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Abstract

This paper deals with the problem of selecting all good normal regression models using
the parametric empirical Bayes approach. The average of k linear loss functions is used
as the loss function for the selection problem, where k is the number of regression models
under consideration for the selection problem. Mimicking the behavior of a Bayes selection
rule, an empirical Bayes selection rule is constructed. Also, the corresponding asymptotic
optimality is investigated. It is shown that under certain conditions on the independent
variables of the regression models, the regret risk of the proposed empirical Bayes selection

rule converges to 0 with a rate of order k1.
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1. Introduction

Consider k independent normal populations 71 = N(61,62),...,m = N (0, 0?) with
unknown means 6y, ...,0; and a common unknown variance o?. For a given control value
6o, population m; is said to be good if 8; > 6o, and bad otherwise. The problem of selecting
all good normal populations has been extensively studied in the literature. To mention
some earlier papers, Paulson (1952) and Gupta and Sobel (1958) have studied problems
of selecting a subset containing all good populations using some natural selection rules.
Randles and Hollander (1971), Miescke (1981) and Gupta and Miescke (1985) have derived
optimal selection rules via the I'-minimax and minimax approaches. Huang (1975) has
derived Bayes selection rules to partition normal populations with respect to a control.
The reader is referred to Gupta and Panchapakesan (1979, 1985) for an overview on this
research area. In this paper, our goal is to derive selection rules for selecting all good

normal populations via the parametric empirical Bayes approach.

Let @ = {6 = (61,...,0k)|6: € R, 1 = 1,... ,k} be the parameter space. Let a =
(a1,-..,ar) be an action, where a; = 0,1, ¢ =1,..., k. When action a is taken, it means
that population 7; is selected as good if a; = 1 and excluded as bad if a; = 0. We consider

the following loss function:
k
1
0,a) =~ i(0s, ai :
1g0) = 3 i) (1)

where, for each 2 =1,...,k,
Li(8i,ai) = ai(60 — 8:)L(~ 00,60 (8:) + (1 — @i) (6 — 60)I[g,,00) (6:)- (1.2)

where Is denotes the indicator function of the set S. In (1.2), the first term is the loss of
selecting m; as good while 8; < 6y, and the second term is the loss of not selecting 7; when

7; is good.

For each i =1,...,k, let Y;,...,Yim be a sample of size m(m > 2) from population
mi = N(6;,02%). It is assumed that 0; is a realization of a random variable ©;, which
has a N(z}8,7%) prior distribution, where z; = (zi1,...,%ip) is a known vector, g =

2 is unknown. The random

(B1,...,Bp) is an unknown parameter vector and the variance 7
variables ©4,...,0; are assumed to be mutually independent. Let Y; = (Yi1,---,Yim),

Y =(Yy,...,Y) and let ) denote the sample space of Y. A selection rule d = (du, ..., dk)
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is a mapping defined on the sample space Y such that for each y € Y, d;(y) is the probability

of selecting m; as a good population.

Under the preceding statistical model, the Bayes risk of the selection rule d is

k
R(d) = % > Ri(d) (1.3)

where

k
Ri(di) = /y 4o = iyl [ £i(y)dy + (1.4)

j=1
and
Ci = E[(©:i — 60)I(4,,00)(0i)],
fily ]-) is the marginally joint probability density of Y'; = (Yj1,...,Yjm),
ei(y;) = E[6:|Y; = y;] = (1 — a)¥s + az}B = () is the posterior mean of ©;

: 1 o? o
given Y; = y;, where §; = — Zlyij and a = — /(— + 7).
]:

Hence, a Bayes selection rule dg = (dg1,---,dck), which minimizes the Bayes risks

among all selection rules, is given as follows:

For each y € ) and each i = 1,...,k,

1 if i(7:) 2 6o,
dai(y) =
6i(y) { 0 otherwise;

{ 1 if g > [0 — azif]/(1 - a),

0 otherwise.

(1.5)

From (1.5), we see that for each component ¢, the Bayes selection rule dg; is inde-
pendent of y;, j # ¢, and depends on y; only through the sample mean value g;, and is

nondecreasing in 7;. Hence it can also be written as dg;i(7;). The minimum Bayes risk is:

k
R(do) = 1 Y Rildai), (1)

where -
Ri(dgi) = /_ dai(9:)[00 — ¥:i(¥:)9:(7:)dy: + C; (1.7)



Yi]' . Itis

1
m

and ¢;(¥;) is the marginal probability density of the sample mean Y; =

s

1

j
known that marginally, ¥; follows the normal distribution N(z}8, %:— + 72).

