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Abstract

In Bayesian model selection or hypothesis testing problems the Bayes factor (BF) cannot be used
directly if at least one of the priors is improper. Berger and Pericchi (1993) proposed the use of
the so-called Intrinsic Bayes factor (IBF). The IBF is a Bayes factor (BF) multiplied by a data
dependent “correction” term. The asymptotic behavior of both the BF and the “correction”
term will be described in the iid case. Intrinsic priors are priors for which the resulting BF is
asymptotically equivalent to the IBF. Asymptotic considerations lead to one (nested case) or
two (non-nested case) functional equations. These intrinsic equations involve Kullback-Leibler
projections. A geometrical interpretation and the general form of the solutions for the nested

case will be presented and illustrated through examples.
1. Introduction

In the Bayesian approach to model selection or hypothesis testing with at least one of the
parameter spaces being unbounded, it is typically not possible to utilize improper priors. The
reason is that the Bayes factor will be defined only up to a multiplicative constant. Different

solutions to this problem have been proposed. One of these is the BIC criterion of Schwarz [9]
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, based on asymptotics but without terms depending on priors. Smith and Spiegelhalter [11]
and Spiegelhalter and Smith [12] proposed that one choose a multiplicative constant in the
Bayes factor using an (imaginary) minimal training sample. Review of other methods can be
found in Berger and Pericchi [1] . In the same paper Berger and Pericchi [1] propose a new
method to determine the multiplicative constant. Consider a problem of hypothesis testing Hy
vs. Hy, where X;,..., X, is an iid sample from a distribution with density f(z|6) with respect

to, say, the Lebesgue measure, and H; states that § € ©;, ¢ = 0,1. Assume that we want

N

to use improper priors ;' (-). Usually there exists a minimal nonnegative integer k such that

Jo, f(@1,. .., zk|0)wN(0)dd < oo for i =0,1. Then posteriors 7¥(-|z1,...,z4) can be used as

proper (data dependent) priors for further analysis and we obtain

f@l F(Xkg1reaXn|0)nd (6] X1,..., X1 )do
f@o F(Xkg10enXn|0)md (01X 1,.... X £ )db

Bio(Xis1s- - Xnl X1y - -, X5)

fel F(X1sees Xn|0)nN (6)d0 f@o F(X1,en Xk10)mdY (8)dO
f@o (X1, Xn|0)nlY (6)d6 fel F(X1pen X |6)m]Y (6)d6

= B{YO(XM e ,Xn) B(j)\’ll(Xl, . ,Xk)
The first term looks like the Bayes factor for the full data , and the second can be treated as a
data dependent multiplicative constant. Since it is impossible to decide apriori which subsample
of Xy,...,X, of size k should be chosen, Berger and Pericchi [1] propose to use in computations

different types of averages of BJ|(Xj,,...,Xi,) over all subsamples of size k. The Bayes factor

modified in this way is called the intrinsic Bayes factor (IBF), Bf, = B{YO ¢ , where ¢ =

correction term. If both priors 7V(-) are proper then “correction term” = 1 and intrinsic Bayes
factor is the same as the Bayes factor. The definition of the intriﬁsic Bayes factor will be given
in Section 2. One of the justifications of the IBF method is the asymptotic correspondence of
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the intrinsic Bayes factor to the Bayes factor obtained from so-called intrinsic priors. The idea
of intrinsic priors will be presented in Section 3. In a search for intrinsic priors, asymptotic
considerations (Section 4) lead to a system of functional equations (called intrinsic equations)
with intrinsic priors as their solutions. The system of intrinsic equations involves Kullback-
Leibler projections. Intrinsic equations are discussed in Section 5. The main goal of the paper

is to present a geometric interpretation of the IBF method.
2. Preliminaries

Let us assume the following situation. An ¢id sample Xi,..., X, is available. All X;’s are
distributed according to an unknown cdf G(z) with density g(z) with respect to the Lebesgue

measure. Consider the model selection (hypothesis testing) problem.
A402 f0($|00), 90 € @0 vSs. M1 : fl(l'wl), 01 € @1

