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Abstract

A statistical study on inspection strategies in life-testing for multi-component systems
with incomplete information on the cause of failure is carried out. In particular, optimal
or nearly optimal inspection strategies are discussed, which allow the user to obtain sub-
stantial savings. Simulation results are presented on the respective performance of these

strategies.
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1. INTRODUCTION

This paper is primarily concerned with some techniques to improve the efficiency of
standard estimation methods within some frameworks of interest to reliability and biome-

try scientists. We will assume the reliability point of view to illustrate the practical aspects

*This research was supported in part by NSF Grant DMS-8923071 at

Purdue University.



of our work. In particular, we demonstrate the importance of a careful planning of the
component inspection in life-tests for multi-component systems, where an incomplete (cen-
sored) search for the cause of failure is carried out. Also, simulation results to help the user
devise an efficient inspection strategy are provided. In fact, an appropriate selection of the
inspection strategy may significantly shorten the time devoted to the inspection itself and
yield important savings in the component inspection process. This may also mean that,
with a given budget, we might increase the size of our experiment and thus, hopefully,

attain a better precision in the estimation.

Before proceeding, we need to introduce the model and some notations. The frame-
work we consider may be viewed as a generalized version of the well-known random cen-
sorship model, the generalization consisting of the following. First, we assume several
independent concurrent censoring variables instead of only one. These variables are sub-
ject to mutual censoring, in the sense that any of the variables can be censored by any
one of the other. Second, we assume that the information about the variable which ac-
tually generated the observed data, and hence censored the observation of the remaining
variables, is possibly incomplete, in a sense that will soon be made precise. We shall now

explain in detail the above concepts and, then, illustrate the reason of this extension.

This paper is organized as follows. In Section 2, we present our model, at the same
time showing an application to reliability. Section 3 contains the formulation of the best
inspection strategy problem from a decision-theoretic point of view and deals with some
best (or nearly-best) inspection strategies. Section 4 is concerned with an experimental
evaluation of the performance of the proposed strategies. Section 5 closes the article with

some discussion and concluding remarks.

2. MODEL

Let us begin with the classical random censorship model. Denote by {T;; } = (T11,...,
Tn1),and {Ti2} = (T2, . - - , Tnz) two sequences of n independent and identically distributed
(i.i.d.) random variables (r.v.’s) with the corresponding distributions F;(t), and F5(t). Let
the two sequences {Ti1} and {T;2} be independent of each other. Set é; = I(T;; < T2)
and T; = min{T;;,Ti2},¢ = 1,...,n, where I(A) denotes the indicator function of the

event A. It is assumed, in the random censorship model, that the observed data consists
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of the censored sample (T;,6;), and that the original sequences {Tj;} and {T}2} are not
observed. If further independent censoring variables, Tis,...,Ti;, were now introduced,
we could still use the above model whenever our interest lies in making inferences solely
on the variable T;;. In fact, the role early played by T;2 would be simply replaced by
Z; = min{T;s,...,Tir}. The point of view we consider consists, instead, in assuming a
symmetrical role for the r variables, in the sense that we are interested in making simul-
taneous inferences on their reliabilities. This is made possible by the assumption that the
data also contains information on the particular variable which censores the remaining
variables. This information will also be assumed to be “fuzzy,” in the sense that, for each
i, the exact knowledge of the censoring variable is not guaranteed, while what is assumed
to be known is a set of possible censoring variables, among which there certainly is the
variable that was actually observed. We shall now illustrate the foregoing ideas by an ex-
ample. We will sometimes refer to the terminology introduced in the following example to
illustrate a practical interpretation of our theory. However, our development has a general
appeal and can be applied as well to other type of problems, like, for instance, biological

survival studies. A formal description of the model follows the example.

Example. Consider a number n of r-out-of-r systems ¥;,...,3, which are being
tested, each system consisting of 7,7 > 3, components (or modules)Cy,...,C, in series. The
random lifelength of component Cj,j € {1,...,r} , in system ;,7 € {1,...,n}, is denoted
by T;;. The rn random variables (r.v.’s) T};,¢ = 1,...,n,5 = 1,...,r, are assumed to be
independent. For each j € {1,...,r}, the r.v.’s T1j,...,Tyj, each of which represents the
lifelength of the component C; in system L;, are also assumed to be identically distributed,
with a common distribution Fj(¢;6;). The random lifelength of each system X; is defined
as the first order statistic from the sample {T},...,Tir} and denoted by T;. For each
i € {1,...,n}, after failure of the system X; at time ¢;, a possibly censored analysis on the
causes of failure may be carried out and, as a result, a non-empty set, say s;, is isolated
which certainly contains the subscript of the failed component. The incompleteness of the
analysis on the cause of failure may be due to several factors. For instance, to minimize
downtime, an entire multi-component card or module could be replaced in a computer
system without doing further analysis to determine exactly the failed component. Other

reasons usually include economical considerations, or technology or time constraints.



