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Abstract

This is an article on common grounds between Bayesian and traditional or frequentist
statistics and on behavioral evaluation of Bayes methods and procedures. Although many
theorems are stated, we have deliberately omitted proofs. We have deliberately written
this article in the style of telling a story. After a short expository section of six examples
on common grounds, we discuss, in quite good detail four specific issues: sampling distri-
butions of Bayes estimates in fixed samples, classical confidence of Bayesian intervals in
fixed samples (including particular emphasis on how to match actual elicited information
with a functional form of the prior), bias of Bayes estimates in fixed samples and its eval-
uation, estimation and correction including a general theory for evaluation for Gaussian
data, various methods of estimation including the Bootstrap, many explicit examples, and
the very important issue of whether it is too dangerous to attempt a bias correction, and
finally the practically important issue of what should be a correct Bayesian formulation of
the sample size problem, followed by actual sample sizes in the one way ANOVA problem,
and a discussion of whether Bayesians should work out their sample sizes separately or
just use widely available classical sample sizes. We finish with a brief section of concluding
remarks. For easy location of topics, a table of contents is provided at the beginning.
Relevant references are given only in the bibliography; this was necessary to meet a time

constraint.
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1. INTRODUCTION

The frequentist and Bayesian paradigms are different ways of doing statistics; from the
point of view of foundations, they are fundamentally different, as is well known. In recent
years, perhaps somewhat unfortunately advances in frequentist and Bayesian statistics
have taken place to a significant extent in isolation of each other. It is our intention in
this article to not go into differences between the two paradigms, but emphasize common
grounds. It is indeed true that there are remarkable connections between how Bayesian

and classical statistics are done.

It is impossible to go into the general issue of synthesis of classical and Bayesian
statistics in detail. There is simply too much to be said, and too much for one person to
know. After giving a brief introduction to the similarities and the connections between
the two paradigms in section 2, we will go into consideration of three particular topics;
one of these has been considered in the literature seriously, although more or less exclu-
sively in the context of large samples. The other two have not been addressed seriously,
although the general issues are well known. We will consider the following topics: classi-
cal coverage probability of Bayesian confidence (credible) intervals when the sample size
is not necessarily large - in particular what kind of priors (informative priors) will give
satisfactory classical coverage probabilities. The second topic we will discuss is the issue of
bias of Bayes rules and subsequent bias correction. The third topic is the issue of sample
sizes - practitioners quite routinely use sample size prescriptions in standard problems as
guidelines in practical studies. These are all classical sample sizes, however; i.e., usually
one specifies a desirable power and an acceptable type 1 error probability and a chart or
a table gives a sample size consistent with these needs. The formulation in the Bayesian
context would be different; now one needs a small posterior error probability. We will
talk about two things: what happens if classical sample sizes are used, and what is the

Bayesian sample size in the correct Bayesian formulation.

It is well known that Bayes rules generally are not unbiased. Barring that, no serious
effort has been made to evaluate their bias, or to study the issue of whether some bias
correction should be done, and if so how. It is clear that the three topics we discuss

are extremely general in nature; one can ask these questions in any problem where these.



quantities make sense (coverage probabilities make sense in set estimation problems; one
talks of bias generally in point estimation problems, etc.). We will necessarily have to
orient our discussion into particular problems, however; this is for the sake of providing
concrete information. A very general discussion of these topics obviously will not lead
to anything directly informative. We will describe the particular contexts in the relevant
sections. The topic of coverage probability of Bayesian confidence intervals has a good
amount of literature, although in the context of large samples. Our focus is on fixed

samples.

2. COMMON GROUNDS AND CONNECTIONS: A BRIEF INTRODUC-
TION

This section is independent of the rest of the article. The purpose is to give a general
discussion, mostly of expository nature. In the process, we will give some new examples

on connections between the two paradigms.

Example 1. Testing a point null hypothesis. The classical procedure in this problem
is a Neyman-Pearson « level test. In the Bayesian paradigm, one needs to specify a loss
function, and rejects or accepts the null hypothesis according as whether the posterior
expected loss of accepting is more or less than that of rejecting the null hypothesis. It
turns out that formally such a procedure is itself a Neyman-Pearson test of a suitable
level. This has been sometimes used to recommend that the choice of an appropriate a
level should be done from considerations of the risk associated with false acceptance or

rejection and prior odds for the two hypotheses.

Example 2. Maximum likelihood estimates. Maximum likelihood estimates are val-
ues of an unknown parameter that maximize the likelihood function. Verbally, one can
think of the MLE therefore as the parameter value that best explains an observed phe-
nomenon. Formally, one can think of an MLE as providing the model that minimizes
the distance between a fitted model and the true model. In a Bayesian framework, one
need's a prior distribution (density) on the unknown parameter before one can even start.
Complete ignorance about the parameter is sometimes formulated by adopting a uniform
prior on the unknown parameter. In such a case, it follows right away that the posterior

density is proportional to the likelihood function and therefore the most likely value of
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the parameter, i.e., the posterior mode, is exactly the MLE. More sophisticated connec-
tions between the MLE and Bayesian estimates can be given. The popular estimate in the
Bayesian world is not really the posterior mode; it is the posterior mean. A more mean-
ingful question may therefore be if the posterior mean for a uniform prior coincides with
the MLE. In a rather technical article, the following result with apparently very promising

computational implications was proved:

Theorem (DasGupta). Take n observations from a multivariate normal distribution
with an unknown mean vector which we assign a uniform prior. We want to estimate a
function ¢ of the unknown mean. Then the MLE of g coincides with the posterior mean
of g for all samples X3,...,X, and all sample sizes n if (and only if) ¢ is a Harmonic

function.

Since there are plenty of functions which are Harmonic in more than one dimension,
this says that the classical ML approach and the uniform prior Bayes approach will give
EXACTLY the same answer all the time for plenty of functions. The promise is, however,
not only in direct application of this result, but also in the following general approximation

it points to.

Take a function h that is not Harmonic. Also take a general prior that is not necessarily
the uniform prior. Suppose the sample size n is not too small. Then the following sequence

of approximations can be written (and made formal, from a mathematician’s standard):

Bh(@)/z ——(6 /8 ~ Nz, 21)~ BHOIQ € K)/g ~ N (2,21)

n

1
~ Bo@)I@ € K)/g ~ N (2,21) ~ o(o),
n
where K is an appropriate large compact set and ¢ is the best harmonic approximant to

h on the compact set K.

