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ABSTRACT

Consider a sequence x = (x;,-+, X5) of n independent observations, in
which each observation x; is known to be a realization from either one of k;
given populations, chosen among k (>k;) populations my, ---, . Our main
objective is to study the problem of the selection of the most reliable
population m; at a fixed time ¢, when no assumptions about the k

J
populations are made. Some numerical examples are presented.

1. INTRODUCTION

This paper is concerned with a problem in multiple decision theory,
where one is interested in selecting the “best” population, using partially

classified observations.



Prior to defining what we mean by “best” population within the
context of our selection problem, we shall introduce a general set-up with
“partially classified” data.

While there exists a great deal of literature on selection procedures for
the “best” or “good” populations, these procedures are based on data whose
origin is completely known. A few recent references on selection procedures
with fully classified data are: Gupta, Liang and Rau (1992), Gupta and
Liang (1989, 1991), Gupta (1990), Fong and Berger (1993), and Barlow and
Gupta (1969) for the problem of selecting the largest quantiles.

For a general approach to ranking and selection methodology, a
reference can be made to Gupta and Panchapakesan (1979). For a broader
decision theoretic formulation and Bayesian analysis, Berger (1985) is a
useful reference.

Let x = (xq,--, Xp) be a sequence of n independent observations, each
one of which is a realization of either one (and only one) of k real-valued
random variables (r.v.’s) associated with k populations my,--+, my, having
cumulative distribution functions (c.d.f.’s) Fj(u), j=1,+, k, and survival or
reliability functions F j(u) = l—Fj(u), j=1,--, k, respectively. We assume that
the exact parent population of each x;, i=l,-., n, may not be precisely
known, that is, in general, it may not be exactly known which one of the k
populations 7,---, m generated a given X;. However, for each x; € %, a set
PP; = {j;;, jiki}’ PP, c {1, k}, is known which lists the subscripts of k;
populations T ﬂ'jik.suc}l that P[Ujeppi(xi is a realization of 7rj)] = 1.
Such populations will be referred to as the “possible parent populations” of
X;.

When there is no confusion, we will use the symbol m both for the j-th
population and the associated r.v. with c.d.f. F;(u).

We denote our data by ®={(x;, PP;); i=1,-, n} and by [PP;| the
cardinality of the set PP,. We refer to the observations with [PP;|=1 as
“(fully) classified” observations. The remaining observations will be referred

to as “partially classified” observations.

Examples. The above framework formalizes the situation in which we

have observations whose exact origin may not be precisely known, and



generalizes the usual model in which k samples, of sizes n;, Z}‘z 10 =1,
drawn from k populations 5 j=1,--, k, are given. Such a situation is
commonly encountered in several practical instances. Some examples of
applied situations where partially classified observations may arise are the
following:

—Loss of data. We put n units of k different types of electronic
component on test simultaneously to study their reliabilities. Due to faults
of the testing equipment, for some lifelengths x;’s, the type of failed

component is not recorded or this information is lost or confused.

— Curtailed investigation on the origin of some x;’s. Lifetime data
obtained from n parallel multicomponent systems I is being used to
establish the reliabilities of the components. To save time, when a failure is
detected at time x; on a system X, an entire module (group of components)
could be replaced, while the system is still working, without attempting to

find out the specific failed component.

— Competing risk model with incomplete knowledge on the cause of
fajlure. A life-test is conducted on n equal independent multimodule
systems, each consisting of k modules in series (this means that the failure
of any one of the modules in a system causes the failure of the entire
system), and the object of the experiment is an analysis of the reliabilities of
the modules. When a system fails, the failure time x; is recorded and an
investigation about the possible cause of failure is carried out leading to the
identification of a subset of modules, one of which certainly is the cause of
failure. Such a subset of modules, which in particular could have cardinality
1, is, in general, thought of as constituted by an arbitrary number k; € {1,
k} of elements, in order to take into consideration even the case when the
search for the failed module is curtailed, due to constraints of time or

convenience (this example is dealt with in detail in Section 4).

— Uncertainty about the origin of some x;’s. In a clinical experiment, k
diseases are being studied on n patients, some of which may present a

quantitative symptom x; which can be imputed to two or more of the



diseases. We are interested in processing even the observations X; whose
origin, although not precisely established, is narrowed to a certain subset

7; -+, m } of possibilities.
Ji1 Jik,

1

2. FORMULATION

Let ¢ be a number chosen in the intersection of the supports of the
r.v.’s associated with the populations 7, -+, m}.

