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Abstract

In this paper, the problem of computing the exact value of the asymptotic efficiency
of maximum likelihood estimators of a discontinuous signal in a Gaussian white
noise is considered. A method based on constructing difference equations for the
appropriate moments is presented and used to show that the exact variance of the
Pitman estimator is 16¢(3), where ( is the Riemann zeta function.
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1. INTRODUCTION.

Consider the problem of estimating a one-dimensional parameter 6 based on ob-
servations of the process X(t) satisfying the stochastic differential equation

(1) dX(t) = %S(t _ 0)dt + dW (), t € [0,1]

where § is a function possessing at least one discontinuity of the first kind in the
interval of observations, € is a small parameter, and W(t) is a standard Wiener
process. This estimation problem may also be referred to as estimation of a change-
point as it is the continuous analog of the classical change-point problems in the
regression context.

The problem considered by many comes from considering the asymptotic situation,
in which S can be taken to be constant except for one discontinuity, and instead of
using [0,1] we use (—oo0,00). In this case the problem is location invariant, and
Pitman (1938) showed that the best invariant procedure for such a problem is the
formal Bayes procedure with a uniform “prior” on the entire real line.



As this is not a regular estimation problem, the maximum likelihood estimator is,
as is usually the case here, not asymptotically efficient. It is natural, therefore, to
ask to compare the variances of the maximum likelihood estimator and that of the
best invariant estimator.

The formal setup is that specified in Ibragimov and Has’minskii (1981). We wish
to obtain the ratio k = E£2/E£Z, where ¢; and ¢, are defined as follows:

(2) & = arg?el%)cho(t),
) & = [Cuzba( zwi,
@ Zoft) = exp(W(R)~ i),

where W(t) is a two-sided Brownian motion defined as

Wi(t) ift >0
W(t)z{ ng—)t) if¢<0

and W;(t) are independent standard Wiener processes defined for ¢ > 0 and such that
W;(0) = 0.

The exact evaluation of E£? is not too difficult. Ibragimov and Has’minskii (1981)
showed that E¢? = 26. An attempt to evaluate E¢2 was also made in their mono-
graph. Unfortunately, as they stated in the book, it seems that it is difficult to
evaluate E¢2 explicitly. Instead they obtained a method for an approximate calcula-
tion of E¢Z and obtained through statistical simulation a value of 19.540.5. Golubev
(1979) proved that E¢2 is the second derivative of an improper integral of a compos-
ite function of modified Hankel and Bessel functions with respect to a parameter u
evaluated at 0. Again, the exact evaluation of the result has only been obtained by
computer assistance. In this paper, we shall present a method based on constructing
difference equations for the appropriate moments to compute the exact value of E£2.

For an early discussion of the above problem, see Rubin (1961). A related problem
of the Pitman estimator for the absolute error-loss function was considered by Paran-
jape and Rubin (1975). The exact distribution of the estimator was obtained in that
paper. It may be worth mentioning that the problem of determining the distribution
of the Pitman estimator for the quadratic loss function remains unsolved.

2. MAIN RESULT.

In this section, we first state the main result and prove it through a series of
Lemmas.

Theorem 1.

(5) E& =16((3)



where ( is Riemann’s zeta function defined as ((s) = 322, 1/n®
Let X, Y\, Z) be defined as

(6) X, = /0 " exp(Wi(t) — At)dt

(7) Y, = /0 ¢ exp(Wi(t) — A)dt

(8) 7y = /0 "2 exp(Wi(t) — At)dt

where A > 0.

Lemma 1. The reciprocal of the random variable X, has a gamma distribution with
the density defined by the formula

22A$2/\—1 -2z

e
where A > 1/2
Proof. Consider the random process
t
9) X(t) = exp(—W(t) — M) / exp(W(s) + As)ds

Observe that for any ¢ the distribution of X(¢) is the same and coincides with the
distribution of X (See Ibragimov and Has’minskii (1981) ). Using Ito’s formula, we
obtain the following stochastic differential for the process X(¢)

(10) dX(t) = —X()dW () + (1 — (A — 1/2)X (t))dt

It follows that the stationary density g(z) of the process X (¢) satisfies the differential
equation

14, d
(11) 37529 — (1 =(A=1/2)z)g =0

subject to the constraint

/Ooo g(z)dz =1

Solving the above equation, we find

22A$—(2A+1)e(—2/x)

which completes the proof. [I
Lemma 2. Let p be any nonnegative integer, then EY)/X} < oo, where X > 1/2.
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Proof. For any given A > 1/2, choose a 7 such that 1/2 < 7 < A, then

X; — X

R > Y.

By Lemma 1, X has finite moments of all orders k£ < 2X and X, has finite moments
of all orders k < 27. Let k = 1+6, where 0 < § < 27 —1, then Minkowski’s inequality
implies

E(X, — X)) < pXIHe,

Therefore Y\ has finite moments of all orders 1 + 6. An application of Holder’s
inequality finishes the proof. [J

Lemma 3. Let Ayn()) = EX;‘(%)", o is a nonpositive integer, A > 1/2, then
Aaa(X) satisfies the following difference equation:

(13) %a(a — 20)Aaa (V) + (@ — 1) Aa_11(N) + Auo(N) = 0

and the unique solution of the equation for a = —q is given by

dt

2I'(g + 2X) [re2-1(1 —¢9)
(14) A-an(d) = 24T(2)) /ol—t q

where I' is the Gamma function and q is a nonnegative integer.