Assume vague prior knowledge about parameters. The (conditional) prior densities 7¥(-),
i =0,1 are used and at least one of them is improper. Let mM(zy,...,z;|M;) denote marginals
given model M;, mN(z1,...,m|M;) = [o, fi(z1,...,z|0:)7N (0:)d0;. Let «N(0i|zy,...,z;) de-
note the posterior density of 6; on ©; given the data zi,...,z;, «N(bi|z1,..., 21, M;) =
fi(z1, -, 210:)7N(0;)/ml (z4,...,:|M;). The letter k will be reserved for the minimal non-
negative integer with the property that both posteriors =¥ (6;|z1, . . ., zi, M;) are proper. Berk [2]
observed that posteriors will be proper also for values of [ > k. Let B{\,’O(xl, ..., &y) denote the

Bayes factor for priors 7 (-),73'(-) and data 21, ...,&n, Blo(z1,--.,2x) = m] (-|My)/m{ (-| Mo).

Then the intrinsic Bayes factor (IBF) is defined as

Bll,o(:vl, ey Ty) = Bﬁo(wl, e ,:cn)Averagelsll<.__,kSnBéYl(:vzl, ey T1,)
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where the average is taken over all subsamples of the data of size k. If we take the arithmetic

average we get BlAf, - the IBF with arithmetic correction term (AIBF)

ﬁ Z B(])\,Il(mln-'-)xlk)
k

1<l <...<l<n

In the case of the geometric average we get Bfé - the IBF with geometric correction term (GIBF)

L
7T
k

I1 Bi\{( Xy, X

1< <..<1x<n

Berger and Pericchi [1] discuss also computational simplifications of the formulas.
3. Intrinsic Priors

One of the motivations for use of the IBF was stated in the Introduction. Namely, the correction
of the Bayes factor is needed if improper priors are used. Suppose that we can find priors 7;(+),

¢ = 0,1 such that we have the following expansion

0wl (0
T3 (61)mo(0o)

(1+0(1))
where, as in Berger and Pericchi [1], §; is a maximum likelihood estimator (MLE) of the appro-
priate 6; and o(1) — 0 in probability under M; and My, as n — oco. Recall that BII,O = B{\,’o c,

where ¢ = correction term, so if we want to find intrinsic priors, we should have asymptotically

B1I,o ~ B . This would lead to
(1 4 o(1)) = correction term

The natural tendency is to take the limit of both sides when sample size n — oo, but such limits
would depend on a true value of the parameter. So practically we have to look at two limits,
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one when M is the true model, and one when M is true. In the next section we will identify
the limits for the MLEs and the correction terms. Here we would like to mention why the above

asymptotic expansion is a reasonable assumption.

N 71(61)

Jo, fil@r mmalt)m (@)t Jo, Fi(@15msnlbr)m] (01) X or5 201
- N 7o (60)

j;)c' f0($1 1---yxn|00)7r0(00)d90 f@o fo(.’L‘] ..... z‘nleo)ﬂ'o, (eo)md%

< m@)rd ) pN
- W{V(Hl)ro(%) 1,0

provided that m;/7, ¢ = 0,1 can be treated as constants in places where likelihoods have peaks
as n — oo. For further details see examples in Berger and Pericchi [1]; also Haughton [5] ,

Haughton and Dudley [6] and Erkanli [4] have relevant material.
4. Asymptotics

4.1 MLE

In order to get a more precise definition of intrinsic priors we have to look at the asymptotic be-
havior of the MLEs and of the correction term as n becomes large. For the MLE we rediscovered
an observation of Huber [7] that the Wald [13] proof of consistency of MLE’s can be applied to

our situation with minor changes. We have the following

Theorem 1 Under classical Wald [13] assumptions with the only differences that the “true”
distribution, say G(z), is outside the family {f(z|0), 0 € O} and adding the following condition
(instead of proving Lemma 1 of Wald) (3! 6* € ©) Eglog f(X|0*) = supsee Eclog f(X|0) we

have 8, — 0*, G- a.s. asn — 0.