The population(s) such that its (their) reliability FJ(f) at ¢ is higher
than or equal to that of any other population is (are) referred to as the
“best.”

For example, if 5, j=1,---, k, are lifelengths of comparable products of
different brands, we may be interested in selecting the best one, whose

survival (or reliability) at {=1 year is the highest one.

The selection problem. A selection rule will be denoted by (D) =
(31(D)y++ 5(D)), TE, sj(fD)=1, where sj(fb): Rk—~[0,1] (in general, the
domain of the application could be thought of as an arbitrary space) is the
probability that 5 is selected as the best population after that the data D is
observed. A selection rule s(D) is called nonrandomized if all its components
sj(fb) can be only 0 or 1, otherwise it is a randomized rule. In this work, we
restrict our attention to nonrandomized selections.

The goal of our selection problem is to derive a minimax type
selection rule for choosing a best population, given the data D.

For each given value x; €x, let II; be the random population which
generated the observed value x; and let py(j) =P[ II; = ] be a given prior
evaluation of the probability of the given value x; being a realization of LB
j € PP;. This probability could, for instance, be based on some information,
possibly inferred from previous experiments, that we have on the Fj(u)’s.

For each p, a classification of our set of observations can be generated
by randomly choosing for each x; one parent population from the set {7y, -,
T} with respective probabilities p;(1),++ pi(k), where pi(j) > 0 if j € PP;, or
p;(j) = 0 otherwise, z; pi(G) =1

For each i € {1,++, n}, we denote by PP;" = {j;} the set of cardinality 1



containing the subscript of that specific population =, j; € PP;, which our
1
random classification attributes to the observation x;, and call a
“classification” any set (PP], ---, PPR).
The space of all possible classifications which can be generated in the

manner described above, is denoted by %:

% = { (PP}, .-, PPY): PPF = {j;}, j; € PP; for each i € {1,---, n} }.
(2.1)

The reliability at £ of each population 7 can be estimated through the
corresponding empirical c.d.f.. However, in our problem, together with the
sampling error component, which makes, for each j € {1,---, k}, the empirical
c.d.f., say f'j(u), differ from the underlying c.d.f. Fj(u), there is another
source of uncertainty, due to the fact that the true parent population of
some of the observed values x; is not precisely known, and the empirical
c.d.f. computed after the classification (PP%, .-, PP}), say ﬁ‘;‘ (u), may
randomly differ from the empirical c.d.f. Fj(u), which is not known (since
some observations are only partially classified).

We adopt a conservative point of view, according to which we want to
protect ourselves against the selection of a population with high unreliability
at time . This is reflected in the following minimax type criterion, referred
to as a-minimax.

In determining a selection rule s(9) which is c-minimax with respect
to a loss £, the quantity to be minimized for selecting the best population is
ﬁf,a(j) defined as T:Ig,a(j) = sup {y: v €lg 4(i)}, and Ig o(i) is the shortest
interval which contains the loss £ with probability (1-a), « € (0,1). Note
that the loss is chosen in an appropriate way, in order to penalize the choice

of “unreliable” populations. In particular, we define the loss as:

L( (D), F1(§), ey Fk(f) ) = I—F-*(f) (2.2)

where j* is such that sj*(ﬁ))=1, i.e., our loss is given by the unreliability at
time ¢ of the selected population. Briefly, we can state our o-minimax
criterion as follows:

je m L, Sy {y:y€lg ()} (2.3)
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where the interval I (j) is such that
P[ FJ(E) € Iﬂ),a(j) ] = 1-a, j=1,-- k. (2.4)
3. MAIN RESULTS: LARGE SAMPLE APPROXIMATION

We are not able to construct an interval which contains the loss
function with probability equal to (l1-a), however, we can provide an
asymptotic approximation.