The construction of the Best Harmonic approximant of h on a sphere involves consid-
eration of delicate mathematics, including the solution to Dirichlet problems on a sphere,
but is well understood. It will be beside the point to wander into those issues here. The

point is the MLE and the Bayes estimate are often approximately equal in parametric esti-

mation problems. The actual result is quite a bit more general in that normally distributed .-

data are not needed. Mixture models are included.
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Example 3. The Fisher Discriminant Function. Suppose one has two multivariate
normal populations N(u1,X) and N(pg,X). Fisher proposed the linear function(y; —
p2)'T71X as a criterion to discriminate between the two populations. This has now
become a historically famous statistical method: widely used, perhaps even time tested.
Fisher’s original derivation was completely classical in nature. Certainly not even a hint of
Bayesian thinking was present anywhere. The following connection therefore seems rather

interesting.

Theorem (DasGupta, McCabe, and Mukhopadhyay). Consider a mixed population
(1 = p)N(p1,%) + pN(p2,X). Suppose the mixing proportion p is not known. Assign p
any prior m(p). Then among all linear functions of the multivariate data vector X, the
Fisher linear discriminant function maximizes the expected information (Fisher) about the

mixing proportion p, where the expected information is with respect to the prior n(p).

It is indeed curious how completely classical methods built from simple intuition or

reasoning do have Bayesian connections.

Example 4. Nonparametric regression. In nonparametric regression, one assumes a
model of the general form y(t) = pu(t) + (t), where p(t) is in a broad class of regression
functions and e(t) is an error. It has now become a standard practice to estimate the
mean function u(t) by using a combination of two criteria: good fitting, and reasonable
smoothness. Smoothness is defined depending on the context. It is customary to have the
function be (absolutely) continuous with a number of continuous derivatives: these are

usually called Sobolev spaces.

A well known result is that the solution to such a constrained fitting problem is a
smoothing spline; the order of the spline depends on how many continuous derivatives are

assumed for the regression function.
The following Bayesian connection is also well known.

Theorem. Assume that the regression function u(t) has the form of a polynomial plus a
well defined error process Z(t). The process Z(t) is sufficiently smooth as a function of t.
Suppose a fully uniform prior is given to the coefficients in this polynomial representation of

the regression function y(¢). Then the pointwise posterior mean of the regression function is - -



a smoothing spline under standard conditions of zero correlation between various stochastic

processes involved in the above modeling.

Again, the point is that the solution obtained originally from a purely algebraic point
of view has a Bayesian interpretation. This connection has been used to use the posterior

mse as an estimate of the sampling variance in this problem.

Example 5. The Sequential Probability Ratio Test. This is the sequential version of
the classical likelihood ratio method for testing one point null hypothesis against another
point null alternative. The motivation was that sometimes the full data are not required
to choose between the two hypotheses; the evidence mounts soon in favor of one of them,

and thus sequential sampling can save on cost.

The SPRT asks one to accept a hypothesis as soon as the likelihood ratio in its favor
exceeds a given threshold level; otherwise the evidence is assessed to be insufficient and
one continues sampling. The original paper of Wald gave pioneering calculations on the
type 1 and type 2 error probabilities of this sequential test and on the savings on cost via

calculation of average sample sizes at the decision stage.
The SPRT has the following Bayesian connection:

Theorem. Assign the two hypotheses a priori probabilities of 7 and 1 — 7 respectively,
for 0 < m < 1. Suppose the risks of false acceptance and rejection of the null hypothesis
are 1 and K, for some positive constant K. Then the Bayesian test of this problem is a

SPRT with appropriate threshold values determined by the constants 7 and K.

This, in spirit, is exactly the same as the corresponding fixed sample example we saw

in Example 1. However, the proof is certainly harder.
We finish this section with the following example.

Example 6. Interpolation formulas of Numerical analysis. Many standard and
famous methods of approximating a continuous function defined on a bounded interval,say
[0,1], are based on some form of interpolation. Polynomial interpolation is naturally the
first method to think of, but can be extremely inefficient in practice; even the choice of
Chebyshev nodes is known to fail to provide uniform approximation in some cases, and .-

other methods like the Bernstein operator have their theoretical value but are useless in



practice. Splines provide a family of functions which offer a lot of flexibility and efficiency
at the same time. Interpolating cubic splines have now earned the status of perhaps the
most common approximation method for implementation on computers. Suppose then
that we have a function f in C[0,1], which is "measurable”(in the everyday sense) at
given points zy,...,zn. We do not know f in a functional form (such problems arise quite
routinely in_ consulting: f may be a response to a stimulant, deterministic but not known
explicitly). The problem is to predict the value of f at a fixed point z on the basis of

observations at n points z1,...,%,. The following result is extremely interesting,.

Theorem. Assume that f is a sample path of an once integrated Brownian motion.
Suppose we treat this problem as a decision theory problem with mean squared error as
criterion. Then the Bayes “estimate” of f(z) given the data equals an interpolating spline

of order 3 with knots at the data points.

This is only one result among many beautiful connections between classic numerical

analysis tools and Bayesian statistics.

One can continue indefinitely; ridge regression, Kalman filters, almost any type of

minimax estimation, etc. We proceed to the next section.

3. CLASSICAL CONFIDENCE OF BAYESIANLY CONSTRUCTED IN-
TERVALS.

From a strict subjective Bayesian point of view, classical coverage probabilities of a
Bayesian interval are not of relevance. One has a personal decision problem with a personal
subjective prior and a personal utility function. The behavior of the corresponding Bayes
procedure for observable (but unobserved) data is not important. It is simplistic, however,
to conclude that the real world always acts or thinks that way. Most inferences are not
meant for personal use only; they are used to make decisions as a group, to convince
people and politicians, and the scientific soundness of a method is an inherently interesting
question, which does relate to frequentist performance or typicality. These are not going

to go away, certainly not in the immediate future.