2. Empirical Bayes Selection Rule

It should be noted that the Bayes selection rule dg strongly depends on %;(¥;), ¢ =
1,...,k, which are also dependent on parameters 8 and o. Since these parameters are
unknown, the Bayes selection rule dg cannot be implemented for the selection problem
at hand. In the following, the empirical Bayes approach is applied. We first construct
estimators for the unknown parameters § and «. Then, by mimicking the behavior of
the Bayes selection rule dg, an empirical Bayes selection rule, say d*, is derived. The

performance of the empirical Bayes selection rule d* will be evaluated in the next section.

For each i =1,...,k, let 2(3) = (z1,...,Zi-1,Tit1,...,2¢). It is assumed that k£ > p
and for each 7 = 1,...,k, z(z) has rank p. Let P(i) = z'(:)(z(:)z'(:)) "' z(¢). Note that
marginally ¥; ~ N(z}8, %2 +72),5 =1,...,k, and Y3,...,Y}; are mutually independent.
Let }:"(z) = (Y1,...,Yi—1,Yi41,...,Y%). Under the normal regression model, for each

i =1,...,k, the maximal likelihood estimator of 2 based on }:’(z) is:
B(i) = (z()2' () ' 2(HL (). (2.1)

Next, we construct estimator for o = "—n:/("—nj + 72). For each j = 1,...,k, let W; =
i(ng —Y))? and W = Zk: W;. Since for each 7 = 1,...,k, %V}- ~ x*(m — 1) and
;/I_fi, ...y Wy are iid, ’cherefo]r_e,1 W ~ x*(k(m — 1)) and anz_—li is an unbiased estimator
of 2. Let V; = V'(i)(Te_1 — P(i))¥(i). Tt is known that Vi/(Z + %) ~ x2(k — 1 — p)

and therefore, V;/(k — 1 — p) is an unbiased estimator of %2 + 72. Hence, it is natural

to use the ratio mk(VnL:—1) /( k—‘f—p) as an estimator of . However, when a < 1, it is

possible that the value of the ratio is greater than one. Hence, we estimate a by &(i) =

min( mk([;‘n/—l) /( k—‘f.—p ),1). We then estimate the posterior mean ¢;(9;) = (1 — a)y; + oz}
by

Pi@) = [1 - a(i)]gi +a()ziB() (2.2)

Now, by mimicking the behavior of the Bayes selection rule dg, we propose an empir-
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ical Bayes selection rule d* = (d3,...,d;) as follows: Foreachi=1,...,kand y € ),

di(y) = {1 if i(7:) > 6o, (2.3)

0 otherwise.

Note that the empirical Bayes selection rule d} depends on y only through g;, G(:)
and ,@(z), where the latter two are functions of W, V; and Y (:). For fixed 4(z) and B(2),
d? is nondecreasing in ;. We let P; denote the probability measure generated by W, V;
and Y (z), and let E; denote the expectation taken with respect to the probability measure
P;. Note that W, V;, Y (i) and Y; are mutually independent. Based on the preceding

reasoning, the empirical Bayes selection rule d* can be presented as:

Foreach:=1,...,k,

k(= 1202\ Al 1.fAi—,‘>0
CTON O (2.4
0 otherwise.
The Bayes risk of the empirical Bayes selection rule d* can be written as:
1 k
R(d") =7 > Ri(d}) (2.5)
i=1
where
R(d)=El[  df@:laG), ()0 — v:i(7:)lg:(7:)dgi] + C
" (2.6)

= /i_ P{d}(gila(s), B(1)) = 1}[80 — i(7:)]9i(¥:)dF: + Ci.

3. Asymptotic Optimality

Let d be any selection rule and R(d) the corresponding Bayes risk. Since dg is the
Bayes selection rule D-(d~) = Ri(d;) — Ri(dg;) > 0 for each ¢ = 1,...,k. Hence, D(d) =
R(d)— R(dg) = E Di(d;) > 0. D(d) is called the regret risk of the selection rule d. The

regret risk D(d) is always used as a measure of performance of the selection rule d.

Definition 3.1 A selection rule d is said to be asymptotically optimal of order {ex} if

D(d) = O(ex) where {ex} is a sequence of positive numbers such that lim e; = 0.

k—o0
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In the following, we will study the asymptotic optimality of the empirical Bayes se-

lection rule d*. For this purpose, it is assumed that Condition C holds.

)
Condition C (1) ) 2%, < M for all ¢ where M is a positive value independent of k;
i=1

2) Lz2' converges to a positive definite matrix A as k tends to infinity; (3) |60 — z'8| > ¢
ks g ] ol 1ol

for some positive constant ¢ for all : = 1,...,k, and ¢ is independent of k.

