio %%) from above uniformly in » and in A € B.
Then P,(ENBo) < Q- £(ENB) < Q-(20(Bo) - 25 - gy - o = &
Thus for n > ne,

€

P(K) < P(E)= P(EN B+ P(ENB) < - +5 =«

o]

|

In our case the family P, is a mixture of the tight families MV N( ,"72[ + 0%J) and

MV N(0, ("72 + o3I + 02J). Any fixed mixture of two tight families is tight itself, which

implies that the marginal family is tight. That the Lebesgue densities of P, are uniformly

bounded (in the variable and in n) also follows immediately from the mixture normal

representation of P,,. This means that for any fixed € and §, a sample size satisfying the
precision requirements can be found.

3 Equation for determining explicit sample size
The condition

Pr(ly'(Z5" -1 )y —al <B) < §
is equivalent to

Priy(55' =Sy <o+ 8) - Pr(y' (T3 - 1)y < a - B) < 6. (14)
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To find n given the dimension k, 02,07,0%, ¢ and §, such that (14) is satisfied, we need
an effective way of calculating the probabilities of the type Pr(y'Py < c).

The following is an adaptation of a result of Robbins and Pitman (1949). See also
Johnson and Kotz (1970), pp 156-158.

Theorem 3.1 Let P,Q be two k X k matrices of the form al + bJ, a,b € R such that the
following condition holds for the eigenvalues of the matriz Q*/2PQY/? : The eigenvalue Ay
of multiplicity 1 is smaller then the eigenvalue Ay of multiplicity k — 1.

Let y ~ MV Ni(0,Q). Then

Pr(y’Py<c)= E;?';OejPr(xi“j <c/h), (15)

where the coefficients e; are obtained by the recurrence formula

€y = (—'
k-1 A -
e, = ?E;;(l)ej(l - )‘—:)T_J, r> 1.

Proof:
The transformation z = Q~1/2y, gives that (15) is equal to

Pr(z'QV*PQ % < ¢) (% F(e)r, A2)) (16)

with £ ~ MV N(0,I). A; and A, are eigenvalues of the matrix of the quadratic form.
The proof now follows from equation (41), page 157 in Johnson and Kotz (1977) by

taking ,3 = min(/\l, /\2) |
Theorem 3.2
Prye K) = mo(F(co A, A0) = Plea A, AM)) + (17)
1 (F(co AP, AP) — F(er 2P, AP))) (18)
where ¢y =a— 0, ca =a+0,
2 2
1) _ no; (1 _ _noy
ALt = 02 + kno? + no? and Ay = o2 + no?

are eigenvalues of I — 2(1)/ 221_ 123/ 2, of multiplicity 1 and k — 1, respectively, and
2 2
(2) _ __ No3 (1) _ 1o,
A= o7+ hno? and Ay = 2

are eigenvalues of 21/22512i/2 — I, of multiplicity 1 and k — 1, respectively.

Proof: The marginal of y is ;o MV N (0, Xo)+71 MV N(0, £4). Since Pr(y € K) = moPr(y €
K|y ~ MVN(0,%)) + 71 Pr(y € K|y ~ MV N(0,%)), the result is a direct consequence
of Theorem 3.1 applied on the two ellipsoids from equation (14) separately.
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2

o n
0.5 | 31.52
0.7 | 44.13
1] 63.04
1.5 | 94.56
2 | 126.05

Table 1: Some sample sizes

4 Examples and comparisons with classical sample sizes

The exact Bayesian sample size is determined by setting the expression (17) equal to 6.
There are so many freely varying parameters that determine the exact value of n, that
a comprehensive table of sample sizes is out of the question. Furthermore, computing
technology has advanced to such a great extent that it is certainly more useful to provide
a computer code for determining the sample size. A MATHEMATICA code is provided in
Appendix. First we give an illustrative example by applying the computer algorithm to a
specific case.

4.1 Exact sample sizes

Consider as an illustration the case when o? = 02 = 1,79 = 0.5,¢ = 0.1,6§ = 0.1. The
following table gives the sample sizes for different values of 02 when k = 3. Obviously, this
is not intended to be a comprehensive table - it is only an artifact.

The table indicates that the Bayesian sample size may not be very robust with respect
to specification of 02. Since we already know that the sample size depends on the three vari-
ances only through the ratios 0?/0? and 02 /0?, the table equivalently indicates that careful
elicitation of these two ratios is important, and not so much elicitation of the variances
themselves.

Figure 2 gives level lines (in n) in an €04 plane for the case of 6? = 02 = 0%, 79 = 0.5,
and k = 3. This is an analog of very familiar similar sample size plots in the classical case.
For example, n = 20 observations per treatment assure a posterior accuracy of 82% for all
samples but for a set of predictive probability 0.18.

4.2 Comparison with classical sample sizes

As stated in the Introduction, it is interesting to investigate if using the widely available
classical sample sizes themselves will meet the need of a Bayesian. Clearly, there are many
reasonable ways to formulate and try to answer such a question. We will use the method
outlined below which we think is very reasonable.

Step 1. Elicit 0%, 02,02 and m,.

Step 2. Fix a desirable level of posterior accuracy 1 — ¢ and also a value of é.

