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1. Introduction

Let {X(t),t € Z"} be a random field in n dimensions, with n € Z*%, i.e., a collec-
tion of real valued random variables X(t) defined on a probability space (£, A4, P), and
indexed by the variable t = (¢,...,¢,). The random field {X(¢)} will be assumed to
be homogeneous (stationary, shift invariant), and to possess zero mean, i.e., EX(t) =0,
autocovariance function R(s) = X(¢)X(t + s), for s = (s1,82,...,8,) € Z", and the

spectral density function defined as

1

f(w) = == 3 R(t)e™™?,
(2) teZZ"
where w = (ws,...,w,) € [—7,7]", and (w-t) = Yi; w;t; is the inner product in

n-dimensional Euclidean space.

After observing a finite stretch of data, i.e., {X(¢t),t € En}, where Ey is the rectangle
consisting of the points ¢ = (t1,%2,...,%,) € Z" such that 1 < ¢, < Ny, and where
N, for k = 1,2,...,n are some positive integers, the problem at hand is estimating
the spectral density f(w) at some predetermined point w. To get an asymptotically
consistent estimator of f(w) one can employ the original time series idea of M. S. Bartlett
(1946) that can be described as follows: choose integers M, ..., M, (that may depend
on Ny,...,N,) and consider all rectangles consisting of points ¢ such that 1 < u; <
tr < Up < Ni, where the integers ug, Uy satisfy Uy — ux + 1 = My, for k = 1,2,...,n;
calculate a periodogram from each of these smaller rectangles, and then average all such
periodograms to obtain an estimator that, under some standard regularity conditions, is
consistent for the spectral density function.

Analogously to the time series case (cf. Priestley (1981)), it can be shown that
Bartlett’s estimator can be written in an approximate (but asymptotically equivalent)

form as the lag-window spectral estimator given below:



Fiw) = o & MR, (1)

sezn
where R(s) are the (biased) sample autocovariances defined by R(s) = N=1 ¥ e z» X (£) X (t+
3); in the above, N = [Ii-; N;
" X(t) ifteE
X(t) = { (t) ifte B
0 else

and the Bartlett lag-window in n dimensions is defined as

,
= (a-Bha-ld)..q - b)) ®

where (z)* = max(z, 0) is the positive part function.
Nevertheless, in order to talk about consistency in this n-dimensional setting some

clarifications are appropriate; to this effect we define Condition Cp below.

Condition Cy: There are constants c*,c, > 0 such that ¢, < %z < e < %: < c*, for

anyi,k=1,2,...,n, and M =[]", M; — o0 as N =[], N; — oo, but with % — 0.

Under Condition Cp and some moment and weak dependence conditions it can be shown

that
Bias(fy(w)) = Efgy(w) — f(w) = O(M™"), (3)

and
Var(fiz(w)) = O(M/N); (4)
see, e.g., Theorem 2 and Corollary 2 in Politis and Romano (1993)). Note that although
the M/N order of magnitude of Var(fE(w)) is quite typical for all lag-window spectral
estimators (see, e.g., Rosenblatt (1985), Zhurbenko (1986)), the order of magnitude of
Bias(fB(w)) is unnecessarily large, and this results into poor MSE (Mean Squared Error)

performance for fB5(w). For example, spectral estimators constructed using different



lag-windows that satisfy some conditions and are supported on the set {s such that
maxg |sg|/My < 1} have bias of order O(M~%"); cf. Yuan and Subba Rao (1993).

In the present paper, a new class of lag-window spectral estimators for random fields
will be proposed possessing very low asymptotic bias in cases where the true spectral
density function is smooth enough. The new estimators are related to the Bartlett
estimator in that they are essentially obtained by a linear combination of two Bartlett
estimators with different bandwidths. The estimators are defined in Section 2, and their
performance is evaluated in Section 3; Section 4 consists of some practical comments,

and the Appendix contains all technical proofs.