Now, the regret risk of the empirical Bayes selection rule d* is

k
D) =7 Dild) (31)

where

Di(d;) = E; / o:_ [dF(5ila(i), B() — dai(@))[6o — $i(7:)lgi(F)dgi.  (3:2)

In the following, without loss of generality, it is assumed that 6y < /.

By the definitions of dg; and d}, we obtain that
| d@1a0),B6) - das @6 ~ bi(3)as(3:)

= [‘le [80 — i(7:)]I[a(:) < 1 and $:(F:) > 60]9:(F:)dy:

§=—00

b a0 = L end i) 2 Ol

+ [oo [vi(7:) — Bo]I[a(i) < 1 and (7:) < Oo)g:(F:)d7:

+[ [9i(7:) — 8o]I[a(s) = 1 and 4i(5:) < bolgs(¥:)d5:
Fi=a;
=1+ II; + III; + IV; (say),
where a; = (6o — az}$)/(1 — a). Note that 6y — :(3:) > 0 as ¥ < a; and ;(g;) — 6o > 0

as ¥; > a;. Hence,
a;

E(II] < / (80 — :(5: )]s (5:)dgi B[ 1(a(i) = 1)]

<M, exp{—k(m2_ 1)[12_aa —en(1+ 2 _aa)]} (3.4)
+M1exp{—k_;—p[—1;a —4n(1 - 1;05)]}
<O(k™),



where, the second inequality is obtained from Lemmas A2(c) and A3(a).

Similarly -
BIV] < [0 — alos@) B I(a(0) = ) 9
< O(k™h).
Next, we consider
Biltl= [ o= bi(alo@PAa0) < 1 ond di(3i) > 6o}
Ji=—o0
For §; < a;, by the definition of gZ,-(g,-), we have,
Pi{a(i) < 1 and () > 6o}
= Pi{&(i) <1 and (G(5) — a)(238 — 9:) + 5‘(')(76'3(') — z38) > 6o — i(¥i)}
< P{a(i) < 1 and (a(3) - a)(ehf — 57) > 2L (5)
+ P{a(i) <1 and a()(2iB0) - 218) > —;b‘—@}
= I + Lia.
By Lemma A4(a),
Iip < Pi{iB(i) — =i > W}
ho? (= sitor) (37
< — < €XP\~" a3
V(6o — ¥i(¥:)) 8b;v?
where b; = zi(z(:)z'(:)) " z; and v = %2 + 72,
Also,
E;[IIL) = / [:(5:) — Bolgi(F:) Pe{&(i) < 1 and (i) < 60 }dy:.
gi=a;
For ij; > a;, by the definition of z&,-(g,-), we have,
Pi{a(i) < 1 and 9i(%:) < 6o}
< P{ali) < 1 and (a() — a)(z4f — 5i) < 2= 2ili)y
2 (3.8)

+ P{a(i) < 1 and 4(i)(zLB(0) — z16) < 2= ;bi(gi)}

=11l + I11;.



By Lemma A.4(b),

IIT;; < P{ziB(i) — 2B < 'b’(y’)}
vV 2b;v? (d)z(yz) — 90)2 (39)
= V) o) P s
Combining the preceding results yields that
E[L; + IIL;] < Ay + A2 + A3 (3.10)
where
= [ - w6 < 1,60 - )@ - 5) > 25 g,
to= [ i) - ulod@)PAAG) < 1,(60) - e(ehf - ) < L a
Yyi=a;
and

B /oi 2b 2 exp{~ % ;;f;(zy-_,-)y }gi(5i)dgi-

By noting that Y; ~ N(z!8,v?) and by Lemma A.5,

_ . [8v? b; _ (238 — 60)?
A=V V(1 —a)? + 4b; Pt 2v%[(1 — @)? + 4bi] b (3.11)
= O(k™Y).

Therefore, it suffices to consider the asymptotic behavior of A; and A,.

For §; < ai, c(¥;) = 20(01:2%‘5“;“_)) = qu’iv’_;jg;) + 152 is decreasing in §;, since 8y < zjf3.
Thus, for §; < ai, ¢(7;) > c¢(a;) =0, and by Lemma A.2,

Pi{a(i) < 1 and (&(i) — a)(z}B — §;) > 0¥ (yz)}

< Pi{&(i) —a > C(g,)} (3.12)

< exp{—-’“—(ﬂ;—”hl(c(gi), @) + exp{—’“;;lﬁhxc(yi), ),
where hi(c,a) = 55 — €n(1 + 35) and ha(c, @) = —gz55 — (1l — ga55)-
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By substituting (3.12) into A; and by Lemma A.6, we obtain

Ars /= (00 — :(@))gi(5:) exp{———5— k(mz D b (e, )
" /a__ [6o — ¢i(§i)]gi(3?i)GXP{—k—_——;;phz(c(g,-), a)}dgi (3.13)
< %(Ma + My).