Step 3. Specify (reasonable) levels of type 1 and type 2 errors «, 3. For determining the
classical sample size it is also necessary to specify a measure of departure from the null
hypothesis. Among many possible ways of doing so, it is quite common to specify a value
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delta

07 |

06

05}

04

03

02F

01}

1 — D = : - epsilon
o5 ¥

Figure 2: Level lines for n = 5, 10,20, 50, 100, and 200 listed from above.
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k|lo=05]0c=1|0=15
3 3 7 14
4 3 6 11
5 3 5 9
10 2 4 7

Table 2: Classical Sample Sizes (Step 3).

of

A= HFmax — Mmin

o, (19)

where p; = p + ;.

Notice that A is a random variable in a Bayesian formulation. It will therefore be very
natural to use the expected value of A under the prior as the specified value of A used to
find the value of n from a table of classical sample sizes.

This expected value equals
\/o? + o2
1T 03 | (20)

Ap = cp——,
o

where ¢ equals the expectation of the range of a sample of size £ from the standard normal
distribution (for instance, ¢z = 1.692,c4 = 2.058, ¢5 = 2.326, and c19 = 3.078). This value
can serve as a guideline even to classical statisticians for choosing A in sample size problems.
Step 4. For this particular value of n obtained in Step 3, identify the interval of values of
o for which the specified Bayesian precision requirement Pr(K) < § is satisfied. Note that
in the evaluation of Pr(K) previously elicited values of 01, 02, and 7, and the prespecified
value of ¢ are used. It is easy to see that this interval of values of ¢ is an interval of the
form o < oy.

Step 5. Compare op with the Bayesianly elicited value of o. If the elicited value is unac-
ceptably larger than op, it would be unreasonable to use the classical sample size and an
independent derivation of the Bayesian sample size using the presented theory would be
unavoidable. Otherwise, use of the classical sample size itself will suffice.

Here is an example.

Example.

Suppose, as an example, that the elicited values of 0% and o2 are both equal to 1 and
o is elicited to be 0.5. Suppose further that we want ¢ = 0.05 and 6 = 0.1.

Table 2 gives the classical sample sizes for some selected values of £ and using a = 8 =
0.05. Recall that in this classical sample size calculation A is taken as in (20). The actual
sample sizes are obtained from Harter and Owen (1975).

The elicited values of o are 0.5, 1, and 1.5, respectively. Table 3 is self explanatory.
Generally speaking the conclusion seems to be that the classical sample size should not be
used if the number of treatments is small.



4 EXAMPLES AND COMPARISONS WITH CLASSICAL SAMPLE SIZES

k| o oo o < og | Conclusion
3 | 0.5 0.15756 no do not use
1 | 0.24067 no do not use
1.5 | 0.34037 no do not use
4 1 0.5 0.27506 no do not use
1 1 0.38901 no do not use
1.5 | 0.52673 no do not use
5 10.5]0.37347 no do not use
1 | 0.48524 no do not use
1.5 | 0.64685 no do not use

10 | 0.5 | 0.56923 yes use
1 | 0.80501 no do not use
1.5 | 1.06493 no do not use

Table 3

13
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5 Appendix

In the Appendix we give a MATHEMATICA code for solving Bayesian sample size problem.
For a given input 02, 01,02, k,n, 7, and € the function ProContK calculates & - the marginal
probability content of the set K.

BeginPackage["Size‘"]

Er[r_/;r==0, laml_,lam2_, k_7Pogsitive]:=\
Er[0,laml,lam2,k]= \
(lam1/lam2)~((k-1)/2) //N;

Erlr_/;(x>0),lami_,lam2_, k_?Positive]:=\
Er[r,lamil,lam2,k]= \
1/(2 r) Sum[ (k-1) (1- lami/lam2)~(r-j) \
Er(j,lami,lam2,k], {j,0,r-1}] //N;

QuadFormDist[arg_?Positive, lami_, lam2_, \
k_7Positive ]:= \
Module[{s=0, ii=0, iter=-1},
ChiSquareDistribution/: CDF[ChiSquareDistribution[n_], x_] :=
With[{result = N[GammaRegularized[n/2, 0, x/2]]1},
If[NumberQ[result],result,GammaRegularized[n/2, 0, x/2117;
While[ s-iter > 10°(-10),
iter = s;
g += Er[ii, laml, lam2, k]*
CDF[ChiSquareDistribution[k+2 ii],arg/lami]; \
ii++
1;
s
1;

ProContK[s_?Positive, s1_7Positive, \
s2_7Positive, k_7Positive,
n_%Positive, piO_7Positive,
eps_TPositive]:= \

Module{{lami1, lami2, lam2i, lam22, alpha,beta, \

FF11,FF12,FF21,FF22}, \
lamii= n s2/(s+k n s1 + n s2) //N;
lam21= n s2/(s+ n 82) //N;
lam12= n s2/(s+ k n s1)//N;
lam22= n s2/s //N;
alpha= Log[ pi0~2 (s/n+s2)~(k-1) (s/n+ k s1 + s2)/ \

( (1-pi0)~2 (s/n)"(k-1) (s/n + k s1) )]//N;

beta= 2 Log[(1-eps)/eps];
FF11=QuadFormDist[Max[ alpha-beta, 10~(-10)], lamii,lam2i,k] //N;

P
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FF21=QuadFormDist[ alpha+beta, lamii,lam21,k] //N;
FF12=QuadFormDist[Max[ alpha-beta, 10~(-10)], lami2,lam22,k] //N;
FF22=QuadFormDist[ alpha+beta, lami2,lam22,k] //N;
Return[ pi0 (FF21-FF11)+ (1-pi0) (FF22-FF12) ]

]

EndPackage[]
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