Proof. Exactly along the lines of Wald [13], changing every occurrence of Wald’s true f(z|6o)

to G(z). O



The problem of existence of such 8* will be discussed elsewhere. For now it seems that the
minimal requirement is convexity of O, if we restrict ourselves to exponential families with
canonical parametrization or to normal families with mean value parametrizations.

Let us define Kullback-Leibler projections.

Definition 1 Let f(z|0), 0 € © be a family of densities. Let g(z) be another density. Then 6*

is a Kullback-Leibler projection of g(-) onto © iff 0* is an element of © such that
Eglog f(X|07) = sup E,log f(X10)
provided that such 0* is unique. In such a case we will write Pg(g) = 6*.

The definition implies that Po(g) is the limiting value of the MLE restricted to ©, if samples
are obtained from g(z). Of course consistency of MLE’s gives Po( f(:|60) ) = 6o if ¢g(-) = f(:]60)
. If g(-) is outside {f(:]0), 6 € ©}) the MLE will approach the maximizer of E,log f(X|6).
Providing that F,log g(X) exists, we get also that Pe(g) is a minimizer of E, log[g(X)/f(X]0)]
which is just Kullback-Leibler divergence.

4.2 Correction Terms

For the correction term in the iid case we have the following result.

Theorem 2 Let X3,..., X, be an iid sample from the distribution with cdf G(z). Let h 4(X1,...,Xi) =
BéYl(Xl,...,Xl) and h(X1,..., X)) = logBé\,’l(Xl,...,Xl) where k is the minimal training

sample size and n > 1> k and k. Then

Z hg( Xy Xi) = Eghy(Xa,..., X)) and

n . 3
1) 1<u<...<y<Ln



exp ﬁ Z {hg(Xil,---,Xi,)} _’eXPEG[hG(Xla---aXI)]

! 1<4 <. < <n

G - a.s. as n — 00, provided that the limits exist.

Proof. It is simple application of U-statistics theory. Both functions Ap and h are symmetric
with respect to the permutations of the arguments. Applying standard a.s. convergence results
for U-statistics proves the theorem. O

Theorem 2 describes the a.s. behavior of the correction terms. Using U-statistics theory, as in
Serfling [10] or Lee [8] , it is easy also to obtain a Central Limit Theorem for both forms of the

correction term.
5. Intrinsic Equations

Let us come back to the asymptotic expansion for the IBF and intrinsic priors. If model (hy-
pothesis) M; with the value of the parameter ; is true, then using Theorem 1 and Theorem
2 and MLE consistency we get él — 0y, éo — Po,(61) and (correction term) — Hy(6;) a.s.
f1(X6,), where Hy(-) is one of the limits in Theorem 2 (arithmetic or geometric) with cdf G(z)
corresponding to the density fi(z|01). Instead of the somewhat cumbersome Pg,(6:) we will

write Py(#;). Assuming continuity of the priors we get

m1(61) 7 (Polf1])
7V (01) wo( Pol61])

= H1(‘91)

Similarly if model My with the parameter value 6 is true we obtain

m1(P1[6o]) 7§ (8o)
1 (P1[6o]) mo(6o)

= Ho(bo).



To simplify notation we will denote by ©F = m;/x for i = 0,1, the relative (to non-informative)
intrinsic priors. So intrinsic priors are the solutions of the system of functional equations
mi(01) = w§(Pol01])Hi(01)
15(00) = m{(Pi[6o])/Ho(bo)
Let us see what happens in the case of nested models, say @9 C ©;. Then P;(6p) = 6p. Also it

is not hard to see that in this case Ho(fo) = Hi(6p). So we obtain just one functional equation
71(01) = 75 (Po[61]) H1(61).