The above model is a generalization of the so called competing risk model, where,
less generally, it is assumed that the component which actually failed is exactly known.
Early references on competing risks are Mendenhall and Hader (1958) and Cox (1959). For
surveys or further references on such a model, see, for instance, David (1974), David and
Moeschberger (1978), and Basu and Klein (1982). A recent paper dealing with Weibull
distributed competing lifelengths in a Bayesian framework is Berger and Sun (1993).

In particular, the type of incompleteness we are concerned with is sometimes referred
to, in the reliability literature, as “masking,” in consideration of the fact that the actual
cause of failure may be “masked” by other possible causes. Fundamental references are

Miyakawa (1984), Usher and Hodgson (1988), Guess, Usher, and Hodgson (1991). For a
good review on the problem of masked system life data, see Usher (1993).

A more general model, including as particular cases the frameworks considered in the

present article, is that with partially classified data (Gastaldi and Gupta, 1994).

Multivariate censorship model with incomplete data. Let Tij,...,Th;,7 =
1,...,r, be r independent sequences of i.i.d. random variables with the corresponding

distribution F}(t;0;) indexed by the (vector) parameter 6;.

Denote I = {1,...,n},J = {1,...,r}, and for any j € J and t > 0, let F;(t;6;) =
1 — F;(t;0;) be the reliability (or survival) function of Fj(t;0) at time ¢. By A;(¢;0;) =
fi(t;6;)/F j(t; ;) denote the failure rate (or hazard) function. Also, for each i =1,...,n,
let j* be the subscript in {1,...,r} such that T = min{T}1,...,Tir} and denote T; =
Tijr. It is assumed that j¥ is unique with probability 1.

The observed data consists of the following set

D= {(tl, 81), (t2, 32), ceey (tn, Sn)} (21)

where t; is a realization of the r.v. T; and s; is a subset of J such that j € s;, referred to

as the set of possible causes of failure.

The above model contains a large class of practical frameworks obtainable by specify-
ing the actual process which gives rise to the sets s;. There are, in fact, several situations
which may cause incompleteness of the data. We will focus on the case when the sets s; -

are formed through a censored search for the cause of failure.
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Truncated search for the censoring variable. Here we continue describing our
model formally; a practical interpretation of the new definitions is shown in the following

paragraph.
For convenience of notation, we use the following generalized indicator function:

ry if event F is true
ro if event E is false

H[E;r1,m2] = { (2.2)

where 1,79, can be objects of any type.

Given a realization t; of the r.v. T}, let a;j(t;) and Bi(t;) be two given nonnegative
functions and w;(t;) =< ji1,...,Jir > a mapping of [0,00) onto the set of all permuta-
tions of the elements of J. (We use angle brackets to mean that the order is taken into

consideration.)

Denote by C; the, possibly empty, random set of all j;; in w;(t;),h = 1,...,r, satisfying

h
O @i, () < Bi(t:)) and (h < v = 1) (2:3)

taken in the same order as they appear in w;(t;). Let vi(¢;) indicate the number of sub-
scripts in w;(¢;) satisfying (2.3). Clearly, v;(t;), in general, is a function of w;(t;), B:i(t:),
and a;1(;),. .., air(ti); however, for simplicity, these dependences will be disregarded in

our notation.

Consider the following decomposition of w;(t;):
wi(ti) = C; +C; (2.4)

where C; = If [ (vi(t:) = 0);0, < jits - > Jivi(es) > 1,C =< Jini(e1s- -+ Jir >, and “47 is

a symbol for concatenation.

The random set S; is defined as
S; =H[ (jf € Ci); {51}, Ci ] (2.5)

‘while by s; we refer to a realization of S;. Clearly, the cardinality of S; is either 1 or .

r— V,‘(t,').



The likelihood function of the parameters given the observed data (2.1) is

L(8y,...,6.D) = [J{D_ Xi(t;6;) [[ Fu(tis )} (2.6)

i€l jeEs; weJ
The practical meaning of the above definitions will now be illustrated.

