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Abstract

Let g be an even function on R which is nondecreasing in |z|. Let k be a positive
constant. Sharp inequalities relating P(|X| > k) to Eg(X) are obtained for random vari-
ables X which are unimodal with mode 0, and for random variables X which are unimodal
with unspecified mode. The bounds in the mode 0 case generalize an inequality due to
Gauss (1823), where g(z) = z2. The bounds in the second case generalize inequalities of

Vysochanskii and Petunin (1980, 1983) and Dharmadhikari and Joag-dev (1985).

AMS 1991 subject classification. 60E15
Key words: convexity, Gauss inequality, Chebyshev inequality, Vysochanskii-
Petunin inequality, von Mises inequality, unimodality.

Running head: Chebyshev Inequalities for Unimodal Distributions



1. INTRODUCTION

Let X be a random variable with a unimodal cdf F, meaning that for some mode
m, F is concave on [m,o00) and convex on (—oo,m]. We allow F' to be “defective” with

P(X = —c0) = lim F(z) and P(X = +o0) = lir_f_l 1-— F(z).

Gauss (1823) proved that

2

P(X|>k) <% if k2> 3$EX?
2 \? L2 < ARY2 (1)
<1-(58%) if k2 <$EX

when X is unimodal with mode 0. When k? < (4/3)EX?, the second bound
1 — {k?/ (3EX?)}'/? is less than or equal to 4EX?/(9k?). Thus, unimodality about 0
reduces the Chebyshev bound on P(|X| > k) by a factor of at least 4/9. Winckler (1866)

generalized (1) to r** moments. For r > 0 and X unimodal with mode 0,

P(X|2k) < (,;1) EIXI if k"> g BIX| "
1/r
k" r r
51—{(r+1)E|XI'} if k <(+1)' rEX|".

See also Beesack (1984), Pukelsheim (1994), and their references. Here, unimodality about
0 reduces the Chebyshev bound by a factor of at least {r/(r +1)}".

Vysochanskii and Petunin (1980, 1983) proved that

2 2
P(X|2k) <m x{%, 2 1}

< 4BX7 if k2> 28EX? 3)
<4EX" 1 if k?<3EX?

when X is unimodal with any mode. Pukelsheim (1994) contains a proof of (3) using only

elementary calculus, as well as three different proofs of the Gauss inequality (1).

Dharmadhikari and Joag-dev (1985) generalized (3) to r** moments, showing that for
X unimodal and r > 0,

P(x) 2B < max [{ e } BNl BN - 1] @

Here, s is the constant satisfying s >r+1land s(s—r—1)" =r".
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Inequalitites (1) through (4) are all “best possible,” in the sense that equality can
hold when EX? or E|X|" is small enough to make the upper bound on P(|X| > k) less

than or equal to 1.

Let g : R — [0,00) be an even function which is nondecreasing on [0, 00) and satisfies

¢(0) = 0. To avoid certain trivialities, assume also that g is not constant on (0, k), i.e.,
0 < g(0%) < g(k7), (8)

where ¢g(0%) = lzlﬁll g(z), etc. This paper will derive generalizations of inequalities (1)
through (4) with Eg(X) in place of EX? or E|X|". These inequalities will also be sharp,
with equality always attained by either a uniform distribution or a convex combination of a
uniform distribution and a one-point distribution. Theorems 1, 2 and 3 give lower bounds
on Eg(X) which are functions of P{|X| > k}. This is “backwards” relative to the usual
form of “Chebyshev type” inequalities like (1) through (4), which give upper bounds on
P{|X| > k} in terms of Eg(X). These backwards inequalities are equivalent to inequalities
of the standard form (see Corollaries 2 and 3 below), but stating the inequalities in the

backwards form seems to make the proofs more transparent.

It is easy to modify the theorems and corollaries so that they apply even when (5)
fails to hold, but the slight increase in generality does not seem to be worth the necessary

cluttering of the exposition with caveats and special cases.

2. MODE 0

For g as above and k > 0, both fixed, define the function
. t
L(t) = T /g(z)da:, k<t<oo. (6)
0

We take L(oo) to equal g(oc0) = llTIg g(z). Let a be the largest point in (k,oo] at which
L(-) equals its minimum. Note that L(-) is continuous on (k, co] and diverges to +oo as
t | k. Thus, a is well defined. Note also that g(oo) > L(a) > g(k) > 0. A convexity
argument (see Lemma 1 below) will show that L(:) is nonincreasing on (k, a] and strictly

increasing on [a, o). See Figure 1.