The second one is just restrictiqn of the first equation to ©g. The general form of the solution is
m§(00) = u(bo)
(01) = w(Pol6:])Hi(61)
where u(-) is an arbitrary nonnegative continuous function. So on the smaller space the intrinsic
priors should satisfy wf(6p)/7{(00) = H1(6o) = Ho(6s) The second equation says that on the
level sets Py(6;) = constant we have 72(6;) oc H;(0;). In the non-nested case situation is much

more complicated and will be discussed elsewhere.
6. Examples

We will present three simple examples illustrating different features of the IBF method. The first
two examples are taken from Berger and Pericchi [1] but they are used to emphasize different
points.

Example 1. (lack of uniqueness ). Let Xj,..., X, be an #d sample from N(8,1).

My :0<0vs.M;:0€R
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We will use (conditional) priors 7} =1 and x{’ = 1. Simple calculation for the Arithmetic IBF

leads to Hy(8) = ®(—0/+/2), where ®-cdf of N(0,1). Kullback-Leibler projections are given by

6 if6<0
Py(8) =

0 otherwise

The general solution of the intrinsic equations is

mo(0) = u(f)for 8 <0
u(0)®(-0/v2) if6<0
o - | e
u(0)®(—0/+/2) otherwise

Berger and Pericchi [1] propose the solution
70(0) = 1=mn}(0)for§ <0
m(0) = ®(—0/V/2)
Another reasonable solution would be mo(8) = 1/®(—8/+/2) ,which corresponds to 71 = 71’ on

Oy and results in

mo(f) = 1/@(—0/\/§) for § <0

1 ife<0
771(9) =

28(—0/\/2) otherwise

Example 2. (Kullback-Leibler geometry structure). Let X;j,..., X, be an iid sample
from N(y,o?).

My:p=0,0>0vs. My:p€eR,o0>0
We will use (conditional) priors 73 (¢) = 1/ and x{ (0) = 1/o. Also Hi(p,0) = E{(X1 —
X,)?/[V/7(X2 + X2)]} for the Arithmetic IBF. The Kullback-Leibler projection is Fo(,0) =
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V112 + ¢2. The general solution is

mo(0) = u(o)/o

T, 0) = u(Vu?+o?)Hi (s 0)/0
Berger and Pericchi [1] select v = 1. The Kullback-Leibler geometry of the problem indi-
cates that m1(y,0) < Hi(p,0)/o along the level sets of projection which are in this case circles

V112 + 0% = const.

Example 3. (non-existence of intrinsic priors in simple non-nested case ). Let

Xi,...,X, be an #id sample from N(6,1).
Hy:0<0vs. Hi:0>1

We will use (conditional) priors 7}’ = 1 and 7 = 1. The limiting version of the AIBF does not
exist. The expected value of ®(—X)/®(X —1) does not exist under one of the hypothesis. Under
another hypothesis the reciprocal of this expression has infinite expected value. But we have
H;(0) = exp{Ens,1)log[®(—X)/®(X —1)]} for the Geometric IBF. Kullback-Leibler projections
are Py(61) = 0 for §; > 0 and P;(6p) =1 for 6 < 0. In order for the intrinsic equations to have

solutions the following consistency conditions should be satisfied
7T1(1) = Wo(O)Hl(].)
mo(0) = mi(1)/Ho(0)
which implies Hy(1) = Ho(0), but this is not satisfied so intrinsic equations do not have a

solution.
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7. Conclusions

The IBF method is an attractive new approach to model selection and hypothesis testing prob-
lems. One can look at the IBF as a way of scaling the Bayes factor when improper (conditional)
priors are used. Another justification of the method is the existence of the intrinsic priors for
which the resulting Bayes factor is asymptotically equivalent to the IBF. In the nested case such
priors can be found. The intrinsic priors along the level sets of the Kullback-Leibler projections
are proportional to Hj(6;), the limiting value of the correction term. The situation for non-
nested case requires further studies and will be dealt with elsewhere.
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