Generally speaking a broad statement of the following type can be made and can be

mathematically justified: if the subjective prior for the unknown parameter has a location
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(like a strong prior guess), then Bayesian intervals corresponding to such a prior will tend
to give excellent classical coverage probabilities if the prior guess is close or very close to
being correct; however, at the same time, such classical coverage probabilities also tend to
drop dramatically if the prior guess happens to be moderately incorrect. For people who
value the assurance of the method to work in most cases, Bayesian intervals corresponding
to very strong prior opinions thus come with a lack of insurance against ill conceived priors:
if the strong prior opinion is correct, Bayesian intervals are great in every way; if they are

incorrect, they have problems.
The following example merits mention.

Example 7. Estimation of a multivariate normal mean is one of the most common,
most well studied, and may be even one of the most important problems of practical and
theoretical statistics. In the simpler case of a known covariance matrix, the commonly
employed estimate is the Hotelling ellipsoid centered at the sample mean vector (although
simultaneous confidence intervals are more common in practice). In the Bayesian paradigm,
there is a choice of many kinds of priors, but a multivariate normal conjugate prior is more
common than anything else. The important thing is that a Bayesian with such a prior still
uses an ellipsoid, but with two distinctions: the center is on the plane joining the sample
mean and the prior mean, not at the sample mean exactly; also, the axes of the ellipsoid
do not coincide with the axes of the contours of the normal distribution generating the
data - the axes change due to the presence of another covariance matrix in the prior. In

view of the preceding discussion, the following is not surprising:

Result. Denote the Bayesian ellipsoid by S(X); then
Py {S(X) contains 8} — 0 as || § || — oo,

and the convergence to zero is extremely fast, faster than the rate at which normal CDF's

go to zero at the tails.

There is (justifiably) an impression among users that this problem can be eliminated
by using noninformative priors. Noninformative priors in general tend to give Bayesian
procedures that resemble classical procedures very closely or even exactly. There are two

difficulties with such a resolution of this issue: virtually every result in this direction is of
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relevance to large samples only, and furthermore the fundamental appeal of the Bayesian
paradigm in its ability to use extraneous information outside of the data is totally lost in
the adoption of objects like noninformative priors. There is also the very serious and very
potent problem with interpretations: improper priors cannot be used to make uncertainty
statements within the domain of standard probability theory, improper posteriors are an
even bigger problem, and some of the most widely used simulation techniques like the
Gibbs sampler can miserably fail in doing what we want it to do: give samples from a rele-
vant probability distribution - the relevant distribution may not be a distribution because
noninformative improper priors sometimes make the desired posterior just a measure, not
a probability measure, yet the Gibbs sampler returns with samples. It is thus important
on many grounds, philosophical and technical, to try to operate with informative or proper
priors if possible. The following result is therefore very reassuring to people who value,
for whatever reason, an assurance that a method works typically, irrespective of how the

method was arrived at.

Theorem (Mukhopadhyay and DasGupta). For an unknown multivariate normal
mean §, consider prior densities g(§) which satisfy the following (for now) technical condi-
tion:

|| Vg(8) || / () is uniformly bounded.

(There are lots of priors which satisfy this condition, and lot others which don’t; normal

priors do not satisfy this condition).

Take a scaled version of such a prior g:

9:(8) =1/c? - g(8/c),

where ¢ is > 0, but will be usually somewhat large in applications.

Denote by S¢(X) a 100(1— «)% Bayesian set estimator for §, under such a prior g.(9);
thus it is only the posterior probability of S.(X) which is 1 — a; guarantee of satisfactory

classical confidence needs to be dealt with as a separate issue.
Denote the classical coverage probability of S.(X) by p(c, §). Then,
p(¢,8) =1—a+0(1/c), uniformly in 6.
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Discussion of the result: What does it mean? This result says that if one constructs
a Bayesian set estimator for a multivariate normal mean with a prior of the type g.(8),
then a 95% (say) Bayesian set estimator comes with the guarantee that even its classical
coverage probability is very very close to 95% AT EVERY §; unlike Bayesian ellipsoids
which have extremely low classical confidence at values of § where one or more of the
coordinates is large, the Bayesian set estimator above has nearly 95% classical confidence
whatever be §, provided the scaling constant ¢ is somewhat large. There is no assumption

of a large sample here.

However, the result needs to be understood very carefully; the following issues are

obviously important:
a. Can we or should we choose ¢ to be large just so it will give good classical confidence?

The answer is 'no’. We should try to use this result in the following way: elicit the prior
information that is there. Now match this information with a prior g of a functional
form that satisfies the condition stated before. Finally , match the scaling constant ¢
to be roughly consistent with the elicited information. Try the corresponding Bayesian
set estimator for a few priors g of such kind and use one that seems to be the most
suitable: in this consideration of which ¢ is the most suitable, the classical confidence

may also enter, if deemed an important factor for the users in that particular problem.
b. Does the same scaling constant ¢ work whatever be the sample size?

Again, the answer is 'no’. With a larger sample size, of course inference generally
becomes more accurate. So a smaller sample will require a larger ¢ to get the same
kind of accuracy. However, as we said before, ¢ should not be chosen large just because
it is nice to do so. What this means is that even though the result is valid as a theorem
whatever be the sample size, the strength with which the assurance of a 95% classical

confidence is approximately correct does depend on the sample size n.
The following concrete example may help.

Example 8. Bayesian intervals for a univariate normal mean. Suppose the prior
information is that the median of § is 0, and the quartiles are +2. Infinitely many priors are

consistent with this limited information. They need not be symmetric at all. Depending
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on the particular problem, one has to decide if a symmetric prior will be adopted because
the quartiles are symmetric. Among symmetric priors, there are also infinitely many
possible choices. The first inclination may be to use the N(0,8.78) prior; this matches the
elicited information. But this is not a prior that satisfies the stated condition |¢'(6)|/g(8) is
bounded. In fact, any normal prior does have a classical validity problem, as we saw before.
So it is a good idea in this context to match the elicited information with another functional
form. The Cauchy distribution centered at zero and with a scaling constant of ¢ = 2
will satisfy the stated condition and match the elicited information. The corresponding
Bayesian interval has to be found, however, at the expense of some numerical effort: there
is no closed form formula if one adopts a Cauchy prior. But the numerical project is
straightforward by the standards of computing today: repeated solution of an equation is
necessary. The following table and the subsequent graph describes the classical confidence

of our 95% Bayesian interval constructed from elicited information.