Let 6, denote the unit point mass at z € R. Let U|c, d] be the uniform distribution
on the interval [c,d]. Note that L(t) = Eg(U;)/P(Us > k) for Uy ~ U[0,t], t > k.

Theorem 1. Let k > 0. Let the functions g and L and the constant a be as above. If X
is unimodal about 0 and with P(|X| > k) = =, then

Eg(X) > nL(a) if 7 <(a—k)a -
> rL{k/(1-m)}  if 72 (a—k)/a

Furthermore, if 7 < (a — k)/a, then

X~

na ma
a_kU[O,a]+<1—a_k)5o (8)
is unimodal about 0 and satisfies P(|X| > k) = 7 and Eg(X) = wL(a). (If a = oo,
interpret af(a — k) as 1 and U[0,a] as the unit point-mass at 00.) If m > (a — k)/a, then

X ~U[0,k/(1 - )] (9)

i3 unimodal about 0 and satisfies P(|X|) > k) = n and Eg(X) = nL{k/(1 —n)}. Hence,
the lower bounds in (7) on Eg(X) in terms of P(|X| > k) are sharp.
The inequalities in (7) are equivalent to

max{a,k/(1—m)}

Eg(X) > min{r/(a - k), (1 — 7)/k} / o(z)dz. (7

If g(z) = |z|", then L(¢) = t"*!/(t—k)(r+1), a = (r+1)k/r, and L(a) = {(r+1)k/r}".
Plugging into (7) yields

Corollary 1. Let k>0 and r > 0. If X i3 unimodal about 0 and P(|X|> k) =, then

Elxlr > {(T + l)k/'r}rﬂ' zf m < (T + 1)_1 (10)
>E/{Q-m)"(r+1)} i 72 (r+1)7?

The inequalities in (10) appear also in von Mises (1931) as formulas (76) and (77) on
page 70. Von Mises (1931) shows that these inequalities imply the Winckler inequalities (2).
Here is the argument. For X unimodal with mode 0, (10) says that the point (7x, px) 2
(P{|X| > k},Eg{X}) in R? lies on or above the continuous, strictly increasing function
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¢(m), 0 < 7 <1, appearing on the right side of (10). Hence, the point (px,7x) will lie on
or below the inverse function ¢™!(p), 0 < p < oo, and this is precisely the content of (2).

If we define

k/(1—=)

1-7 g(z)dz for (a—k)/a<m<1, (11)

R(r)=nL{k/(1—7)} = Z

0
then the same argument applied to (7) yields Corollary 2.

Corollary 2. Let k > 0. Let the functions g, L, and R and the constant a be as defined

above. If X is unimodal with mode 0, then

PUXIZK)  SBOX)/L@  f B S(@-RI@a
< R Y{Eg¢(X)} if Eg(X)> (a—k)L(a)/a

[
L
2
)
w
-

Figure 1.
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Example 1. If g(z) = exp(|z|)—1 and k = 1, then L(t) = {exp(¢t)—t—1}/(t—1), a = 1.594
and L(a) = 3.922. Suppose that X is unimodal with mode 0 and with P(|X| > 1) = =.
By Theorem 1,

Eexp(| X)) >1+4+3.9227 if 7 <0.3725
>(1—m)exp{(1—7)"1} - (1 —m) if > 0.3725,

and these lower bounds on E exp(|X|) in terms of P(|X| > 1) are sharp.

3. UNSPECIFIED MODE

For g as above and k > 0, both fixed, define the function

k
M(v) = —k—i_ /g(a:)d:l:, —k<v<k. (13)

v
v

Let b be the smallest (or any) point in [—k, k) at which M(-) equals its minimum. Since
M(v) is just the average value of g over the interval [v,k], it follows easily from our
assumptions on ¢ that M(-) is nondecreasing on [0, k]. Note also that M(-) is continuous
on [—k, k). Thus, b is well defined and satisfies —k < b < 0. A convexity argument similar
to that of Lemma 1 shows that M(-) is nonincreasing on [—k,b] and nondecreasing on

[b, k), but we won’t need this. Note that, by (5), we have g(k) > M(b) > 0.

Write A = L(a) and B = M(b) for the minimum values of L(-) and M(+), respectively.
Then, g(oco) > A > g(k) > B > 0. Also,

k
/g(:z:)da: >(k—v)B, —k<v<k. (14)

Theorem 2. Let k > 0. Let the function g and the constants a,A,b, and B be as above.
If X is unimodal with P(|X| > k) =, then

Eg¢(X) > 1A =7L(a) if n<B/{A+B—g(k)} (15)
> ng(k)+(1—m)B if =>B/{A+ B—g(k)}.