Finally, we need to take care of A;. Note that a; < zj8 since it is assumed that

6o < z}p. Thus,

Ay = / [i(F:) — 80)9:(:) Pi{a(8) < 1,(&() — a)(ziB — §i) < %_T‘b"@")}dg,-
+ /x 2[%(%) — Bolgi(m) Pi{a(s) < 1,(a(i) — a)(zif — §i) < '%—_;bi('g—i')‘}d?ji

= A1 + A2,
(3.14)

For a; < §; < 2}, 60 — ¥i(¥:) < 0, and

Pi{a(i) < 1,(a(s) — a)(z'8 — 5i) < ¢z(yz)}
< P{a(i) - a < c(¥:)}

=0if a+¢(y;) <0.

So, in the following, we consider only those 7; € (a;,z;8)such that o + ¢(3;) > 0,

01.'17!,5+00 .

which is equivalent to that §; < =552~ = e;. Note that a; < e; < ;8. For §; € (ai, €:),

by Lemma A.2, we have

P{a(i) < 1, ((5) — a)(z48 - i) < =20y

< Pi{a(i) —a < e(§i)} (3.15)
< exp {2 D (e(gi), )} + expl -5 = Lhae(di), ).

Replacing the inequality of (3.15) into Az;, and by Lemma A.7, we obtain:
1
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For §i > 2,

PAG() < 1, (3() — a)(ef - 7) < i)y
< Pi{é(r) —a > (7))}
=0if a+¢(g;) > 1.

So, we consider only those §; > z}f such that 0 < ¢(%;) < 1 — «, which is equivalent
to that y; > @—1’5_—_&—0—9 + ;8 = ci. Hence, by Lemma A.2, we have,

Pila(i) <1, (a() — ez — 7)< 220,

< Pi{a(i) —a > c(yi)} (3.17)
< exp (2D (i), )} + exp{~S 5~ Lha(e(gi), o).

Replacing (3.17) into As2, by Lemma A.8, we obtain

1
Agp < E(M,? + Mg) (318)
We summarize the preceding discussions and results as a theorem as follows.

Theorem 3.1. For the normal regression models, it is assumed that Condition C holds.
Then, the empirical Bayes selection rule d* is asymptotically optimal and D(d*) = O(k~!)
as k — oo.

4. Appendices

In this section, we present certain results which are useful to study the asymptotic

optimality of the empirical Bayes selection rule d*.

Lemma A.l. (a) For a standard normal random variable Z and ¢ > 0,

1 c?
> < ——).
P{Z > ¢} < Tare exp(~ )

(b) For a random variable S ~ x2(n), we have
S n
P(; -1<¢)< exp(-—§(c —4n(l+4+¢)))for —1<e<O,
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and
P(§ —1>¢)< exp(—g(c —#n(1 + ¢))) for ¢ > 0.
n

Note: Part (a) is from Appendix B of Pollard (1984) and part (b) is from Corollary 4.1 of
Gupta, Liang and Rau (1994).

Lemma A.2. For the random variable &(7) defined previously, we have

(a)
P{a(i)—a>c} {

=0 ifc>1—a,

< exp{—@hl(c, a)} + exp{—"‘%ﬂhz(c, a)} f0<e<l~aq,

where
c c
hi(c, @) = %0 n(l+ %)
and
c c
haled) = —sm v """ s )

=0 ifCS'—Ol,

< exp{—@hl(c,a)} +exp{—E21=2hy(c, @)} if —a <c<O.

(b) P{a(1)—a < c} {

(¢) P{a(i)=1}=P{a(t)—a=1—a}
<P{a(i)—a>1-a}.

Proof: By the definition of &(¢) and by an application of Lemma A.1(b), straightforward

computation will lead the results.

Lemma A.3. Under Condition C (1), we have

(a) 0< [ 10— di(alasto)dsi < My, and

i=—00

(b) 0< [ 1o - blas(ai)dm < M,

i=aq

for all: =1,...,k, where M; is independent of k.
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Proof: Straightforward computation will yield the results. Hence the details are omitted.

Lemma A.4. For ¢ > 0, we have

b;v? 2

C
,_27TC exp{_ 2bi,02 }’

(a) Pi{ziB(i) — i > c} <

where b; = z}(z(1)z'(:)) " 'z; and v? = 5’1;- + 72

Vb;v? c?

ex

V2me p{— 2b;v? }

(b) P{z}B(i) — ¢iff < —c} <

Proof: This is a direct application of Lemma A.1(a) by noting that :fi,@(z) —zif ~
N(0,b;v?%).