Reliability interpretation. With reference to our previous example, assume that,
after the failure of each system X;,¢ = 1,...,n, a sequential search for the failed component
within the system is carried out by checking one by one the system components, taken
in the same order as their subscripts appear in the ordered set wi(t;) =< ji1,...,Jir >.
Hereafter, we will also refer to such a set as the (component) inspection strategy. Assume
that o;;(t;) represents the time needed to carry out the failure analysis on component
C; in system X;, also referred to as the component checking time. Let Bi(t:) denote the
maximum length of time available for the failure analysis on system ¥;, also referred to
as the system checking time limit. The random set C; is formed of all and only those
subscripts of the components that can be inspected, given the time constraint 8;(¢;). By
assumption, the cardinality of C; is at most equal to r — 1, because the inspection of r —1
components ensures the determination of the cause of failure. The set s; is formed of all
and only those possible causes of failure isolated after a failure analysis conducted, for a
period not longer than B;(%;), on the r components of system ¥;, each of which requires a
time ezactly equal to a;;(t;) to be inspected. This can be viewed as a special model with
masked data. In particular, it can be shown that the estimators proposed by Usher and
Hodgson (1988) are the MLEs in this particular context where the masking arises from a

censored search for the cause of failure, while in general they are not.

3. BEST STRATEGY SELECTION PROBLEMS
AND OPTIMAL STRATEGIES

The main concern one has when estimating reliabilities within a model with incomplete
search for the cause of failure is that of selecting the best component inspection strategy
in order to minimize the global amount of masking and, hence, attain the highest precision
in the estimation process. It is, in fact, intuitive that the order in which the components
are processed in the failure analysis affects the chance of isolating the actual cause of .

failure of a system ¥; within the given checking time limit §;(¢;). Furthermore, the greater
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the indetermination about the cause of failure, the lesser the precision of any consistent
estimate of the component reliabilities. It is, therefore, natural, to look for a component
inspection strategy w;(¢;) which minimizes the chance of extensive masking. The idea of
increasing the precision of the failure rates estimates through a meaningful inspection plan
in the context of masked data was sketched in Gastaldi (1993). Here, it is developed and

substantiated by an extensive simulation study.

We consider the following decision-theoretic setup. Define the set of all possible de-
cision A, as the set of all permutations of the elements of J. Given a failure time ¢;, and
an inspection strategy w;(t;) =< ji1,.-.,Jir > in A, the system checking time limit §;(t;)
will suffice to inspect at most a number of components equal to v;(¢;). With each strategy
is associated a certain loss which also depends on the other parameters in the model. We

consider the following loss functions.

Loss functions. The first loss function we consider is the following:
Li(Si,01,...,0r,ai1,. .. » Qiry Biywi) = U (|Si] =1);0,1 ] (3.1)

i.e., a zero loss when the cause of failure is isolated and a loss equal to 1 (or any other
constant) when the cause of failure is not found, because the inspection strategy was such
that the components checked in the available time §;(t;) were all different from that which

caused the system failure.

The above loss function may sometimes be rather unrealistic in that it does not take
into account economical factors such as, for instance, the cost of the inspection process per
unit of time. By assuming inspection costs proportional to the component checking times,

a loss function which would incorporate such issues is the following:

vi(ti)
L2(Si, 01,...,0,,0:i1,...,0, ,Bi,w,-) = z Uijin (t,')I(h < w*) (3.2)

h=1
with v;(¢;) > 1, where w* denotes the position of the failed component in the inspection
sequence < Ji1,.-.,Jir >, 1.€., a loss proportional to the time employed in the search

process.

It may be worth noticing that loss function (3.1) is not a special case of loss (3.2), and.

that it cannot be obtained, as one might suspect, by placing constant checking times in
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(3.2), since the latter, even with constant checking times, would also take into account the
number of components inspected to find the failed component, while (3.1) does not. Fur-
thermore, we might already expect that since loss (3.1), does not take into consideration the

length of the inspection process, yields several best strategies. In fact, given a best strat-

. . .(1 .(1 .(2 .(2
egy < Ji1,---,Jir >, €very other strategy < 151),...,151,3(“) >4+ < ]Eui)(t',)_,_l,...,],(,) >,

(1 {1 (2 {2

Jily- - Jivg(ts) > a0d < Jiyi(t:)415 - - - Jir >, Tespectively, will also be optimal.

> denote any two permutations of <

Selection problem. Our selection goal is defined as follows. Determine the inspec-
tion strategies, in the set A, such that the following conditional average loss (or risk) is
minimum:

E[L(S,-,al,...,Br,a,-l,...,a,-,,ﬂ,-,w,-) | T: =ti]. (3.3)

Such strategies will be referred to as best. We shall now give some results on the best

inspection strategies, under the most usual practical frameworks.