Table 1.

n 5 10 15 20 25 40
Minimum classical confidence .9435 .9468 .9479 .9484 .9487 .9492

It is important to understand the very strong implication of these numbers. For
a sample of size merely 5, a Cauchy prior matching the elicited information gives 95%
Bayesian confidence and virtually 95% classical confidence at every 6 as well, while a normal
prior matching the elicited information would have given nearly zero classical confidence

for values of 8 about 2 standard deviations from the elicited median.

We have treated a very specific problem here. Important, but specific. It is the case
that quite independent research will be necessary if the problem changes. In complex
models with many parameters, the problem may well be too hard to progress. But the
general moral of what we know and what we saw here in particular seems to be that
matching elicited information with computationally convenient priors may lead to problems
if classical confidences are relevant, for whatever reason. But that does not mean one has to
throw one’s hands up: there may be other informative priors which are computationally
somewhat harder, but alleviate difficulties related to behavior as. a method in repeated .

uses.
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4. BIAS IN ESTIMATION BY BAYES RULES: EVALUATION, ESTIMA-
TION, AND CORRECTION.

There are a number of reasons for interest in the bias of any estimate, including Bayes
estimates. We will very soon list a number of reasons with quite concrete details. It is
surprising, really, that no serious effort has been made to study this issue even in the most

common or formally simple problems. There are probably two principal reasons for this:

a. Bayesians who use Bayes estimates more often than others are frequently not interested

in bias because bias is not directly a Bayesian quantity;

b. Others who use Bayes estimates on other grounds probably realize how difficult the
study of bias of Bayes estimates is as soon as one gets out of the domain of conjugate
(or similar convenient) priors, no matter how computationally brilliant or ingenious

one is. This is quite plainly a hard problem.
One can list many reasons for studying the bias of Bayes estimates; here are a few.

1. It is a reality that estimates which are off by a factor of 2 or 3 in the sense of an
average are hard to sell; one can use all the argument about how the bias is being
offset by incorporation of prior information, but it is simply not easy to convince users
used to thinking of unbiasedness as a great virtue that bias by a large factor is not

important.

2. Besides the issue of selling Bayesian methods, severe bias is actually bad from just
common sense, if the Bayesian methods that are proposed are arising out of nonin-
formative type automated priors. Automated priors come with practically the sole
purpose of being used automatically, like a tool, a black box. A method that comes
with the implicit recommendation of automated use, must be checked for typical be-

havior in automated use. Bias is one quantification of just that.

3. For a purely subjective (personal) prior in a personal problem, clearly the above
argument for considering bias of the Bayes rule does not apply. However, even there,
some formal reasons can be given for the importance of having a small bias. In the

following, we give two results which indicate why this is so.

Theorem (DasGupta). A new general identity. Consider a generic estimation
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problem with mean squared error as the criterion. Call the parameter to be estimated as
6, and the Bayes estimate under a given generic prior 7(6) as d(X). Then the Bayes risk
of d(X) (i.e., the average MSE of the Bayes estimate) satisfies

r(m) = — / 0 - b(6)n(6)d8,

where 5(0) denotes the bias of the Bayes estimate d(X).

Typically, in many applications, Bayesian estimates tend to be shrinkage estimates;
thus the bias b(f) and the parameter 6 often have the same sign. What follows is that
a bias large in magnitude does not cancel, but makes the Bayes risk large. Since a large
Bayes risk is bad (or at least should be bad) from the Bayes viewpoint, this suggests that

a large bias may be a red flag for even the Bayesian.
Here is another result in the same spirit.

Bayesian or not Bayesian, a statistician ought to be happy if his/her proposed estimate
has the property that for practically all data, the estimate is virtually equal to the quantity
being estimated. This is a statement of accuracy irrespective of data. One can think of
this in the following manner: the statistician has the ideal goal of using an estimate d(X)
whose distribution is just a point mass at the parameter being estimated. Of course, this
is unattainable; it is an ideal goal.It will therefore not be meaningless to consider the

deviation of the distribution of an estimate d(X) from this ideal goal.

Here the Bayesian runs immediately into an extremely hard problem. The distribution
of a Bayes estimate, again with the exception of very convenient priors, is simply not
something one can write on a piece of paper (the same can be said of many nonBayesian
estimates as well). In some problems, and we emphasize that this is very specific on the
problem, one can do tricky things. In principle, one can use numerical methods to compute
the distribution, but this requires a nearly impossible amount of computing, and it is a
very hard thing to determine if all the numerical errors, however small, made at various
stages of this process keep the computed distribution reliable. And one needs to keep in
mind that there is actually a family of distributions, one for each value of the parameter.
We believe that for small values of the sample size n, there will be some asymmetry in

the distribution of Bayes estimates in general, and various possibilities exist for accurately
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approximating them. Saddlepoint approximations and Edgeworth expansions should also
be looked at. In any event, the sampling distribution of the Bayes estimate is an interesting
object, it needs much more investigation in small samples than what has been done, and

the exact evaluation is going to be a hard problem (and particularly so in complex models).

Instead, let us try as a first step, an approximation. This is, as far as we see in
some simple problems, quite good, but we have not tried any complex models at all.
We approximate the distribution of the Bayes estimate d(X) by a normal distribution
with mean and variance equal to the mean and variance of d(X), which are abstract
quantities right now (¢ distributions may give still better approximations). The ideal goal
is a distribution which is a point mass at the parameter. Common criteria for measuring
deviation of one distribution from another do not work or work well with point masses
- one gets uninteresting answers or no answers. We therefore also approximate the ideal
goal; in general one can use what mathematicians call an approximate identity. In our
case, mostly because we want to ultimately arrive at an answer that makes a point, we
will use the normal distribution with mean at the parameter, and variance = ¢, where ¢ is

a small positive number.
Then, the following hold:

Result. The symmetrized Kullback - Leibler distance between the two normal distribu-

tions described above equals
constant - /(b2 () + v(6))7(6) + constant - /v_1(0)7r(0)d9

#(0)
v(6)

the constants refer to quantities free of the prior under consideration.

+ constant -

x(6)d8 — 1/2;

Thus a large bias, or a large bias in comparison to the variance at a value of the

parameter important according to the prior keeps the ideal goal far from being achieved.
The following says the same thing with a different distance.