Furthermore, if 0 < 7 < B/{A+ B — g(k)}, then

Ta Ta
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is unimodal with mode 0 and satisfies P(|X| > k) =7 and Eg(X) = wA. (Again, if a = oo,

interpret a/(a — k) a3 1 and U[0, a] as the unit point-mass at 00.) If B/{A+ B — g(k)} <
w <1, then

X ~ wér + (1 — m)U[b, k] 17

is unimodal with mode k and satisfies P(|X| > k) = 7 and Eg(X) = wg(k) + (1 — 7)B.
Hence, the lower bounds in (15) on Eg(X) in terms of P(|X| > k) are sharp.

pA

g(k) o

__AB |
A+B-gk)

\

p=rgk) + (1- m)B

_ B 1
A+B-gk

ay

Figure 2.

Look at Figure 2. Theorem 2 says that the point (7x,px) 2 (P{IX| 2 k}, Eg{X})

in R? lies on or above the two bold line segments when X is unimodal. Furthermore, each
point on the bold line segments equals (7x, px) for some unimodal X.

Recall that g(co) > A > ¢g(k) > B > 0. Thus, 0 < B/{A+ B — g(k)} < 1. This
ratio equals one only when A = g(k), which only happens when g(oo0) = g(k). Also,
A > g(k) — B, so that the slope of the second bold line segment in Figure 2 is less than
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the slope of the first.

Corollary 3. Let k > 0. Let g,a,A,b, and B be as above. If X i3 unimodal, then

Eg¢(X) Eg(X)—-B
P(X|>k) < max{ R (S E: }
< 260 if Eg(X)< him (18)
Eg(X)-B . AB
< Sh-F f B9(X) 2 axp=5007-

Furthermore the upper bounds on P(|X| > k) in terms of Eg(X) are sharp for Eg(X) <
g(k).
It is easy to see from Figure 2 that Corollary 3 follows from Theorem 2.

If g(z) = |z|", then straightforward calculation shows that b = —Sk and B = (Bk)",
where 8 > 0 solves (r +1+rf)p" =1. f s =r+1+4rp, then s solves s(s —r —1)" =r",

and
E|X|"-B _ sE|X|" —k"
kr—B — (s—1)k"

Also, a = (r + 1)k/r and A = {(r + 1)k/r}". Hence

E|X| T ’ ,
A _{(r+1)k} EIXT".

Thus, (18) is equivalent to (4) when g(z) = |z|".

Example 1, continued. Again, let g(z) = exp(|z]) — 1 and £k = 1. Then M(v) =
(e’ +e+v—-3)/(1—v)for -1 <v <0, and b = —0.4555 is the location of the minimum
of M(-). Thus, B = M(b) = 0.5769. If X is unimodal, then by Corollary 3 we have

P(|X|>1) <0.2550{Eexp(|X|)—1} if Eexp(|X[) <0.8138
< 0.8762E exp(|X|) — 0.5055  if Eexp(|X|) > 0.8138

4. VON MISES’ INEQUALITY

Fix numbers z; > z¢ > 0. Suppose that F' is a cdf on R which on [z, 00) stays below
a line passing through the point (21, F'{z1}). That is, for some (necessarily nonnegative)

constant d,

F(z) < F(z1) + d(z — z1), 29 < z < 00. (19)
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For r > 0, von Mises (1938) derived upper bounds on P(X > z1) in terms of E|X|" when
X is a random variable with such a cdf. [See also Fréchet (1950) and Beesack (1984).] Let

¢ be the unique solution (¢ > z1) of

r+1

xocr +re=(r+1)z;. (20)
Then
P(X > ;) L cTE|X]|" (21)

for any random variable whose cdf satisfies (19) for some d > 0. Now define o = a(E|X|")

to be the unique solution (a > z) of

o™ — gt = (r + 1)(a — 20)E|X]|". (22)
If & > ¢, then
a— Ty -
P(X >z)< > < c"E|X|" (23)
— Zg

for such an X.

The formulation of von Mises’ inequality in the previous paragraph follows that in
Beesack (1984), except that Beesack (1984) has a different (but equivalent) condition than
a > ¢ for (23) to apply.

As before, let g be an even function on R, nondecreasing in |z| and with ¢(0) = 0. To
avoid trivialities, assume g(z7) > 0. One can easily generalize von Mises’ inequality by

replacing E|X|" with Eg(X). For fixed 0 < 29 < 1 < 00 and g, define

t
~ 1
Et) = —— / g(2)ds, @ <t< oo, (24)

zo
with L(c0) = g(c0). Let & € (21, 00] be the largest point where L(-) equals its minimum.