For each j € {1,--, k}, let Fj(u) be the (unknown) empirical c.d.f. of
the r.v. 5

Fj(u) = -I}—J| {1] x<u, x; comes from ; } |

where n; is the (unknown) number of observations which are realizations

from F; (u).
Denoting by v the number of observations which certainly have been

drawn from m;

sy = 11| PP=(i} } | (3.1
let l%‘j(u) be the corresponding empirical c.d.f.:

L1{i] x<u, PP=(i} } |- (3.2)

Fj(u) ;

Finally, denote by FJ*(u) the empirical c.d.f. of the r.v. 5 computed
using the observations X;, i=1,++, n, such that PP{={j}, which, according to

a specific classification (PPY, ..., PPL), are considered realizations of my:

ey Ll x5 <u, PPI=(i} ) |
i) =T eEr=e |

J (3.3)

Denoting



and
pj(u) = |{i] x;>u, j€ PP, IPPiI >11}| (3.5)

the following lemma holds.

Lemma 1. For each j € {1,---, k} and any fixed u, we have

) = gt ) = oy B (3)
R v A Ai(u
S;(u) = sup FJ*(u) = v j\j(u) Fj(u) + ;/-J—_:(T)(u) (3.7)

Hence, as to the unknown empirical c.d.f. f*’j(u), which, for some

classification (PP7, ---, PP}), must necessarily be equal to ]?‘J* (u), we have
0 < L) < Fi(u) < Sj(u) < L (3.8)

We also have, for any fixed u and ﬁ‘j (u),

VJL]_)I& IJ( u) = Fj(u) = Vjirgo S;(u) (3.9)
(u)+A:(u
if, as v;—co0, ﬁ-—(—)—J() — 0.
J VJ

Thus, for Y large and a relatively small number of partially classified
observations, any point in the interval [I( )s SJ(u)] can be considered an
approximate value to the empirical c.d.f. FJ( u). We will, hence, consider this

approximate value:

) + 8w 1 ~ Fya). (3.10)

DNo—

ﬁ-‘j(u)
Now, observing that, for any u,



| pi) + A(u)
and hence asymptotically, as V=00 and -——7——— — 0, we have n; ~ V5, a

. . . J . . .
(1-a) approximate confidence interval for our loss function is obtainable

from the following normal approximation:

P[Le o) < Fy(8) < Ueoi) ] = 1-a (3.11)
where
fig,a(J) = max{0, L, (i)}, and Ue (i) = min{l, Ue oli)}
(3.12)
and . .
. & 1-%:(£)).1
Le al) = (6) - 2y (319
. 3 1-§:(6)1
Ug,oli) = 85(6) + 2(o9) [ © (uj J(E))}z (3.14)

where 7,y is the value cutting off the area a/2 in the upper tail of the
standard normal distribution.

Alternate limits of the interval, taking into account a correction for
continuity bringing normal curve probabilities into closer agreement with
binomial probabilities, are obtained by replacing (3.13) and (3.14) with the
following two expressions (cf., Fleiss (1981), p. 14):

(2Vj T}'j(f) + Z(2a/2)_1)
2(v; + Z(za/2))

L,E,a(j) =

oy | Zagay — (2+E) + 485(6) (v5(1-8(€)) + 12
- : (3.15)
2(1/j + z(2a/2))

() = (2Vj ﬁ"_,(f) + Z(201/2) +1)
& 2(VJ + Z(2a/2))

U,



N

Z(a/2) [Z(2a/2) + (2—1713) +4%;(6) (Vj(l—ffj(f)) -1]
+ 3 : (3.16)
2(v5 + Z{ayz)

As a consequence of (3.11), an o-minimax selection is §¥(D) = (s7(D),

sﬁ(ﬁ))) such that sfk*(ﬂ)) =1, s*(ﬂ)) =0 for any other j #j*, and j* is such

In the event that there are more than one population with the same

Ty

that U£ a( *) =

value U €, o(i%), we might choose, among these, the one (or one of those) for
which f"f,a(j*) is minimum. In fact, once we know, for instance, that with
two given selections we have the same (probable) maximum loss, in absence
of any type of information about the underlying distributions, we may want
to further subselect the ome for which the (probable) minimum loss is

smaller.

Proof of Lemma 1. Denote, for any classification (PP¥, .-, PP}), by
the symbol Af(u) (the symbol p¥ (u)) the number of the partially classified
observations, less than or equal to (greater than) u, which the classification
(PP%,..., PP}) attributes to 5 1=1y - ki

/\J’-"(u) = | {i]| x<u, PP{={j}, |PP;|>1}| (3.17)
pr(u) = {1 | x;>u, PP{={j}, |PP;|>1 } | (3.18)
By (3.4), (3.5), (3.17), and (3.18), we have
Aj(u) = max M(u), and pi(u) = max pi(u) (3.19)
(i.e., the value /\j(u) (the value pj(u)) represents the maximum number of
partially classified observations less or equal (greater) than u which could be

classified as realizations of i varying in all the possible ways the prior

distribution p, and, hence, the consequent classification).