Result. The Hellinger distance between the two normal distributions described above

satisfies _
/ log(2 — dg(6))m(6)d6 ~ constant — 1/4- / [ Logu(8) + §2(8)/v(8) | =(8)d8

16



Again, a bias large in comparison to the variance is seen to be bad in this formulation.
We will therefore now concentrate on the following issues:
a. Evaluation of the bias at a given value of the parameter;

b. Estimation of the bias (bias itself is a function of the parameter, and so needs to be

estimated)
c. Correcting the Bayes rule for bias, including the issues of how and if.

We will first talk briefly about correction, giving a neat result, and return to the

correction issue later in the section.

Theorem (DasGupta and Shyamalkumar). Consider a generic estimation problem
with mean squared error as criterion and a given generic prior 7. Call the parameter being
estimated 8 and assume [6’7(6)df < co. Denote the Bayes estimate of 8 by do(X) and
its bias by b(6).

Define the once corrected estimate d;(X) as
di(X) = do(X) — b(8),
where b is the Bayes estimate of b(6).
Inductively define the nth corrected estimate d,(X) as
dn(X) = dn-1(X) — ba-1(0),
where b,_; denotes the Bayes estimate of b,—1(0).

Then the bias of the repeatedly corrected estimate d,,(X) converges to zero (in L, with
respect to the prior under consideration) if and only if the parameter 8 being estimated is
in the closed convex hull (in Ly again) of the class of all parametric functions which are

unbiasedly estimable.

Interpreted in a user’s language, this means that repeatedly correcting an original
Bayes estimate by always estimating the bias by a Bayes estimate will eventually make
the bias zero if (and only if) the parameter has an approximately unbiased estimate, in
which case the bias corrected Bayes estimate after a large number of corrections becomes

approximately equal to an unbiased estimate.
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The if and only if nature of this result suggests that there will be examples of quite
natural estimation problems in which no amount of bias correction will eliminate the bias
of a Bayes rule. The following is a simple example. After the example, we will give a

strong generalization.

Example 9. Consider estimating the variance of a Bernoulli distribution with mean
squared error as criterion and the noninformative uniform density as the prior for the
unknown proportion p. Then the bias of the repeatedly bias corrected estimate always

equals 1/6 — p(1 — p), regardless of the number of bias corrections.
This generalizes to the following:

Theorem (DasGupta and Shyamalkumar). In the same problem, consider a general
Binomial distribution, Bin(n, p), and consider a general prior density 7(p). Let {Pi(p)} de-
note the sequence of orthogonal polynomials with respect to the prior density 7(p). Let g(p)
be any parametric function which is orthogonal to the first n polynomials Py, Ps,..., Py;
then the bias of the repeatedly bias corrected Bayes estimate of g(p) always equals a fixed

function of p, independent of the number of bias corrections.

The bias itself, as a function of the parameter, is arguably the most interesting quantity
in this context: without knowing the function or at least an idea of the function, it is hard
to decide if we have the problem of a large bias at important parameter values and it is hard
to parametrically estimate it (although other tools such as the Jackknife or the Bootstrap
can be used and we will have an occasion to use these later in this section). As we mentioned
earlier, exact evaluation of the bias as an explicit function of the parameter is an impossible
problem, barring a few exceptional circumstances. As a starting step, it is a good idea to
try to understand the severity of the bias of Bayes estimates in problems that are relatively
more amenable to calculations that reduce the otherwise heavy computational burden. Let
us try to get an understanding of this issue when data are coming from observations made
at discrete times on a Gaussian process; the stationary case will be treated first; much
later, we will show some results and calculations on Bayesian estimation of the drift of a

Brownian motion. This is the only nonstationary case we will see in this particular article.

Suppose then that X;,..., X, are observations on a stationary Gaussian process with .

a mean p and covariance function (t) and we assume for the sake of nicety as well as a

18



latter Theorem that the process admits a spectral density f(A),—m < A < 7. As one can
expect, some exact results are possible with a Gaussian prior on the mean. Some close to
exact results are possible with other priors as well; one such prior is the Double exponential

which we will study later.

Once one starts to think about this problem, it becomes clear that the correct for-
mulation is not quite a black and white issue. If we want to make statements of the kind
“we are off by a factor of 2, or we are correct to within a factor of about 1.1”, then clearly
what is of concern is not the bias itself, but the relative bias |b(u)|/|¢]|- At this stage, the
issue gets interestingly muddled. Conjugate (or similar) priors tend to keep the relative
bias bounded (although it may still be large) but provide no control on the bias. On the
other hand, priors one likes to think of as flat priors (safe priors??) keep the bias small
but provide no control on the relative bias. The problem occurs at an unexpected place,
namely when the mean is nearly zero. There is no resolution of this; may be flat priors are
still better, with the understanding that if two numbers are both small, we will ignore the

question of which is still smaller. Then relative bias stands on firm ground. The following

holds.

Theorem (DasGupta). Denote the covariance matrix of the first n observations by .
Assume the mean p has a Gaussian prior with mean 0 and variance 72. Then the relative
bias of the Bayes estimate of y is a constant independent of the parameter, and equals
b(p) r?

u

= ac, wherea =127l and c = ————.
~ ~ ar? 41
Furthermore, assuming that the underlying process is not fully deterministic, i.e., [ log f(\)

d\ > —oo,n - converges to 27 f(0)/72, as n — oo.

]

Two comments are in order; notice that we have taken the mean of the prior to be
zero. Conceptually, one obviously need not. However, if the prior has a nonzero mean,
the relative bias is no longer bounded, even for finite n. Secondly, the result says that
the relative bias is more serious if the spectral density is large at zero. This is also not
surprising; it is a very well known fact that a large value of f(0) is the cause of much

trouble in most of these problems.

Example 10. AR(1) processes. The theorem says that in this case, for a large sample,-
the relative bias is approximately 1/n - o2/{r%(1 — ¢)?}.
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The danger of a very sharp prior manifests immediately; if :—: is taken to be 1, then
this says that to achieve a relative bias of at most 5%, 222 observations will be necessary
if the autoregression coefficient is a modest .7. The case gets increasingly worse as one

approaches the unit root case, as expected.