Lemma A.5. Under Condition C, for sufficiently large k,

M.
zi(z(i)z' (1)) e < 72 for some My >0 foreach:=1,...,k,

where M, is independent of k.

Proof: Note that zz' = z(4)z'() + z;z;. Hence,
Lt L oni) 4 Lo
p2e = 22(9)z' (1) + L ziz;,

where under Condition C(1), $z:z; — 0 uniformly for each i = 1,..., k. Therefore, by Con-

dition C(2), fz(i)a'(:) converges to A for each i = 1,...,k. Also, since

(% z(2) 2'(2)) (5 z(2) 2'(5))™! = I, k(z(:)z'(s))™" converges to A~! for every i = 1,...,k,

and z}k(z(i)z'(:)) ' z; converges, as k — 00, to £; A~ z;, which are bounded uniformly for

all i =1,...,k, under Condition C(1). That is, 0 < zjA™'z; < M, /2 foralli =1,...,k.

Therefore, for sufficiently large k,

Pa()z () 2 = k()2 () 2

1 4—1
ziA” i

IN
AN
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Lemma A.6. Under Condition C(3) and for k being sufficiently large,

(=) :_ [0 - tb"(gi)].‘ii(i’ji)eXP{—k(mz )hl(c(yz)aa)}dyz < —]%
and
(b) —‘: [60 — ¥ (yz)]gz(yz)exp{————hz(c(yz) a)}dg; < _A:_‘l

for some positive constants M3, and My, which are independent of k.

Proof: (a) Let z = 2(¥:) = 0(2‘1") = 42"(;%(_37‘;) Then z > 0 and is decreasing in y; for

(o= 2) 16a*(2}B—5:)° i (3:) < 320 (” +7?) _
da (‘T’ _y )2 (17’,8—90) - C\/7_l'
by noting that ¥; — zi8 ~ N 0, % 2 4 72), where c is the constant given in Condition C(3)

and ¢; is independent of ¥ by Condition C(3). Then

¥; < a; and dz(¥;) = dy;. For ; < aj, =c

I R O e INCEAR
S [ RIS 9, g e R o), e +(50)

P = . (A1)
<[ astarenp-ET(el), 0 dl-+(50)

=c /Ta— zexp/{—@zz—_-l—)[z — €n(1 + 2)]}d=.

=0

Note that h(z) = z — €n(1 + z) is increasing in z for z > 0, k(0) = 0 and as k being

sufficiently large h(1) = 1 — ¢n2 > kafl"_kl). So, there is a z*, 0 < z* < 1, such that

2 —In(l+2*) = H%"_Ll). Now

/——47 zexp{—-]?(i——l—)-[z —4n(1 + 2)|}dz

=0

= /Z zexp{—&né;l-)-[z —4n(1+ 2)]}d=. (A.2)

=0

+ /;T zexp{—ﬁ%ﬂ[z —£4n(1 + 2)]}d=.

In (A.2), the second term may be negative if z2* > 1—4:%. Thus, without los of generality, it

is assumed that z* < -lﬁ.
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For0<z<z*<1,z——€n(1+z)2z7; So,

/z zexp{—k(—m_—l)[z —4n(1+ 2)]|}dz

#=0 . 2 (A.3)

S/;Ozexp{———k(m; )2 }dz ——_k(m4— %

By the increasing property of h(z) = z — €n(1 + z) for z > 0 and by the definition of
¥, for z > 2% z—£n(l4+2) 2 2*—In(l+2*) = k(ifl”_kl). Hence,

/*ﬂ— zexp{—@[z —4n(1+ 2)]}d=

= 1.1
<
—/z. efkdz < 5p 4a)

From (A.1)-(A.4) and by taking M; = c1(=55 + 3(522)?), the result of part (a) is
obtained.

(A.4)

The proof of part (b) is similar to that of part (a). Hence, the detail is omitted here.

Lemma A.7 Under Condition C(3) and for k£ being sufficiently large,

@ ) el o (=2 e, o < 2,
and
) [0 = ol exp = =5 e, et < 7

where ms and Mg are positive values independent of k.

Proof: The proofs are similar to that of Lemma A.6(a). Hence, the details are omitted.

Lemma A.8. Under Condition C(3) and for k being sufficiently large

(@ [ ) = 0l expt=E et ey <
and
() [ ) = Bl el =5 (e, )} <

where M7 and Mj are positive values independent of k.
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