Theorem 3. Let 0 < zg < z1 < 00. Let the functions g and L and the constant & be as
above. If the cdf of X satisfies (19) and if P(|X| > z1) = =, then

Eg¢(X) = ”@(6) if m<(a@—21)/(@~ o) (25)
> wL{zo + (z1 — z0)/(1 — 7)} if 7> (a—=z1)/(@—z0).



PFurthermore, if # < (@ — z1)/(@ — zo), then

X ~ 1o UY[zo, ] + (1—7r‘f'z°)60 (26)

a—=I a—I;

has o cdf satisfying (19) and satisfies P(|X| > z;) = n and Eg(X) = xL(a). If = >
(@ — z1)/(@ — o), then

X ~Ulzo,z0 + (21 — z0)/(1 — )] (27)

has o cdf satisfying (19) and satisfies P(|X| > z;) = n and Eg(X) = nL{zo + (z1 —
z9)/(1 — w)}. Hence, the lower bounds in (25) on Eg(X) in terms of P(|X| > z1) are
sharp.

For purposes of bounding Eg¢(|X]|) in terms of P(|X| > z;), condition (19) gives
the same result as assuming the cdf F to be concave on [z¢,00). Also, there is no loss
of generality in Theorems 1 and 3 in assuming X > 0, a.s. Modulo these observations,
Theorem 1 is a special case of Theorem 3, with z9 = 0. The proof of Theorem 3 is

essentially the same as the proof of Theorem 1 given in the next section.

If one takes g(z) = |z|", one finds that the & minimizing (24) is the ¢ of (20). “Invert-
ing” the inequality (25) in this special case yields von Mises’ inequality (21), (23).

5. PROOF OF THEOREM 1.
Lemma 1. L(-) is nonincreasing on (k,a| and strictly increasing on [a, 00].

k+y
Proof of Lemma 1. Let ¢(y) = [ g(z)dz. Note that ¢ is convex on [0, 00), since g is

0
nondecreasing on [k, o). Since L(k+y) = ¢(y)/y, 0 < y < o0, and since L(+) is continuous

at 0o, it will be enough to show that

w(y1)/y1 < max{e(yo)/y0, ¢(y2)/y2} for 0 <yo <y1 <y2 < o0,

with strict inequality if ¢(yo)/yo # ¢(y2)/y2. For fixed 0 < yo < y1 < y2 < o0, let

10



a € (0,1) be such that y3 = ayo + (1 — @)yz. Then by the convexity of ¢,

p(y1) o 2p(yo) + (1 — a)p(y2)
vy Y1
agole(yo)/yo} + (1 — @)y2{e(y2)/y2}

Y1

<

< &% +(1 —a)ys
n
< max{¢(yo/y0, ¥(y2)/y2},

max{¢(yo)/yo, ¥(y2)/y2)}

and the third inequality is strict if (y0)/yo # @(y2)/y2. O

Lemma 2. If X is unimodal with mode 0 and P(|X| > k) = m, then there ezists a random
variable X1, unimodal with mode 0, and satisfying P(|X1| > k) = 7, Eg(X;) < E¢(X),

and

X1 ~ U0, E] + (1 = 7)bo (28)

for some constants 0 <y <1land k<t < oo.

Proof of Lemma 2. Without loss of generality, P(X > 0) = 1. Otherwise just replace
X by |X|, which is also unimodal with mode 0.

Let F be the cdf of X. Let f be the right-hand derivative of F. Define the cdf F; by

0 ifz<0
B = { ming1, £ + S — 1)) i 5 50

Since F(k) + f(k)(z — k) is a tangent line to F' at k, and since F' is concave on [0, o),
we have Fy(z) > F(z) for > 0. Hence, Eg(X;) < Eg(X) if X1 ~ F;. Since Fi(k™) =
F(k~) = 1 — 7, we have P(|Xi| > k) = =. Finally, (28) holds for vy = 1 — F;(0) and
t=k+{1-—F(k)}/f(k). (If f(k)=0, take t =00.) O

Lemma 3. Suppose that X ~ ~U[0,t] + (1 — v)éo for some constants 0 < v < 1 and
k<t<oo. Let m=P(|X|>k). Then Eg(X) > nL(a) = 7A.