Optimal strategies. We can restrict our attention to the systems such that there
exist at least one strategy < ji1,...,Jir >, in A, satisfying a;j, (t;) < Bi(t:), i.e., there is

time to check at least one component:
j__glin _@ij(ti) < Bi(ti) (3.4)

which ensures that, at least for one strategy, v;(¢;) > 1.

Case 1 - Best inspection strategy under loss function (3.1). Notice that, .

under loss function (3.1), the risk function (3.3) can be interpreted as the probability that

the cause of failure is not found during the inspection.

In this case, we have that minimizing (3.3) with L replaced by loss (3.1) is equivalent

to maximizing

E[I(|Si|=1) | Ti =] (3.5)

= Pr[One of the inspected components caused the system failure] (3.6)
;¥ — y — . — 1 . . .

=Pr Y (i =3) | T=t]= gmg=—ps j; Xj(t:,65)- (3.7)



where we have denoted by A(t;,6,,...,0,) the system failure rate at time ¢;, i.e.,
2. Aj(ti; 65)-
J€J
Finding a general closed form solution to the above maximization problem, despite its
simple formulation, is not always straightforward unless special assumptions are made on

the component checking times or on the failure rates. We will, hence, discuss separately

the possible situations.

Subcase 1.1 - The time needed to inspect a component is the same for any
component and the failure rates are not all equal. This is a very common case in
practice. It occurs, for instance, when the components subject to possible breakdown have
a similar or equal degree of accessibility in the systems. In such a case, we have that v;(t;)
does not depend on the inspection strategy and it is equal to min{[B;(t;)/ai(t:)],r — 1},
where [z] denotes the greatest integer less than or equal to z, and a;(t;) = ai(t),7 =
1,...,r. It is easy to see that the optimal strategies wi(t;) =< ji1,...,Jir > are all and

only those such that

for any jic € C; and jz € C;, wehave A, (ti,05.) > Aj-(ti,05.)- (3.8)

The intuitive meaning of this solution is that, in order to reduce the probability
of not determining the failed component, we should inspect the first v;(¢;) components
with highest failure rates at the system failure time. Notice that this also minimizes the
conditional expected time for component inspection given T; = ¢; if the subscripts in C;

are arranged in nondecreasing order w.r.t. the corresponding Aj(t;, 6;)’s.

Subcase 1.2 - The times needed to inspect the components are not all
equal and the failure rates are all equal. This is the case when equal or very similar
‘components have different accessibility in a system. In this case, it is straightforward to

notice that the optimal strategies w;(¢;) =< ji1,...,Jjir > are all and only those such that

for any jic € C; and jz € C;, we have aij;. (1) < agj(t;). (3.9)

In this case, the optimal strategies are quite intuitive, and consist. of inspecting first

the v;(t;) components with smallest checking times.
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Subcase 1.3 - The times needed to inspect the components are not all equal
and the failure rates are not all equal. In this case the nature of the problem does
not allow to express the best inspection strategies in a closed form. Intuition suggests that,
in this case, the optimal strategies must be a “compromise” between those encountered
in the previous two subcases. It should be intuitive that in order to maximize the sum of
the failure rates of the components inspected during the available time §;(t;), we should
allocate in C; the components with higher failure ratio Aij(t:,6;)/a;; at time ¢;, in order
to use as efficiently as possible the time spent in the inspection process. Clearly, this is
achieved, for instance, by giving higher precedence, in the inspection, to those components
with higher ratios of failure rate to inspection time. In the cases of two components with
equal ratios, clearly, the precedence should be given to the component with higher failure
rate (or, equivalently, lower checking time). Bearing these considerations in mind, it is clear

that the following algorithm yields a good approximation to a best inspection strategy.
Algorithm 3.1
Step 0: Set the maximum time available for inspection equal to Bi(t;).

Step 1: Exclude from consideration of inspection all the components whose inspec-
tion times exceed the maximum time available for inspection or that have already been

inspected.

Step 2: Quit the inspection process if the set of the components which have not been

excluded for consideration to be inspected is empty.

Step 3: Among the components not excluded from inspection, select and check the
one with highest ratio A;j/aij(t;). If there are two or more of such components, inspect

the one (or one of those) with largest A;; (or, equivalently, smallest a;(%:)).

Step 4: Reduce the maximum available time for inspection by the time necessary to

inspect the component selected in the previous step.

Step 5: Go to step 1.