Thus, for each j € {1,---, k}, T € {1,--, uj}, and any fixed u, we have
*
(A(w) = A (@) ) (5 = m5) + (75 + A5(w) ) pff(w) 2 0 (3.20)
ES
& T /\j(u) + N (w) vy < 7 M(u) + 7 pJ?‘(u)+ )\j(u) vy + /\j(u) pj"(u)

J

& T V5 T /\(u)+/\*( u) vy + )\Jfk(u) /\j(u)
< Ty T /\Ji"(u) + T pj"(u)+ /\j(u) v; + /\j(u) /\Ji"(u) + )\j(u) pj“(u)

& (N W) (y+x50)) < (r5+ X)) (75 + AW + £(u))

T + /\Jf"(u) T+ /\j(u)
< .
Vj + /\;(U.) + ,03.‘(11) - Vj + Aj('ll)

(3.21)

Since for some Tj(u), dependent on the fixed u, we must have

Fj(u)=r (u )/1/ we can write

7;(u) + )\*(u) 2 2 Ay(u)
sy o R w R e vy B G

from which statement (3.7) follows, for, by definition (cf., formulae (3.3),

(3.4), and (3.5)), the left hand side of the inequality is the empirical c.d.f.

F*(u) of m; at u under the classification (PP}, --., PPy). Clearly, the value
(u) such that F(u) _—’(J-)-ls 7i(w) = | {i] x<u, PP={j} } |

The proof of statement (3.6) is analogous. For each j€ {1, k},

T € {1,.--, »;}, and any fixed u, we have
(v = 75) A + (p5(a) = p{(w) ) 75 + A(w) p(u) 2 0 (3.23)

& e + X g+ A pyl) - 7 W) - 7y ) 2 0

10



& T+ T pj(u) + /\Jf"(u) v; + /\Jfk(u) pj(u) > T+ T /\Jfk(u) + 7 p;‘(u)

N (75 + AF(@)) (v + p5(w) ) 2 75 (o5 + A (w) + o (w) )
- T+ N (u) 7 (3.24)

>
Vi + /\Jf"(u) + pj"(u) vy + pj(u)

and, hence, similar to (3.21), we must have

'rj(u) + /\Jf"(u) v,

] ) 5(w). (3.25)

* 2
vy + A (u) + pi(w) = v+ pi(u

>>

Note. In line with the a-minimax criterion, we might define as “M-
good” a selection which, given the data D, ensures a confidence level at least
equal to 1-X, A € (0,1), that the chosen population has a reliability at ¢
higher than a certain level, 1-7, say, i.e., P[Fj*(f) > 1—76] > 1-). In general,
the existence of A-good selections depends on the chosen levels Ve and A; in
fact, it is clear that, especially if the values A and Vg are chosen too small,
there may be no A-good populations. When this happens, we may decide
that all the considered populations are not good, or we may want to
“redefine” our concept of goodness by reducing the value 1-A or 1, or
both.

Finally, it may be noticed that a sufficient condition SC for an a-
minimax selection s*(D) to be A-good is SC = {(ﬁg(J*) <Y A (1-A<1-a)}.

4. A NUMERICAL EXAMPLE

In this section, we present an example of application of the proposed
procedure within a generalized version of the competing risk model, where
there may be more than one possible cause of failure in correspondence to

each failure time. A reference on parametric estimation within this model is

11



(Gastaldi, 1993), where further references may be found.