2. Spectral estimators based on flat-top lag-windows

Since the early papers by Parzen (1957a,b) it has been well understood that the
asymptotic behavior of a spectral estimator hinges on the behavior of its lag-window
around the origin s = 0. So we define another lag-window A of ‘pyramidal’ shape by

Jsel\ ¥

Am(s) = (1 - m,?,xm) ; (5)
note that equation (5) makes sense even if the M}’s are not necessarily integers. It is
apparent that Axr(s) 2~ AB(s) if s is in the neighborhood of zero, or equivalently, for any
s, provided ming M}, is big enough. The lag-window Aps maintains similar asymptotic
properties’ to AP/ (s) albeit it is easier to work with; in Figures 1 and 2, the lag-windows
AB (s) and Ap(s) are plotted for comparison in the case n = 2, and with M; = 30,
M; = 20.

Let c be a constant in (0,1), and let my = cMg, for £ = 1,2,...,n; also let A, (s) =
(1 — max J;—’;l)+ be the corresponding pyramidal lag-window. We now introduce a ‘flat-

top’ lag-window by defining
AMm( )—_1 M( )____c_ ~Am(s) (6
m(s ] c/\ $) 1 c)\ s). )

The lag-window Aps.(3) is designed to be ‘flat’, i.e., constant, in a neighborhood of zero,
like a pyramid with its top chopped off; see Figure 3 where Apsn(s) is plotted in the case
n = 2, with My = 30, M; =20, and ¢ =1/2.

A family of flat-top lag-window spectral estimators {f.(w);c € (0,1)} is now defined
by

1

Gy 2 Mm(s)R(s)e™ 0, (M

s€Zn

fc(w) =

}Compare equations (3) and (4) to (9) and (10) in what follows.



where R(s) = NR(s)/ (ITi=,(Ni — |sk| + 1)) are the unbiased? sample autocovariances.
Observe that

A 1 =« c z

fe(w) = 7—fu(w) = T— fm(w), (8)

where fyr(w) = # Tsezn Ar(s)R(s)e= ), and f, (w) = W Y sezn Am(s)R(s)e~tw2);
in other words, f.(w) is just a linear combination of two estimators of the same type, but
having different bandwidths. As was previously alluded, the estimator fM(w) has similar
asymptotic properties to the Bartlett estimator fﬁ(w); in particular, under Condition

Co and some moment and weak dependence conditions it can be proved that
Bias(fu(w)) = O(M /™), (9)

and

Var(fM(w)) = O(M/N). (10)

It is now easy to see that Var(f.(w)) = O(M/N) as well; this follows because
Var(fn(w)) = O(c"M/N) = O(M/N), and because Cov(far(w), fm(w) = O(M/N)
by the Cauchy inequality. Since the M/N order of magnitude for the variance is not
reduced, achieving a favorable MSE performance for fc(w) hinges on the order of magni-
tude of its bias. In the next section it will be shown that fc(w) has dramatically smaller
bias than the Bartlett estimator; in some sense, fc(w) is ‘bias-corrected’, i.e., frm(w) is
used to eliminate a good part of the bias of fyr(w) in equation (8), to render a less biased

estimator.

2Note that fi(s) ~ IAZ(s) if max; |s;| is small compared to the N;’s; however, by Condition Cy, the M;’s
are of a smaller order of magnitude than the N;’s, and thus it does not make much difference whether
we use R(s) or R(s) in equation (7). There is another reason that sometimes points to using £(s) in a
sum of the type of equation (1) or (7), namely that so doing yields an almost surely nonnegative spectral
estimator provided the lag-window has an everywhere nonnegative Fourier transform; see, for example,
Politis and Romano (1992). Since this is not the case with the lag-window Aps,m, we have opted to use
the unbiased R(s) to avoid an unnecessary complication; see Section 4 for a further discussion on the

nonnegativity issue.



3. Performance of the flat-top lag-window spectral estimators

In this section, the performance of the flat-top lag-window spectral estimators will

be assessed under a range of weak dependence conditions that are defined in what follows.

Condition Cy: There are positive constants B, ¢, cs,...,c, and a constant K > n such

that R(s) < B(max; Jz_:_'l)—K'

[EH|

Condition Cy: There are positive constants K, B, ¢1,¢ca,. . ., ¢, such that R(s) < Be Kmaxig
Condition Cs: There are positive constants ¢y, ¢z, . . ., ¢, such that R(s) = 0, if max; J%:—l >1.