Unfortunately, due to the the discrete nature of the component allocation in the sets

C; and C;, there is no guarantee that the above are the optimal strategies, although we
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can expect them to be good approximations. This is due to the fact that there might be
some residual time S;(t;) — Z a;j(t;), left at the end of the inspection process, which
makes it possible that by reﬁa?:ing some of the checked components by a larger number
of uninspected components with smaller ratios A;j/a;;j(t;) and larger sum of failure rates,
we might obtain smaller value of the average loss, thanks to the use of part or all of the
unutilized time. Strategies generated by Algorithm 3.1 have, however, at least two features

that make them suitable for practical purposes: they are generally close to the optima and

can be found with a negligible computing effort.

Case 2 - Best inspection strategy under loss function (3.2). In this case, the
risk function can be interpreted as the mean time needed to identify the failed component.
We have:

E[Ly(Si,61,y...,0r, ai1,. .., air, Biywi) | Ti =ti]
vi(t:)

=E[Y oy, (t:) IR <w*) | T =t (3.10)
h=1
vi(t:)
= Koy & M6 <H o) > )\J.,,(tz,ﬂg.,,)]Za,,,w(t)

v=v;(%;)
(3.11)
1 vi(t;)

= Ry 2 ) 3 h o) .12

Let us consider the following three main subcases.

Subcase 2.1 - The component checking times are all equal and the failure
rates are not all equal. Denote a;(t;) = a;;(t;) for all j € J. In this case, we have the

following risk:

vi(t;)—1

Alt: (;i(ti) [ Z sAji, (ti, 05, ) + vi(t:) Z Njio (i, 05:.)] (3.13)
RGN v=v;(%;)

which is minimized by those strategies w;(t;) =< ji1,...,Jir > such that Aj, (ti, 0j;,)
> )‘ij-‘,h+1 (t,', 0_,".,,'_{_1), forall h=1,..., l/,'(t,') —1.

Subcase 2.2 - The times needed to inspect the components are not all equal .-

and the failure rates are all equal. Denote \;(t;,8;) = A(t:) for all § € J. In this
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case, the risk is proportional to the weighted sum of the component checking times of the
inspected components, with weights forming a decreasing sequence.

vi(t:)

23 iz (t)(r — s +1) (3.14)

r
and is minimized by inspecting the system components in such an order w;(t;) =

< Jily -+« Jir > as to have ayji, (i) < aij; 4, (8i), forall h=1,...,v;(t;) — 1.

Subcase 2.3 - The times needed to inspect the components are not all equal
and the failure rates are not all equal. In this general case, it is not possible to give
the best strategies in a closed form. However, while for r small it is always possible to scan
the decision space in search of a best strategy, for r large we provide locally best strategies,

defined as follows.

Definition. A strategy is said to be nearly-best if it is not dominated by any other

strategy obtainable from it by swapping any two adjacent elements.
The following theorem helps us to find the above kind of strategies.
Theorem. Any strategy w;(t;) =< ji1,...,Jir > such that for every two adjacent
elements jin, jiht+1 € Ci,h =1,...,vi(ti) — 1, we have
Aijin (86 Ojin )/ @igon (85) 2 Aijongn (s O3 g0 )/ @iy (80) (3.15)
is nearly-best.

Proof. Denote by w(t;) =< j¥,...,j} >= CF + C¥ a strategy such that Aije, [aijs,
2 Aijt /Ol,'j‘?h+1 for every pair j},,jf 41 € Cf. Assume that there exists a strategy
wi(ti) = <Jiyy oo Jir D= <IN Il din 'j:‘jv;(t.-), ...y J% > (notice the swapping

of the two internal elements j},,j% ;) which yields a lower average loss. Then, by (3.12)

we have
1 vi(t;) r 1 vi (i) r
n D e (8) D Aqr, (i, 631,) < n D aig (t) Y Aje, (8,65, (3.16)
s=1 w=3s s=1 w=—g
& Nijy, (i, 057, ) avijp, (t3) < Aije, (86,05 )iz, (8:) (3.17)
that is, a contradiction. O
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Notice that Algorithm (3.1) provides a strategy which satisfy (3.15) and is hence

nearly-best.

A closed-loop problem? Thus far we have treated the failure rates as if they
were known. However, the goal itself of the reduction of masking is a shortening of the
estimation process of the failure rates themselves. This apparent closed-loop problem,
finds, in practice, several possible solutions. In fact some preliminary information on the
failure rates is often available, for instance from databases of system life data containing
information from past experiments conducted on similar systems. If not available, it can be
an expression of the a prior: beliefs of the researcher, supported by the technical knowledge
about the components. Finally, in absence of any type of information, it can be obtained,
with increasing accuracy, through estimation carried out using the data just observed, in
an adaptive process. This is shown in our simulation study. Furthermore, it can be noticed
that, in the case of equal checking times, the required information considers only the order

of the failure rates, and not their magnitudes.