A simulation was carried out in order to reproduce the conditions of a
life-test involving (n=)1000 systems I, of the same type, made of (k=)3
components Cj, j=1, 2, 3, in series. In particular, in order to generate the
data, for each system X, i=1,--,, n, three lifelengths t;;, t;9, t;3 have been
drawn from three different independent absolutely continuous c.d.f.’s G{(u),
Go(u), Gg(u), (with increasing failure rates functions and limited lifelengths)
and, then, the failure time x; of the system has been computed as
x;=min{t;,, t;9, t;3}. The lifelengths tiss i=1,-,n,j=1,-- k, are assumed to
be independent and, for each j =1,---, k, the r.v.’s by + o ty; are identically
distributed (they are lifelengths of the same component). Finally, a masking
has been carried out on the causes of failure, in order to simulate a time-
censored search for the failed component on a small proportion of systems.
The percentage of fully classified observation is 89.9%, while there is 8.4%
observations with PP; = {j;, ja}, {i1, Jo} € {1, 2, 3}, and 1.7% observations
with PP, = {1, 2, 3}. Within the 899 fully classified observations, the 25.25%
are from m;, the 51.06% are from 7y, and the 23.69% are from g; in
particular, we have v =227, vo =459, v3=213. Also, denoting by Vi i the
number of occurrences of the event PP.={j;, jo}, we have vy =46,
Vi3 =16, vgg =22.

In Table I, a portion of the data is listed (the complete data is

available from the authors). The structure of Table I is as follows:
xqy PPuy  Xeo PPyo1) =+ X(so1) PPsoyy

X(200) PP(zoo) X (400) PP(400) ==+ X(1000) PP(1000)

where X(r) denotes the r-th order statistic of the sample x and PP(i) the
associated set of subscripts of possible parent populations.

To the purposes of our example, the data generated as described above
may be thought of as the outcome of a life-testing experiment conducted on
1000 3-component devices E; in which, when a device % fails (because one of
its component fails), the failure time x; is recorded together with a set
PP={j;;» jiki} such that P[the subscript of the failed component is in PP;]

12



= 1. The set PP; might be, for instance, the result of a time-censored search
for the cause of failure.

The distributions of the lifelengths of the components are assumed to
be totally unknown and no hypothesis is made about them, except that one
of independence. (In presence of some distributional information, it is
obvious that selection rules “better” than the one developed here can be
found; cf., discussion in Section 5.)

We want to select the “best” component in the a-minimax sense.

We put 1-a = 0.95 and show in Table II the outcome of the procedure
when applied for several different values of ¢, where the IAJ)S, o(i)’s and the
Ug’a(j)’s are computed according to formulae (3.12), (3.13), and (3.14).

Table I
Simulated Data

X. PPi

i i i i i i i i 1
0.4918 {2} 3.6590 {2} 5.0039 {2} 6.1849 {32} 7.4050 {3}
0.6219 {2} 3.6639 {32 5.0059 {2} 6.1870 {2} 7.4124 {21}
0.6466 { 2} 3.6893 {2} 5.0084 {2} 6.1889 {3} 7.4160 {3}
0.6651 {3} 3.6931 {3} 5.0096 { 3} 6.1912 {1} 7.4160 {12}
0.9001 {1} 3.6949 {23 5.0127 {1} 6.1953 {231} 7.4199 {2}
0.9128 {2} 3.6951 {1} 5.0172 {1} 6.2049 {13} 7.4388 {3}
0.9912 {2} 3.7006 {2} 5.0259 {2} 6.2052 {1} 7.4443 {3}
1.0793 {2} 3.7013 {2} 5.0284 {2} 6.2171 {2} 7.4486 {3}
1.1322 {2} 3.7015 {1} 5.0376 {2} 6.2342 { 3} 7.4548 { 2}
1.1552 {2} 3.7099 {2} 5.0385 {2} 6.2352 {231} 7.4561 {2}
1.2384 {23} 371174 {3} 5.0425 {21 6.2355 {2} 7.4606 { 2 }
1.2571 {2} 3.7265 {1} 5.0443 {3} 6.2418 {1} 7.4613 {3}
1.2649 {2} 3.7446 {2} 5.0508 {1} 6.2482 {2} 7.4726 {3}
1.2800 {2} 3.7446 {3} 5.0543 {2} 6.2762 {1} 74791 {1}
1.3024 {2} 3.7489 {1} 5.0614 {3} 6.2774 {3} 7.4845 {3}
1.3039 {2} 3.7548 {3} 5.0628 {2} 6.2804 {3} 7.4873 {1}
1.3110 {2} 3.7600 {2} 5.0727 {2} 6.2848 {2} 7.4890 {1}
1.3182 { 2} 3.7644 {2} 5.0752 {1} 6.3056 {1} 7.4938 {2}
1.3245 {31} 3.7701 {2} 5.0809 {12 6.3105 {1} 7.5068 {2}
1.3305 {1} 3.7725 {31 5.0831 {3} 6.3144 {3} 7.5223 {2}
1.3305 {2} 3.7744 {2} 5.0905 {1} 6.3162 {1} 7.5335 {2}
1.4326 {1} 3.7796 {1} 5.0938 { 2} 6.3207 {13} 7.5345 {1}