Example 11. AR(2) processes. In this case, the coefficients must satisfy ¢; + ¢2 < 1
for stationarity (this is only necessary). If ¢; = .1, and ¢ = .7, then the theorem says
that 500 observations are necessary to keep the bias within a factor of 5%, if :—: =1is

used.

Example 12. Gaussian covariances. A popular model for a rapidly decreasing co-

2

variance function is §(n) = o2 - exp(—an?). This has been used in many applied areas,

including spatial designs. The spectral density admits the representation

o? a2 | & 2 b y
f()\) — 2_7r € 2o E e—a(n—z) + Z e—a(n+z) +1
n=1 n=1

where z = %’l
(44

The relative bias goes to zero at the exact rate 1/n - ;'_—:9(01) where 6(-) is the Jacobi
theta function evaluated at a. Again, as a specific illustration, n = 50 observations are
necessary for a relative bias of 5% if %; is taken as 1 and « is taken as .5108256238 (giving

a lag 1 correlation of .6). All one needs is a table of the theta function.

Example 13. Equicorrelated observations. This is an interestingly exceptional case.
The relative bias does not disappear with a large sample. In fact, the relative bias converges
to 0% -p/7?%, as the sample size n — co. Thus a large correlation that refuses to taper off at
large lags causes a large relative bias for the Bayes estimate, particularly if a sharp prior

is used.

Example 14. A nonstationary example: Brownian motion with a drift. Consider
the process Xy = tu + o By, where p is an unknown drift parameter, and B is standard
Brownian motion starting at 0. We are interested in estimating the drift yu, which we assign

2, Sometimes the drift parameter may be

a Gaussian prior with mean 0 and variance 7
known to be positive, in which case the assumption of a Gaussian prior naturally will have
to be changed. Although the assumption of stationarity is no longer valid, all the Gaussian

structure is still in place, leading in a completely straightforward way to the following:
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Result. Denote the vector (1,2,..,n)" by @, and the matrix

1 1 ... ... 1
1 2 2 ... 2
1 2 3 3 ... 3
1 2 ... ... n

by X. Then the Bayes estimate of A on the basis of n observations X, ..., X, equals
dX) = &' X /(@' e + )
with a relative bias of
b()|/|ul = 1/(T?¢'S7 ¢ + 1).
Together with the following interesting Lemma:
Lemma. ¢'S g =n.
One has,
Result. For all n, |b(p)|/|p| = 1/(nT2 + 1).
A General Method for Bias Evaluation in Gaussian Processes.

Having earlier said that evaluation of the bias of a Bayes estimate as a function of the
parameter is generally a hard problem, we are now going to show a new general theory
for bias evaluation applicable to Gaussian processes. The following things should be made

clear right at the start:

a. The theory is one for evaluating expectations of smooth functions of a multivariate
random vector with a Gaussian distribution; it is more encompassing than bias eval-

uation of Bayes rules, therefore.

b. The theory gives an expansion for the expectation of a smooth function; successive

% ...in the denominator when the expansion is applied to one

terms have powers n,n
dimensional data and n is the sample size. Typically, therefore, a few and usually two

terms give an accurate approximation to the expectation being sought.

c. The derivation of the expansion is in an article of the author, DasGupta(1994); it
is quite technical and uses facts from partial differential equations. We need not be .-

concerned with it in this article.
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d. Although the actual result applies to any number of dimensions and any covariance
structure, here we will illustrate only a one dimensional problem, and therefore will

only state the one dimensional result.

Theorem(DasGupta(1994)). Let g : R — R be an infinitely differentiable function
such that for all k,m > 1,|¢(®)(z)| - exp(—22/2) - |z|™ — 0 as |z]| — oo.

Let X be distributed as N(6,t). Then,
0
E(g(X)) = g(8) + Y _(t/2)* - g*P(6)/R\.
k=1

Example 15. As an illustration of the utility of this in our context, let us consider the
following nontrivial Bayes problem. We have n iid observations from N(f,02) and the
mean 6 is given a Double exponential prior with density ezp(—|6|)/2. Other scales for the
prior can obviously be handled as well. The bias of the Bayes estimate d(X) of the mean
8 is by definition E{d(X)} — 6 = E{d(X) — X}.

At this stage a very nice and powerful identity due to Brown becomes useful. The

Brown identity says the following;:

Theorem. For a general prior 7 on the mean 6, the Bayes estimate of § has the represen-

tation

d(X) =X + 0 /n-m!(X)/m(X),

where m(X) denotes the marginal density of X, i.e.,

T\ V/n t‘/,;—w"f(i—.sv)z7r
m(X) = 2L / (6)d8.

Thus, the bias equals 0% /n - Em'(X)/m(X).

Identifying the function m'(X)/m(X) with g in the Expansion stated above, and using
t = 02 /n, one has right away an expansion for the bias of the Bayes estimate. Carried to
its full length, the expansion will give the exact bias. We want to terminate it at a small
number of terms; in practice, at any given 6, one should stop when it becomes clear that
incorporation of more terms is useless. Usually, just two terms suffice for any moderate

value of the sample size n, like 10.
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There is evidently a serious computational issue still to be addressed. The marginal
density m(X) needs to be differentiated five times for a two term approximation at every
value 6 of the parameter where the bias is to be evaluated. The truth is that for general
priors, even the marginal density m(X) itself can only be calculated numerically. The
subsequent derivatives can therefore only be calculated by numerical differentiation, usually
an unreliable computing exercise. In general therefore, it is better to evaluate the bias by
simulation from the underlying normal distribution and repeated evaluation of d(X) for
each set of simulated observations. Sometimes, however, we get lucky. Certainly with
normal priors, everything falls into place. However, for normal priors the entire problem is
straightforward and there is no need to approximate in the manner suggested here. There
are some other priors where again the computing burden is very significantly reduced
due to the fortunate presence of exact formulas for the marginal density. The Double
exponential prior we started with is one such case. An expression for m(X) with such a
prior is completely easy and well known. Repeated derivatives of m'(X)/m(X) are just
derivatives of logm(X), and these are also known exactly. Using these and a two term
expansion as suggested above leads to an accurate approximation of the bias of the Bayes
estimate, of which we give a plot with ¢ = 1 and n = 10. Although we have given only
one example here, it is clear that this method will work (sometimes two terms may not
suffice) in good generality. The only restriction is that one has to have the multivariate

normal structure.