Conditions C; to C5 are some of the most commonly used weak dependence condi-
tions based on second moments alone; they are given in increasing order of strength, i.e.,
if Condition C; holds, then Condition C; holds as well, and if Condition C3 holds, then
Conditions C; and C; hold as well. Even under the weakest of the three Conditions,
namely C}, it is easily seen that }°,cz» |R(s)| < 0o, which implies that the spectral den-
sity function exists and is continuous. In fact, Conditions C; to C5 can be interpreted
as different conditions on the smoothness of the spectral density f(w); cf. Minakshisun-
daram and Szasz (1947), Wainger (1965), Katznelson (1968), Butzer and Nessel (1971),
Stein and Weiss (1971), and the references therein.

Note that the introduction of the constants ¢;, ¢y, . . ., ¢, allows for the possibility that
the autocovariances tend to zero at different rates along the different directions in Z";
it 1s quite natural that the construction of the spectral estimator i.e., the choice of the
M;’s, will reflect this fact. In general, it would seem preferable that a large M; should
be used for direction j if the corresponding c; is large as compared to ¢, ¢cp,. .., ¢y, i.€.,
in a direction along which the autocovariance decays more slowly; hence, a reasonable

choice for the M;’s would satisfy Condition Cys as follows:

7



Condition Chs: %‘- = &, for 1,5 = 1,2,...,n, where the c;’s are the same positive
J ]

constants appearing in Conditions Cy, Cs, or Cs.

Obviously, just assuming l}\% — f;— would be equivalent to Condition Cjs in terms of
asymptotic considerations alone, and would allow the use of integer values for the M;’s.

M

Nonetheless, in case that either 37 = < or %‘
3 ]

L - f;, the task of properly choosing the
M;’s for i = 1,2,...,n, reduces to choosing just one number, namely their product M;
more on the subject of choosing M will be found in Section 4.

Under different combinations of conditions, the performance of the family of flat-top

lag-window estimators { fc(w); ¢ € (0,1)} is quantified in the sequence of theorems that
follows.
Theorem 1 Under Conditions Cq, C1, and Cyuy, it follows that
sup | Bias(f(w))| = O(M*~%).
we[—m,7]"
Let w be some point in [—x,7|*; under further assumptions sufficient to ensure® the
validity of equation (10), and letting M ~ A,N™"?K=7) for some constant* A, > 0,

the asymptotic order of the Mean Squared Error of fc(w) is given by MSE(fc(w)) =
O(NZ(n—K)/(2K-—'n.))'

Theorem 2 Under Conditions Co, Cy, and Cpr, and by letting M; ~ dc;log N;, for
i1=1,2,...,n, where d is a constant such that d > n/(2K), it follows that

. a _ o (log N)* 1 Y 1
we?}gﬂ]nles(‘fC(w))l—o( /NiK )= (\/]Tf)

3There is a variety of different such sufficient conditions; see, for example, Rosenblatt (1985),

Zhurbenko (1986), Politis and Romano (1993), or Yuan and Subba Rao (1993).
4A,, may depend on w because in general the variance of a lag-window estimator of f(w) is asymp-

totically proportional to (M/N)f?(w).



Let w be some point in [—m,w|"; under further assumptions sufficient to ensure the

validity of equation (10) it follows that MSE(f.(w)) = O(%):)

Theorem 3 Assume Condition C5 and that N — oo in such a way that there are positive
constants c,,c* such that ¢, < %‘: < c*, for any i,k = 1,2,...,n; also assume that the
m;’s and the M;’s are constants satisfying M; > m; > ¢; for t = 1,2,...,n. Then it
follows that

sup | Bias(f(w))| = 0.

wE[~n,7]"
Let w be some point in [—m,7|"; under further assumptions sufficient to ensure the

validity of equation (10) it follows that MS'E(fc(w)) = O(1/N).

It is should be noted at this point that fc(w) is not only consistent for f(w), but its
rate of convergence —as measured by the MSE- is very fast. Under Condition (4, i.e.,
if the autocovariances decay like a power, the rate of convergence® of fc(w) depends on
how fast the autocovariances decay, or equivalently, on how smooth the true spectral
density is, e.g., how many derivatives it possesses. In other words, fc(w) ‘adapts’ to
the smoothness of the spectral density under consideration, and its performance is seen
to improve if the spectral density is more favorable, i.e., smoother. For comparison,
the standard spectral density estimators studied in Yuan and Subba Rao (1993) do
not share this property since, as mentioned in the Introduction, their bias remains of
order O(M~%/™) even though the true spectral density might possess a great number of
derivatives.