Proof of Lemma 3. If ¢t = oo, then Eg(X) = vg(c0) = wg(o0) > wL(a). H k < t < 0o,

11



then 7 = v(t — k)/t, and
Bg(X) =77 [g(e)de  (since 9(0) =0)

o)

= wL(t) > wL(a), by the definition of a. O

(29)

Lemma 4. Suppose that X ~ ~U[0,t] + (1 — v)bo for some constants 0 < v < 1 and
k<t<oo. Ifr=P(|X|>k)>(a—k)/a, then E¢g(X) > nL{k/(1—7)}.

Proof of Lemma 4. If t = co, then Eg(X) = mg(00) = wL(o0) > nL{k/(1 — )}, since
L(co) > L{k/(1 — 7)} by Lemma 1. If k£ < ¢t < 00, then

— t — -
e By (P Pl i

implies ¢t > k/(1 — 7) > a. Thus,
Eg(X)=nL(t) > 7L{k/(1 —7)},

where the equality is from (29) and the inequality follows from Lemma 1. O

Proof of Theorem 1. The inequalities in (7) follow from Lemmas 2, 3, and 4. It is easy
to check that the random variables in (8) and (9) satisfy P(]X| > k) = 7 and have the
claimed values of Eg(X). O

6. PROOF OF THEOREM 2.

Lemma 5. If X is unimodal with mode m € [0,k) and P(|X| > k) = =, then there
exists a random variable X,, satisfying P(|X3| > k) = 7 and Eg(X;) < Eg(X), which is

unimodal with mode either 0 or k.

Proof of Lemma 5. Let F be the cdf of X, and let f be its right-hand derivative. Define
the cdf F; by

max{F(z),F(k)+ f(k)(z —k)}, 0<z<k
Fz(x)z{F(a:){ @) () (X ) otherwise.

12



Note that Fy(z) = F(k)+ f(k)(z—k) > F(z) for m < z < k, since F is concave on [m, co)
and F(k) + f(k)(z — k) is a tangent to F at k. If F5(0) = F(0), then F; is convex on
(—o0, k], so that F3 is unimodal with mode k. If F3(0) = F(k) — kf(k), then F; is concave
on [0,00), so that F, is unimodal with mode 0. If X; ~ Fj, then |X;| is stochastically
smaller than |X] in either case, so that Eg(X;) < Eg(X). Since F; and F are equal and
continuous at +k, P(|X3| > k) =P(|X| > k)==. O

Lemma 6. If X is unimodal with mode m > k and P(|X|> k) ==, then
Bg(X) > ng(k) + (1 - m)B. (29)

Proof of Lemma 6. Define X3 by X3 = XI{|X| < k} + kI{|X| > k} Then X; is
unimodal with mode k, and Eg(X) > Eg(X3), since |X| > |X3|. The distribution of X3
assigns probability = to the point k but otherwise has a nondecreasing density f3(-) on
(—k, k). (See the discussion on page 2 of Dharmadhikari and Joag-dev (1988).) Thus, for
any u > 0, the set {z : f3(x) > u} is an interval of the form (v, k) ( or [v,k), it doesn’t
matter), with —k < v < k. Hence,

Eq(Xs) = ng(k) + [ g()fa(a)da

=ng(k)+ [ 9(o) [ 1{fa(e) > uldude

8 ?I“\.a- ?I"'\.:r-

k

— mg(k) + / / o) I{fs(z) > u}dodu

0 —k

> mg(k) + 7 /k BI{fs(z) > u}dzdu

0 —k

=mng(k)+ (1 — 7)B,
where the inequality follows from (14). [

" Lemma 7.
a B

. < 1.
a—F A+B—gk) ="
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Proof of Lemma 7. Since we interpret a/(a — k) as 1 if @ = oo, the Lemma follows from

B/{A + B — g(k)} <1 in this case. Hence, assume a < oo.
k
The definition of B implies kB < kM(0) = [ g(z)dz. The fact that g is nondecreasing
0

on [0, 00) implies (a — k)g(k) < [ g(z)dz. Thus,
k

a

kB +ag(k) < [ g(e)de + kg(k) = (a = B)A+ko(b)

0

which implies the Lemma. [J
Proof of Theorem 2. Applying Lemmas 5, 2, 3, and 6 to X or —X (depending on the
sign of the mode) shows that

Eg¢(X) > min{rA,ng(k) + (1 — x)B}. (30)

One can see from Figure 2 that (30) is equivalent to (15).

Lemma 7 implies that the right side of (16) really is a probability distribution when
0 <7 < B/{A+ B — g(k)}. That the random variables in (16) and (17) satisfy P(|X| >
k) = m and have the claimed values of Eg(X) is easy to check. [J

Acknowledgements: Friedrich Pukelsheim made many excellent suggestions for improv-
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