The plot of the bias of the Double exponential prior Bayes rule is instructive. Unlike
conjugate prior Bayes estimates which have a linearly diverging bias, here the bias remains
bounded and quite quickly attains an asymptote. The ease with which the theoretical
expansion of the bias gives the function very accurately says that this method should be

preferred whenever applicable.

Estimation and correction of the bias. Since simple closed form formulas are available
for our use with conjugate priors, both problems are relatively easily tackled in that case.
There is some question about the correct method to correct for bias, if correction is done.
A Bayes estimate is more natural for the Bayesian to estimate the bias; with simple
priors, this is fine. With other priors, the Bayes estimate of the bias will need numerical

integration. This is not a very serious concern, if bias correction is done only once. To

23



do a second round of bias correction if necessary, it will be necessary to have some idea of
how much correction was done the first time. This amounts to finding the bias of the once
corrected estimate, and one way or the other calls for repeated numerical integration and
evaluation of the Bayes estimate at many values: bias is an average quantity - replications
are needed to find an average. An alternative to the Bayes estimate of the bias is an
unbiased estimate of the bias. This is evidently immediately available without another

round of computing.

Example 16. We investigated the potentials of bootstrap bias estimates in one example.
n = 15 observations were simulated from an AR(1) process with mean g and an autore-
gression coefficient of ¢ = .7. We used again a Double Exponential prior on the mean,
taking the quartiles to be 0 and 2. An exact analytical form of the Bayes estimate is
available, and this was used. No numerical computing was therefore necessary to evaluate
the estimate. For each given p, the Bootstrap estimate of the bias was evaluated by using
B = 250 Bootstrap replications. The exact bias as a function of the mean and the Boot-
strap estimates of the bias are overlaid on a plot. We cannot say with confidence that this
plot indicates strongly that Bootstrap estimates lack generally in accuracy in this problem.
However, the plot indicates there may be a problem with both the bias and the accuracy of
the Bootstrap bias estimates of Bayes rules. This is a very important issue and we believe
it should be pursued to get a good understanding of the picture. Again notice that the
general shape of the exact bias as a function of the mean is the same as for iid data: it is

bounded, with an asymptote.

Associated with the issue of bias correction is another extremely serious question:
should bias correction be done at all? The danger in a bias correction is that while it
reduces the bias, it can cause moderate to major havoc to accuracy. In the present context,
the appropriate measure of accuracy seems to be Bayes risk under the assumed prior. One
needs an assurance that the increase in Bayes risk is inconsequential in comparison to the
improvement in bias. With some straightforward calculations, one can quickly arrive at

the following:

Result. Let o and ¢ be as before. Suppose the bias of the original Bayes estimate

of the mean p is estimated by a Bayes estimate again. Then the once corrected esti-
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mate equals (2¢ — c?«) 1’S71X and its bias for estimating the mean p now improves to

((2c - a)a — 1) . The Bayes risk of the once corrected estimate equals

0126 (84 C

(2¢ — Pa)? [ + a] _ (2¢~ *a)- 12_c

1—cn cn+1—cn’

while the bias and the Bayes risk of the original Bayes estimate of the mean p equal

(ca — 1)u and c respectively.

This result will help decide if bias correction was wise. For instance, direct applica-
tion of the collection of formulas above gives that if o = 1,7 = 3,n = 35, and one has
equicorrelated observations with p = .25, then a single bias correction improves the bias
by 97.07% and increases the Bayes risk by 2.84%. Usually the picture will not be so clearly

in favor of a bias correction, but if it were so, it would seem wise to do it.

5. SAMPLE SIZE DETERMINATION: THE BAYESIAN PERSPECTIVE.

The problem of determining sample sizes that give an assurance of a prespecified
accuracy (in whatever relevant way accuracy is defined) has assumed the status of textbook
material in classical statistics. All among us and also people who use statistics have
surely seen and used tables and charts of sample sizes that guarantee a power of .95
at a type 1 error level of .05 in standard hypothesis testing problems. We routinely
teach our students in most elementary classes about such classical sample sizes. Several
books and monographs testify to the value that practitioners assign to sample sizes as a

preexperimental design component.

It is somewhat curious, therefore, that barring a recent outgrowth of interest and
activity, determination of sample sizes correct according to a Bayesian formulation has been
more or less a nonexistent topic in Bayesian research. First, one needs to understand that
a new and careful formulation consistent with the Bayesian view of the world is necessary.
The Bayesian has little primary use for sample sizes that assure low type 1 and 2 error
probabilities. In the Bayesian’s mind, the correct accuracy measure is a posterior accuracy:
thus in a testing problem, a Bayesian would be naturally interested in keeping the posterior
probability that the wrong hypothesis was accepted low, and may very well seek a sample

size that would assure such a goal. This however is rather subtle; sample size determination
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is a preexperimental exercise. What data will come our way is anybody’s guess; posterior
accuracies are by nature functions of the obtained data. There is a problem! One can and
must therefore either seek an assurance of posterior accuracy for all possible data or at
least all probable data: data that are likely to be seen once the prescribed sample size
is used and data are obtained. This leads to very interesting mathematical problems. A
moment’s thinking will no doubt make us realize that the ability to simultaneously protect
against all possible data by choosing a large sample corresponds mathematically to the
uniform convergence to zero (uniform over the sample space, as the sample size goes to
infinity) of an appropriate function of the observations z1,z2,...,z,. In DasGupta and
Mukhopadhyay(1992), this was called uniform robustness. It was pointed out in that article
that in many common problems of inference, uniform robustness is an unattainable goal
even for simple priors. On hindsight, this is not so surprising. However, one can (almost)
always assure posterior accuracy with respect to all samples outside of a small set with an
arbitrarily low (predictive) probability. If by chance the obtained data happen to be one
of the samples we were not preprotected against, the automatic accuracy is invalidated.
Of course, this may also mean the modeling was wrong: why did such unanticipated data
even arise? The exact sample size usually is found by solving a moderately messy equation
treating the sample size n as a variable. For instance, in DasGupta and Mukhopadhyay,
such explicit Bayesian sample sizes were provided for testing for a normal mean assuming
a normal prior: the point is the user uses his own parameters for the prior, and a computer
code built for the purpose solves the relevant equation. Prior flexibility with respect to

the parameters of the prior is a must and is easily achieved.