In essense, the O(M~2/") order of the bias of standard estimators is intimately con-

nected with insisting that the lag-window estimator is surely nonnegative; cf. Priestley

5In the case of a time series, i.e., n = 1, the rate of convergence of fc(w) is optimal as can be seen by
Samarov’s (1977) lower bound for the precision of a spectral density estimate. However, an analogous
lower bound seems to be unavailable for the case of a random field, i.e., n > 1; see also Rosenblatt

(1985, p. 146).



(1981). The estimator fo(w) is not necessarily nonnegative but in giving up nonneg-
ativity it gains accuracy. In particular, if K = n + 2, the Bias(f.(w)) = O(M~3/")
which is the order of bias of the standard nonnegative estimators, whereas if K > n + 2,
Bias(f.(w)) = O(M®™=K)/m) = o(M~?/). Note that if K is very large, i.e., the spectral
density is very smooth, the rate of convergence of fc(w) corresponding to the optimal
choice of M ~ Aj, N/?X=") can be very close to v/N. In the case of exponential decay of
the autocovariances i.e., under Condition C, fc(w) is \/Im-consistent, whereas
under Condition Cj, i.e., if {X(¢)} is essentially a Moving Average of an uncorrelated

random field, fc(w) is actually exactly v/ N-consistent!

10



4. Practical comments and conclusions

4.1. The question of nonnegativity. An issue that was briefly mentioned in
Section 3 concerns the nonnegativity of spectral estimators; since f(w) > 0, it is natural
to desire that its estimator be nonnegative as well. However, fc(w) is not guaranteed
to be nonnegative as can be intuitively seen by looking at the expression for fc(w) as a
difference in equation (8).

Nevertheless, the solution to this problem is quite obvious: if in a practical situation
fc(w) turns out to be negative, the practitioner would naturally prefer to use 0 as the
estimator of f(w), rather than fc(w) itself. In other words, the practitioner would use

the estimator f(w) = max(f,(w),0). It is easy to show that
MSE(ff (w)) < MSE(f(w)),

from which it follows that fc'" (w) inherits the favorable asymptotic properties of fc(w);
as a matter of fact, fc+ (w) will be equal to fc(w) with probability that tends to one,
and in such a way® that E(ff(w) — f.(w))? < 2MSE(f,(w)); cf. Politis and Romano
(1992). Since the MSE(f.(w)) is shown to be of very small order in Theorems 1, 2, and
3, it is apparent that f:‘ (w) is a very accurate estimator of f(w) that has the additional

desirable property of being nonnegative.

4.2. Selecting the design parameter c. In practice, only one estimator from the
family {f,(w);c € (0,1)} or {f+(w);c € (0,1)} will be used to carry out the required
estimation of f(w), i.e., one must choose the parameter c. Note that to address the
problem of choosing ¢ properly may require more careful asymptotic considerations than
looking at the rate of convergence and the order of magnitude of the MSE of fc(w) since

the latter do not depend at all on ¢ as long as ¢ € (0,1). As it can be shown (cf. Politis

SUnder some additional assumptions it can actually be shown that E(ff(w) — f.(w)?) =

o( MSE(f.(w))).

11



and Romano (1992)), the choice of ¢ actually influences the proportionality constant
implicit in the relationship Var(f,(w)) = O(M/N), and is also expected to influence
the proportionality constant in the relationship Bias(f.(w)) = O(M*~%) in Theorem 1;
therefore, the choice of ¢ may influence the exact MSE of fc(w), although the order of
magnitude of the MSE remains unchanged.

Nevertheless, it is quite intuitive that values of ¢ near the extremes 0 and 1 should
be avoided for the following reasons: in the extreme case where ¢ = 0, f <(w) actually
reduces to far(w) which has unfavorable bias properties (see equation (9)), while in the
extreme case where ¢ = 1 the lag-window Az, (s) becomes rectangular (see equation
(13)), and this again results into poor bias performance since the corresponding spectral
window (the Fourier transform of Aas,m(s) with m = M) has many prominent sidelobes
that promote ‘leakage’; more details in the special case n = 1 can be found in Politis and
Romano (1992) where the simple choice ¢ = 1/2 is recommended, and shown to perform

well in simulated experiments.