Is there any loss of precision in the attempt to shorten the inspection pro-
cess? By using an optimizing strategy for the component inspection, we certainly expect
significant reduction of masking and time savings in the case of equal component checking
times. However, the main concern is whether these savings result in poorer estimates of
the reliabilities. In fact, if this were so, we might need more observations to achieve a
prespecified precision, and the cost of further experimentation might exceed the savings.
An indication on this comes from the work of Guess, Usher and Hodgson (1991), who point
out through simulation that, in the three-component case, by reducing the masking, the
mean square errors of the MLEs are decreased, in the model with exponentially distributed
lifelengths. The simulation in Section 4, conducted on five-component systems, should give
the reader an idea of the behavior of the ML estimates under different inspection strategies

and thus help choose the best inspection plan in real experiments.

4. SIMULATION STUDY

Here we compare the performances of the Miyakawa (1984) and Usher-Hodgson (1988)
MLEs estimators for masked data under different inspection strategies. In particular, we -

will compare the behaviors of the following kind of strategies:
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(1) Fixed inspection order
(2) Reverse of (1)

(3) Random inspection

(4) Increasing checking time
(5) Nearly-best strategy.

The first two strategies simply consist of inspecting the components according to the
following orderings < 1,2,...,r >,< r,r — 1,...,1 >, respectively. There is no special
reason for picking up these two specific elements from the decision space A,; however they
can just be considered as two permutations randomly chosen from A,, since the labels
1,2,...,r have also been randomly assigned to the components. The rendom inspection
strategy consists of choosing an inspection order at random from A, for each system
¥i,t = 1,...,n. The increasing checking time strategy is defined as the sequence <
Jity-- -, Jir > such that agj;, (t;) < @ij; 4, (t), R =1,...,r — 1. Finally, by nearly best, we
refer to the strategy generated by Algorithm 3.1.

In order to evaluate the performances of the above inspection strategies, we generated a
number m of experiments (life-tests) €y, h = 1,...,m, of size n and applied these strategies
to estimate the failure rates of r components with exponentially distributed lifelengths. We
have not considered sequential estimation, since failure rates estimators based on order
statistics can be, in general, unavailable. However, when they are available, all results
in the paper still apply, provided that the estimators for a fixed sample size are replaced
by the estimators based on first order statistics. The reason for this is the fact that the
probability Pr{j; = j* | T = ti:} does not depend on the position of L; within the

sequence of systems ordered by their respective failure times.

For a lack of theoretical development, we have not considered distributions other than
the negative exponential. Notice that even in the exponential case the estimation must be

generally carried out through numerical methods.

Simulated data

h h h h
D® = {(¢M, (M), (1, sM),..., (¢, s} (4.1)
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h =1,...,m, for each of the m samples has been obtained as follows. For each system
Egh),i =1,...,n, in the h-th sample we have simulated exponential lifelengths for the r
components. For instance, in Simulation 1, we have set n = 500,r = 5,m = 100, Bi(t:) =
B = 1.05 for all ¢ € I, and assumed the set of failure rates and component checking times
shown in Table 1. It is only in order not to have too many variables that the r component
checking times have been taken constant with respect to failure time and system, and that
the system checking time limits 3;(¢;) have been set equal for all systems ¥;,z =1,...,n,

and failure times.
Table 1.

Failure rates and component checking times
for Simulation 1

C1 Cs Cs Cy Cs
A;' (hours) 8 150 90 190 40
a;; (hours) 045 025 0.15 051 0.5

In Simulation 2, for sake of comparison, we have left everything unchanged but the
following parameters: B;(t;) = B = .75 for all 7 € I, and «;i(ti) = a = .25 for all
1e€l,j€J,andt;.

For each life-test &,k = 1,...,m, we have generated life and failure of all systems
Egh),i =1,...,n, and finally simulated a censored search of the cause of failure according
to the different strategies mentioned above. In each sample D) h = 1,...,1000, the
nearly-best strategy has been defined as coincident with the random strategy up to the
95-th observation. From the 26-th observation on it is computed through Algorithm 3.1,
where the );’s are replaced by the estimates obtained using the lifelengths already observed.
The reason why the use of the nearly-best strategy begins only after some observations
is that those are obviously needed to form a preliminary estimate of the failure rates. In
fact, we are assuming here that absolutely no information is available on the failure rates
)A;’s. If some information were available, it could be used, possibly integrating it with the

knowledge coming from the experiment itself, to infer on the ordering of the A;’s.