here 165 rows have been omitted
35585 {21} 49279 {2} 6.1117 {2} 7.2990 {1} 9.3427 {32}
3.5597 {2} 4.9330 {32} 6.1136 {1} 7.3071 {231} 9.3627 {2}
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35630 {3)  4.9491 {3}  6.1166 {2}  7.3160 {31} 9.3895 {1}
35672 {2}  4.9497 {3}  6.1197 {1}  7.3166 {1}  9.3914 {1}
35838 {3}  4.9549 {2} 61272 {3}  7.3190 {2}  9.3992 {2}
35919 {3}  4.9503 {2}  6.1204 {2}  7.3341 {21} 9.4099 {2}
35924 {2} 49628 {3} 6.1318 {3} 73371 {1}  9.4311 {1}
35937 {3) 49669 {2} 61333 {21} 7.3378 {2}  9.4464 {2}
36014 {2} 49733 {3}  6.1430 {3} 73662 {1}  9.4929 {1}
36050 {1} 49763 {2}  6.1578 {3}  7.3725 {2}  9.4929 {3}
36211 {1} 49814 {3} 6.1612 {2} 73727 {2}  0.6042 {2}
3.6424 {2} 49835 {3}  6.1613 {1} 74010 {2}  9.6431 {3}
36567 {3} 49852 {2}  6.1688 {2}  7.4029 {1}  9.7265 {2 }.

Table II shows the selected populations, in correspondence to several

values of ¢ and with a=0.05. In particular, the structure of Table II is as

follows:

6 ﬁf,a(l)
i‘f,a(l)

repeated for various {’s.

A

Ug o(2)
tf,a(z)

A

U&,a(3)
i‘{,a(3)

Table II

{subscript of the selected 7rj}

Confidence intervals

¢ O o(D&Le o) Ug ol o) T (@8Le (3 7

0.4 0.00000 0.00000 0.00000 {lor2or3}
0.00000 0.00000 0.00000

0.5 0.00000 0.00610 0.00000 {lor3}
0.00000 0.00000 0.00000

0.6 0.00000 0.00610 0.00000 {lor3}
0.00000 0.00000 0.00000

0.7 0.00000 0.01311 0.01291 {1}
0.00000 0.00000 0.00000

0.8 0.00000 0.01311 0.01291 {1}
0.00000 0.00000 0.00000

0.9 0.00000 0.01311 0.01291 {1}
0.00000 0.00000 0.00000

1.0 0.01188 0.01916 0.01291 {1}
0.00000 0.00092 0.00000

1.1 0.01188 0.02203 0.01291 {1}
0.00000 0.00207 0.00000

1.2 0.01188 0.02757 0.01291 {1}
0.00000 0.00456 0.00000

1.3 0.01188 0.03694 0.01738 {1}
0.00000 0.00941 0.00000 |
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1.4 0.02271 0.04960 0.02144 {3}
0.00000 0.01682 0.00000