4.3. Choosing the bandwidth parameter M using the data. While a perma-
nent choice of the design parameter ¢ can be made once and for all and used in connection
with different data sets, the bandwidth parameter M must be chosen in a data-driven
way for optimal performance in applications; see Woodroofe (1970) for an example in
the related context of probability density estimation. We will now focus on choosing M,
assuming that the parameter ¢ has been selected already; note that in view of Condition
Cwu, only the product M = [];-; M; must be specified, since the individual M;’s should
be proportional to the constant ¢;’s appearing in Conditions C;, Cs, and Cs.

The key to this difficult practical problem lies in noting that although Condition Cs
is the strongest of the three Conditions C, Cs, and Cj3, even under Conditions C; or Cj,
Condition Cj is seen to still hold approzimately; in other words, if one of Conditions Cy

or C; holds, it follows that there are positive constants ¢y, cs,. .., ¢, such that R(s) ~ 0,

12



if max; Jz—:l > 1.

Hence, we may focus on Condition C5 and its corresponding Theorem 3; note, how-
ever, that Theorem 3 gives an exact” prescription for an optimal choice of the the m;’s in
terms of the ¢;’s, namely m; = ¢;, for ¢ = 1,...,n. Therefore, since M; = m;/c, the M;’s
are also exactly prescribed. Note that in any practical situation the constant c;’s are
unknown as well, but they can be estimated from the data; for example, if is observed
that fi(s) ~ 0, if max; lz—:-l > 1, then the ¢;’s are estimates of the ¢;’s in Condition Cs.

To summarize, the following heuristic procedure is suggested for choosing the M;
bandwidths: after having picked the parameter c, let M; = ¢é;/c, fori = 1,...,n, where
the ¢;’s are some estimates of the c;’s appearing in Condition C3. Although this simple
empirical guideline has been shown to perform well in simulated experiments in the time
series case (Politis and Romano (1992)), it goes without saying that it does not address
the problem fully; the difficult problem of optimally choosing the bandwidth of fc(w)
is still open for more work, including a theoretical analysis of the performance of fc(w)

and fc'" (w) when the bandwidth is chosen in such an adaptive, data-driven fashion.

7 Actually, Theorem 3 states that by choosing m; > ¢;, i = 1,...,n, zero bias is achieved; but since
the variance of f.(w) is proportional to M/N, it is obvious that to reduce the MSE we should choose

the m;’s as small as possible, i.e., m; = ¢;.

13



Appendix: Technical proofs.

PROOF OF THEOREM 1. Let w be any point in [—x, 7] and note that
Bias(fo(w)) = Efe(w) — f(w)

Y Mam(s)ER(s)e™ ) — Z R(s)e=i2)

SEZ™ ( sGZ"

(2 B g_‘z,"(/\Mm(S)—1)3(3)6 ), (11)

(W

where it was used that ER(s) = R(s). Now consider the following partition of Z,
namely Z" = UL, (A,- U /L-), where A; = {s such that A%I': = maxk lﬂ%‘[}, and A; = {s
such that 'ﬁ: = maxX JXT""I} Note that the A;’s and A;’s are essentially disjoint except for
potentially some points on their boundaries, e.g., in the case where My = 3 = maxg %‘;‘l,
etc.; we could construct disjoint versions of the A;’s and A;’s by letting A} = A;, A% =

— (A2 N A7), A5 = A3 — (A3 N (A3 U A})), and so on, but this is quite unnecessary
because the contribution of the boundaries on a sum of the type of (11) is negligible.

Therefore, we can write

Bzas(fc(w))~z+z+ +Z+Z+Z+ +Z (12)

An A
where for y =1,2,...,n
1 :
= (Amm(s) — 1) R(s)e w9
%= e 3 (i)~ RO
and

- Qagym(s) = 1) R(s)e™™ ).

seA

Aj

Z ( )n
Note that Aprm(s) = Aam(—s), as well as R(s) = R(—s), for all s, and therefore

24; = X4; for 5 =1,2,...,n. We now proceed to analyze in detail the term "4, , the

analysis of the terms }_4,,...,3 4, being similar.