Most of the quantities shown in the tables below are defined according to the standard
usage. A legend follows; also, a few quantities appearing in the simulation tables, which

have not been explicitly defined thus far, are introduced below.
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MLEs. The maximum likelihood estimates of the failure rates under the assump-
tion of exponential distributions of the components lifelengths are obtained by numerical

solution of the following non-linear ML simultaneous equations:

2"—-1

) gan IGE€C)—) ti=0, jel, (4.2)
k=1 w i=1

wECx

where (., k =1,...,27 — 1, is the sequence of all nonempty subsets of {1,...,r}, taken in
any arbitrarily fixed order, and n,, denotes the number of observations (%;,s;) such that
si = (x. For instance, when r = 3 (we show this case for sake of simplicity, even though

in our simulation we considered 5 components), we have the following equations:

ni n12 nis n123 =

SRS VS W T WS WS Vs DD

9 719 nag n123 -

WA TS S RS R W W D (43)
ng nis N23 n123 =

=4 + + - t; = 0.

A3z A+ A3 A2 + A3 M+ A+ A3 ;

To solve the system, we have considered two types of iterative algorithms. The first

algorithm is given by the following recursive relation:
M) = g(ng,, k=1,...,2 = ;207D 0D, =1, (4.4)

i =1,2,...,N(€), where € is a positive constant used to define the number N(e) of itera-
tions. The quantity N(e) is defined as the index ¢ for which ﬂ;=1|)\§-i) — /\g-i_l)| < €, where,

in particular, we have set € = 107".

The other algorithm is given by the following equations:
AD = g(ne, k. =1,...,2 = LATTIAGTD G-y

AD = g(ne,, 6 =1,...,2" = AP AFD AGD) (4.5)

AD = g(ne,, k=1,...,2" = 1,20, A0 A0
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i=1,...,N'(e).

This second algorithm differs slightly from the first one in that, as soon as a value for

the estimate of Aj,j = 1,...,7 — 1, is obtained, it is substituted in the next equations.

As starting values, we have used Ago) =1forall j =1,...,r. Since simulation shows
that strategy comparison is not particularly affected by the choice of the algorithm used
to solve the system, we only show results obtained with the first algorithm. The starting
values are also unimportant as far as convergence is concerned; the convergence, generally,
takes place after very few iterations, even when using starting values extremely far away
from the true values of the failure rates. This was also noticed by Usher and Hodgson

(1988) when solving the ML system within the three-component case.

Table of symbols
Term Theoretical quantity being estimated
Expected values of failure E(X,) j=1,...,r
rate estimators
Average of the above (1/m) > E(:\i,)
jeJ
Biases of failure rate estimators B; = E(/):J) — A Jj=1,...,r
Bias ratios BR; = E(Xj)/)\j J=1,...,r
Geometric average of the above (II R)Y™
jeJ
Standard deviations SD; = [E(\; — EQ)PM? j=1,...,r
Relative standard deviations RSD; = SDj/E(Xj) j=1,...,r
Average of the above (1/r) Y_ RSD;
JjeJ
Square root of Mean square errors MSE; = [E(X] X2V j=1,...,r
Square root of Relative mean RMSE; = MSE;/); j=1...,r
square errors
Average of the above (1/r) > RMSE;
jeJ

Defn. 1: Average Total Masking. It is the average sum of the size of the sets s;
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observed during the life-test.
/m)d Q. | s D). (4.6)

h=1 i=1

Defn. 2: Average Mean Masking. It is the average observed mean of the size of

the set 5;.

/m)Yy 1A/m)Y 1 si |l (4.7)
h=1 =1

Defn. 3: Average 1st Risk Function (Fn.). It is the average value of the ex-
pected loss using loss function (2.1) multiplied by 100. It expresses the average percentage

of systems where the cause of failure has not been found.

Defn. 4: Average Total Inspection Time. It is the average value of the sum of

the inspection times in life-tests.

1/m)> D IT] (4.8)
h=1 i=1

where the inspection time IT; of system ¥; is
vi(ti)

IT; = [ (vi(t:) = 0);0, Y auji, (t:) I(s Sw*) ] (4.9)

(given a strategy {ji1,...,Jir}, we denoted by j¥,. the subscript of the failed component
and by w* the position of such subscript within such a strategy) i.e., equal to zero if there
is no time to inspect the first component listed in the strategy or else equal to the sum
of the checking times of the components inspected within the time f;(¢;) until either the

time expires or the failed component is found.

Defn. 5: Average 2nd Risk Fn. (or Mean Inspection Time). This is simply

(1/m)) [(1/n) ) IT)
h=1 =1

where IT; is the quantity defined in (4.9).