Several critical questions deserve thinking. Is it important to have flexibility in the
form of the functional form of the prior as well? In principle, the answer has to be ’yes’.
Who knows what prior is deemed appropriate in a given problem? But it is quite plainly a
fact that the associated mathematics changes completely with a change in the functional
form of the prior. How many different problems are we going to solve with different priors?
How many different codes are we going to write? And then there is the issue that there
are dozens of standard statistical inference problems; are we going to write different codes
with different functional forms for all of these problems? And finally, is it self defeating? A

user in the real world most probably already has his/her classical sample size prescription.
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Confronted with prescriptions of different sample sizes for different kinds of priors, 1t is
very likely that the reaction will be one of resignation. It therefore appears to be natural
that in standard inference problems (which usually happen to be normal theory problems),
one writes a code for Bayesian sample sizes only for conjugate priors: the code will allow

flexibility in the hyperparameters of the prior to suit the need of the individual user.

After the initial article, DasGupta and Mukhopadhyay (1992), in which one sample
testing, multivariate testing (Hotelling’s T? problem) and confidence set construction and
some other minor problems were considered, in a subsequent article, DasGupta and Vi-
dakovic(1994) give codes for Bayesian sample sizes for the problem of one way ANOVA.
The model is thus the following:

Yij =B+ 7 +€,'j,€ijil;dN(0,a'2), 1<:<k, 1<53<n.

One wants to test Hy: 7 = ... =1 =0.

The user’s input are the following: parameters yo and o? for a normal prior on y;
parameter o2 for a common prior for 7y,...,7t; a number € > 0 which gives the desired
posterior accuracy (actually the accuracy is 1 — ¢;); a number § > 0 which is used to
determine preexperimentally a small set of samples of probability é§ outside of which the
given accuracy is preguaranteed; and finally a prior probability m for the null hypothesis.
The mathematics used to arrive at the equation that one needs to solve is distributional
theory of complicated quadratic forms. There are so many freely floating parameters as
was just described, that a comprehensive table is beyond anybody’s imagination. A code

was provided. The following is a typical table of sample sizes obtained from the code.

2
Example 17. For the comparison of k = 3 treatments, with %'2- = 1, the following sample
sizes are needed to ensure a posterior accuracy of 1 — & = .9 outside of a set of predictive

probability of .1, if an a priori probability of .5 is given to the null hypothesis of no effect.

o2 5 7 1 15 2
n 32 45 64 95 127

It is noticeable that they seem to be on the high side in comparison to standard sample
sizes available in texts and books. Is this surprising? On hindsight again, it is not. The

classical accuracy is an average accuracy. In the posterior Bayesian formulation of the
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sample size problem, one is asking for guarantee of accuracy simultaneously against all but
a minor set of samples. Furthermore, in the Bayesian formulation, one has uncertainties
at two levels: the data, AND the parameter. A combination of all of these result in larger

sample size prescriptions than the classical ones.

However, classical sample sizes have been around for a long time and will be around
for a long time into the future. It is a natural curiosity and question of simple pragmatism
to ask if adoption of the classical sample size will provide any kind of posterior accuracy
one can at all live with. If in a series of problems, evidence accumulates that classical
sample sizes are not really too bad as Bayesian sample sizes, it would be, realistically
and pragmatically, time to stop solving complicated mathematics problems and writing

involved mathematical codes for Bayesian sample sizes. The following is an example.

Example 18. We borrow an example from Montgomery (1984), in which it is wanted to
test if the percentage of cotton in a fiber has an effect on its tensile strength. 5 different
levels of cotton percentages are used and Montgomery evaluates the power of the standard
F test at a 5% level when the difference between some pair of means is one standard

deviation or more.

The following was found :

n Power

40 .8
50 .86
60 .93

The goal is to find the implication to a Bayesian of using these sample sizes. Assuming
an a priori probability of .5 for no effect (although it sounds as if in this problem, it should
NOT be .5), let us see the value of § implied by a specified accuracy 1 — e = .95. We
take 02 and 02 to be equal and to be 1.33 times the error variance. Then the value of §
is respectively equal to .131, .095 and .073 for n = 40, 50 and 60 respectively. The very
nature of the question we are asking is such that no cut and dried formulation or a cut
and dried answer is possible. It seems as though that a guarantee of very good posterior
accuracy can be given for most data by adoption of classical sample sizes geared towards..

a reasonable classical goal.
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The problem of determining Bayesian sample sizes has just begun to be looked at.
Standard problems, for most of which classical solutions are already available, do need
to be looked at, at least for a while. We need to understand if new research is generally
necessary, or classical solutions are fine. One final comment: the Bayesian problem could
also be formulated as an average accuracy problem. This will no doubt lead to smaller
required sample sizes; but to the strict Bayesian, such a sample size is not the correct one
to ask for. And, of course, there is the other side of the coin: if a classical practitioner used
the Bayesian sample size, what classical accuracy (power, etc.) s/he would be assured of?
This is transparent in the problems addressed so far: Bayesian sample sizes are typically

larger. The classicist would get better accuracy than usual with Bayesian sample sizes.

6. CONCLUDING REMARKS.

For various reasons, a behavioral evaluation of subjective prior Bayes rules is important
or interesting or both. Without a careful evaluation of the soundness of a method, there is
the clear danger of falling into the very tempting trap of writing a convenient set of assump-
tions. The danger, ironically, is more now with the advancement of computing technology.
It is very easy to start thinking as if computers can replace thinking,introspection,and the
human mind. In addition to these, questions like “what is the distribution of the Bayes
estimate” are questions of basic and fundamental scientific curiosity. The difficulty of
an answer only enhances the interest. There is a sea full of models and problems where
such investigations ought to be done for a variety of reasons: synthesis of the two major
paradigms is a good enough reason. Synthesis of Bayes and nonBayes statistics need not
be looked at with cynicism, suspicion or ridicule. Whenever different schools of thought
find, accidentally or through long and careful work, that significant common grounds exist,
science progresses. It is a positive step, a step forward. We hope this article does a little

to make a positive step.
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