14



Observe that -4, =3 A+ az+ Y4, where
1

2= Gy

A

> (agm(s) — 1) R(s)e™?),

sEA1 nB,-

for j = 1,2,3, and where B; = {s such that max |sg|/m, < 1}, B, = {s such that
maxy |8k|/mr > 1 and maxy |sg|/Mi < 1}, and Bs = {s such that max |sg|/M} > 1}.

We can now have a more transparent formula for the lag-window Aps(s), namely

1 ifSEBl
Mm(s) = { 3l ifs€ AN By orifs € 4,0 B (13)
0 ifSEBg,.

Since Aprm(s) = 1, for all s € By, it follows that 3 at = 0. Similarly, AMm(s) = 0,
for all s € B3, and therefore

s B Hz—Z had g1 S1\_K __ n—-KYy _ 1__
1 G 5, RIS g ettt 5 G = 04y = o),

where Conditions C) and Cus were invoked to bound the above sum. In particular, the
following argument was used and will be used again in the sequel: since s € A, it
follows that s;/M; = maxy [sk|/Mj; but by Condition Cpy, it is also true that s,/c; =
maxy |sk|/ck, and hence the bound on R(3) is in accordance with Condition Cj.

Similarly, note that

1
I%l (21

> (Anm(s) = 1)R(s)e™)|

s€EA1NBy

1

S$1—MmMy 81,k
< R = (==
= (2m)" sGAlZnBz Ml l (&)l < (2 " sezr:usz M, ~ ml(cl)
M
1'[ M;) Y sTK = o(MpK) = oM %),
(27r)n =2 s1=mq

Hence, -4, = O(M 1”7), uniformly in w; a similar analysis gives 3,4, = O( Ml‘%),
uniformly in w, for all j = 1,2,...,n. Therefore, Bias(f.(w)) = O(M~%), uniformly in

w, as we were supposed to prove. Finally, note that by the discussion after equation (10),

15



it follows that Var(f.(w)) = O(M/N); hence, the asymptotic order of the MS E(f,(w))
is O(N?(=K)/(2K-n)) 45 stated in the theorem. Q.E.D.

PrOOF OF THEOREM 2. The proof of Theorem 2 is based on the decomposition

(12) analogously to the proof of Theorem 1. In a similar fashion, we write ¥, =

24t + 242 +2 043, where 3041 = 0 as before.

However, now we have

1
|§;I ~ (2

> (Agm(s) = D)R(s)e )|

S€EAiNB;

S1— My —K%ll — n—1_,—-KMj /c;
) M1 |R( )| < (2 N O(M7 e ),

s€A1NB;

and similarly

I301=0 S5 site ) = o(Myte K M)

31—M1
Note that the bounds on both 242 and 43 are uniform in w. A similar analysis
gives Y4, = O(M'~ ne™ J) uniformly in w, for all j = 1,2,...,n. Now letting
M; ~ dc;log N;, for ¢t = 1,2,...,n, it follows that

ias(f.(w))] = (logN)" -
wefll,fﬂnlB (fe(w)l = O( iR ) = o \/—)

Since the Bias(f.(w)) is of smaller order than the Var(f,(w)) = O(M/N ), it now follows
that MSE(f.(w)) = O(M/N) = O(%ﬁ) as claimed. Q.E.D.

PROOF OF THEOREM 3. The proof of Theorem 3 is again based on the decomposition
(12) presented in the proof of Theorem 1. As before, 3 a = 0, for any j = 1,...,n;

however, we now also have Y~ 42 = Y~ 43 = 0, because R(s) = 0 for s outside of B;. Hence
J J

Bias(f.(w)) =0, and MSE(f.(w)) = O(1/N) as claimed. Q.E.D.
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CAPTIONS FOR FIGURES

FIGURE 1. The Bartlett lag-window A2 (s) in the case n = 2, and with M; = 30,

M, = 20.

FIGURE 2. The pyramidal lag-window Aps(3) in the case n = 2, and with M; = 30,
M2 = 20.

FIGURE 3. The flat-top lag-window Aprn(s) in the case n = 2, with M; = 30,
M; =20, and ¢ =1/2.
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