Defn. 6: Average “Wasted” Time. Although the appropriateness of the term ...

can be argued upon, we define as “wasted” time (in the inspection of a system X;) the

18



inspection time minus the time of the failed component if the latter is one of the checked
components. In other words, this is the time that is spent in the inspection of components
which did not cause the system failure. It will be equal to zero when either the inspection

time is zero or w* = 1.

The last column in the tables shows the percentage the wasted time to inspection

time.
LIFE TESTS PARAMETERS & STATISTICS
Simulation id. number: 1
Life test size: 500
Starting point for computation of
the nearly best strategy: 25
Number of simulated life tests: 100
Average sum of system lifelengths: 8486.733
SYSTEM FEATURES
Number of system components: 5
System checking time limit: 1.05
COMPONENT FEATURES
Component G Cs Cs Cs Cs
Mean lifelength 85 150 90 190 40
Failure rate 0.01176 0.00667 0.01111 0.00526 0.02500
Inspection time 0.45 0.25 0.15 0.51 0.50

STATISTICS ON THE SIMULATED LIFELENGTHS

Component Cl CZ Cg C4 C5
Average of sample means 84.97 151.05 89.89 190.15 40.11
Average of sample STDs 85.45 151.08 89.62 190.49 39.75
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LIFE TESTS PARAMETERS & STATISTICS

Simulation id. number: 2
Life test size: 500
Starting point for computation of

the nearly best strategy: 25
Number of simulated life tests: 100

Average sum of system lifelengths: 8462.238

SYSTEM FEATURES

Number of system components: 5
System checking time limit: 0.95

COMPONENT FEATURES

Component Cl 02 C3 C4 Cs
Mean lifelength 85 150 90 190 40
Failure rate 0.01176 0.00667 0.01111 0.00526 0.02500
Inspection time 0.25 0.25 0.25 0.25 0.25

STATISTICS ON THE SIMULATED LIFELENGTHS

Component Ci Cs Cs Cy Cs
Average of sample means 85.07 150.53 90.42 189.51 40.22
Average of sample STDs 85.52 150.64 90.65 188.35 40.18
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5. DISCUSSION

The simulation results indicate that, as far as economical aspects are concerned, it
is undoubtedly the case to contemplate resorting to a best (or nearly-best) inspection
strategy, since that is the way to obtain the most substantial savings in the inspection
process. On the other hand, when precision only is concerned, while the best strategies
do quite well, the best results are usually obtained with a random checking. Once this
phenomenon has been observed, it is not difficult to find justifications of it. In fact, a
random checking ensures a certain balance in the number of observed failures of each
component, while other strategies which remain fixed with respect to the systems do not
generally allow recording the failure times of the components systematically excluded from
checking. Notice that even the best strategy is almost a fixed strategy in our particular
simulation, for the well known characterizing property of the exponential distribution,
see, for instance, Barlow and Proschan (1975). This is also the reason, indeed, why fixed
order strategies tend to yield estimates having a lesser variance. In fact, in the absence of
observed failure times for some components, it occurs that, for the components with no
recorded failures, there are infinitely many solutions satisfying the ML equations, with the
only constraint that they must add up to a given constant. Thus, it is only by the effect of
the choice of equal starting values in the iterative algorithm used to solve the ML equations
that we get identical values for the failure rate estimates of components with no recorded
failures (see table with means of failure rate estimates). It is hence clear that the apparent
lesser variability of the fixed type inspection strategies is mostly imputable to the absence
of information about some failure rates. A side effect of that is also the lower bias generally
obtained with the random strategy. Actually, the biases recorded with the random strategy
are generally so much lower as to compensate for the higher variance and yield lesser mean
square errors (see tables of biases and MSEs of failure rate estimates). On the economical
side, however, the random checking performs quite inefficiently, in general; even though,
it should be clear that there may exist several fixed strategies that perform even worse.
The economic aspects should not be underestimated here, since, especially for high-tech
equipment, the employment of highly specialized personnel in the inspection process may
be very costly. The most noticeable advantage of an estimation improved by a planned

search for the cause of failure is that, while it is extremely simple to apply, it may yield

27



important savings in large-scale life-tests or in routine tests for quality control. Especially
in automatized testing frameworks, it is always convenient to spend a few milliseconds of
computing time to determine a convenient inspection strategy for each system, which may

result in hundreds of hours of inspection time savings.

Finally, it turns out that the choice of the appropriate inspection strategy is largely
a matter of the main concern of the experimenter. If economy is an issue, then a strategy
of the type we have been referring to as best (or nearly-best) should be preferred. If the

emphasis is on precision and costs are unimportant, then a “random” strategy can be used.
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