Proof. Note that, by Lemma 2, A_,;(A) = EY,\/X/{‘H'I) < oo for all q. For any
arbitrary small € > 0, let

S, = /;exp(Wl(t)—/\t)dt,
S, = /etexp(Wl(t)—-/\t)dt,
T = exp(Wi(e)— Ao)

then, we have

(15) Xy = S+TX],

(16) Y = Sp4 T (Y] +eX)).

where X} and Y] are independent of T, Sy, and S,, (X},Yy) and (X,Y)) have the
same joint distribution. Let g(s) = 1/[s + TX}](@+Y), Taylor expansion of g(s) at



s = 0 yields:
Y,
an o = (S TOR+exXpla(s)
Y, € 1)S8Y]
(18) = Tq(XZ)qH + Tq(X/'\)q N ](31:()1'/'\;:14:\2 +R
where
R = Sz (g+1)S1S:  (g+1)eS

(TX)+ (TX)r+z  (TXy)H
(g+1)(g+2)51S8  (¢+1)(g+2)TY|S? (g+1)(q+2)eTX,5?
200 + TX})e+3 2(0 + TX,)a+3 200 + TX})a+2

and 0 < § < S;. Taking expectation on both sides of equation (18) gives

A_1(N) = A 1(NET ™ + eETA_10(N) — (g + DES T O A_(11)1 (V) + ER
Therefore

(ET™" — 1)A_g1(N) + €ETA_i () — (¢ + DESI T A_(11):(N) + ER =0
Note that ET~? = exp(q(q + 2))¢/2), and lim,_o ES;T-+) /e = 1, let € — 0, we
have from the above equation:

(19)  5a(a+ 20)A-ga(N) + A-go() — (a4 DAy (V) + i B = 0

It remains to show that lim.,o ER/e = 0. But this is true by noting that S; < €S,
and lim,_,o E(T~'S5;/€)™ = 1, where m is any positive integer, and by an application
of Cauchy-Schwarz inequality. That (14) solves (13) is easily checked. O

Lemma 4. Let Ay n(A) be defined as in Lemma 3, then Ay 1(1/2) < 0o and it satisfies
the following difference equation:

+

1
(20) gola = 1)Aaa(1/2) + (@ = 1)Aa-11(1/2) + Aao(1/2) = 0
and the unique solution of the equation for a = —q is given by
1
(21) Aq(1/2) = et [ e -G - o)
29 0

Proof. It is enough to prove that A_;;1(1/2) < oo since we can repeat the same
argument as given in Lemma 3 to derive the difference equation. By Fatou’s Lemma,

we find

g D . Plg+1) r 11t
= I2) < =
A-aa(L/2) = Biminf X500 < fiminf A0 = =55 |, 7=

dt
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which shows that A_;1(1/2) is finite. [

Remark. The fact that A_;;(1/2) < co can be obtained directly by a completely
different method using the reflection principle for Brownian motion (defining appro-
priate stopping time) and Fubini’s theorem. Instead we present the above proof in
Lemma 3 and Lemma 4 because the truncation argument used in the proof is more
intuitive and elementary.

Lemma 5. Let B, ,()\) = EXf’()—%)", then B, 1(1/2) satisfies the following differ-

ence equation:

(22) %a(a — 1)Ba1(1/2) + (@ = 1)Ba_1a(1/2) + 24ux(1/2) = 0

and the unique solution of the equation for a = —q is given by

(23)  B_g1(1/2) = SF‘-’“/ q1/ 1_3/ “1“(2 %) dudsd

The proof of this Lemma 5 is similar to the proofs of Lemma 3 and Lemma 4. We
omit the proof.

For notational simplicity, we omit the subscripts on X,Y, and Z throughout the
rest of the paper with the understanding that A = 1/2. Observe that the random
variable £, can be written as

@ _y®
(24) &= Torxo
where X = [ exp(Wi(t) — t/2)dt, and Y = [t exp(Wi(t) — t/2)dt,i = 1,2
Lemma 6.
Y@ -y _r A
X0 1 X® X0 1 X®
Proof. A direct application of Theorem 3 of Golubev (1979). O

(25)

Now we shall prove Theorem 1.

Proof. Let (X) = E(Z|X), then by Lemma 5, EX~9%(X) = B_,:1(1/2). Observe
that the growth of B_,1(1/2) as a function of ¢ is sufficient slow, approximately in
the order of 279¢!, so that the above moment problem has a unique solution which is

Y(z) —8/ /0 - /[ In(1 =3 ]dudst_ exp(— M)dt

zt

Observe that the joint density of (X®), X(?) is

F(1,22) = 4(z222) P exp(=2(— + )

T T2



Using Lemma 6, we find

E2— E x@ B yA ) 00 poo z1
& =Pl rxa PoX O = [ [ 55 fene)(endrde,

Writing 24 = 1/twz,z2 = 1/(1 — w)z, we obtain

= 32 /1 /t /1[—ln(1 _U)li dudst2/ / [1 +1(t—_w1 ltze™ ¥ dwdzdt

11—t +tn(?) —1In(1
J THl-0F / / (1 — ) d“det
Note that d[1 — ¢ +1n(¢)]/(1 —t) = [1 — t + ¢1n(2)]/[t(1 — ¢)?]dt, integrating by parts

gives

L /11—t+ln(t /1—ln(1—u)dudt
¢

1—1¢)2 u?

Writing v = 1 — ¢, we obtain

_ Ly +1In(l —v) 7 —In(u)
= —8'/0 /0 dudv

v? (1 —u)?
Observe again that d[(1 —v)In(l — v)/v] = —[v + In(1 — v)]/v?, integrating by parts
yields
1n(v)In(1 — v)
= d
8/ v(1 —v) v
1 -
_ 16/ In(1 v)ln(v)dv
0 v
= 16((3)

O

Thus it follows from Theorem 1 that the asymptotic efficiency of maximum likeli-
hood estimators of discontinuous signal in a Gaussian white noise is

EE 8
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