1.5 0.02881 0.05943 0.02144 {3}
0.00000 0.02305 0.00000

1.6 0.02881 0.05943 0.02144 {3}
0.00000 0.02305 0.00000

1.7 0.02881 0.06907 0.02831 {3}
0.00000 0.02947 0.00000

1.8 0.02881 0.07982 0.03814 {1}
0.00000 0.03692 0.00096

7.8 0.88625 0.89371 0.90715 {1}
0.79047 0.83063 0.81413

7.9 0.90118 0.89822 0.91976 {2}
0.80968 0.83613 0.83106

8.0 0.91102 0.90542 0.93037 {2}
0.82261 0.84494 0.84567

8.1 0.92239 0.91525 0.93037 {2}
0.83788 0.85715 0.84567

8.2 0.93044 0.92324 0.93569 {2}
0.84893 0.86721 0.85315

8.3 0.93841 0.92767 0.94944 {2}
0.86010 0.87284 0.87305

8.4 0.94630 0.94077 0.95616 {2}
0.87142 0.88983 0.88315

8.5 0.95875 0.95453 0.95948 {2}
0.88995 0.90828 0.88824

8.6 0.96768 0.95958 0.97553 {2}
0.90391 0.91526 0.91424

8.7 0.97060 0.96949 0.98163 {2}
0.90862 0.92940 0.92496

8.8 0.97785 0.97834 0.98901 {1}
0.92079 0.94271 0.93897

8.9 0.97785 0.97990 0.99176 {1}
0.92079 0.94515 0.94463

9.0 0.98063 0.97990 0.99441 {2}
0.92565 0.94515 0.95041

9.1 0.98748 0.98380 0.99691 {2}
0.93829 0.95140 0.95632

9.2 0.99745 0.99401 1.00000 {2}
0.95984 0.96954 0.96873

9.3 0.99955 0.99534 1.00000 {2}
0.96541 0.97222 0.97539

9.4 1.00000 1.00000 1.00000 {3}
0.98098 0.98380 0.97930

9.5 1.00000 1.00000 1.00000 {3}
1.00000 0.99020 0.98709

9.6 1.00000 1.00000 1.00000 {3}
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1.00000 0.99020 0.98709

9.7 1.00000 1.00000 1.00000 {2}
1.00000 0.99390 1.00000

9.8 1.00000 1.00000 1.00000 {lor2or3}
1.00000 1.00000 1.00000.

Interpretation of the results. The reader may have noticed that the
set-up we have considered in our example presents some specific additional
feature compared with the general framework described in Section 3. In

particular, the fact that the observations x; are defined as
xi=min{ti1, tey tik} (4.1)

has important consequences on the interpretation of the results for, in this

case, each one of the k samples
{ %] ie{l,-, n}, x; is generated by G;(u) }, (4.2)

by (4.1), is not a random samples drawn from Gj(u), but a random sample
from a different c.d.f., say Fj(u), clearly with lower reliability for each u,
namely, /\j ()

Fi(6) = K j I dFy(u) (4.3)

A
o0lg =Y

for any £ >0, where Kj is a normalizing constant, Fy(u) is the system
lifelength distribution, and /\j(u), )y:(u) denote the failure rate of C; and the
system failure rate, respectively:

dG;(u
=), = Eaw. @

The value J(O, fl [/\j(u)//\z(u)] dFy(u) may be called mean relative
failure rate of Cj up to time ¢ and denoted by MRFRJ-(§). The values
Kj = MRFRj(oo), j=1,-+ k, may be considered mere constants which reduce
the MRFRj(f)’s to vary within the unit interval.

Recalling that, the a-minimax seAlected component Cj* at time ¢ is to
be interpreted as the one for which Uf,o.os(j) is minimum w.r.t. j, where

ﬂg,o.os(j) is the probable maximum aneliability Fj(f), we can rephrase our
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interpretation in terms of Gy (lifelengths of the components), to which we
are mostly interested, as follows: Cj* is the component for which the
probable maximum MRFRj*(f) is the lowest.

In our specific example, C; appears to be, almost uniformly w.r.t. ¢,
the “best” component in the sense specified above.

In Figures I and II the upper and lower limits of the confidence
intervals, viewed as functions of ¢, are represented in order to get an idea
about the shape of the c.d.f.’s Fj(f)

In Table III, the values of the bounds Ij(u) and Sj(u), in
correspondence to different values of u, are reported. According to inequality
(3.8), for any fixed u, the set [ij(u), Sj(u)] certainly contains the unknown
empirical c.d.f. F;(u) relative to the c.d.f. Fj(u).

The structure of Table III is the following:

u S §o(u) S4(u)
I (w) Iy(u) Ig(u)

repeated for some values of u.

Place of Fig. I

Place of Fig. II
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Table I

Bounds for the empirical c.d.f.’s

u §y(w)&d;(u) Sq(u)kiy(n) Sa(u)&ig(u)
0.4 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
0.5 0.00000 0.00218 0.00000
0.00000 0.00184 0.00000
L0 0.00441 0.01089 0.00469
0.00327 0.00919 0.00373
1.5 0.01754 0.04565 0.01395
0.00984 0.03683 0.00376
2.0 0.02620 0.07576 0.03241
0.01316 0.05915 0.01509
2.5 0.04783 0.12095 0.07870
0.02640 0.09630 0.05283
3.0 0.09052 0.16989 0.12844
0.05316 0.13569 0.08745
3.5 0.14103 0.25214 0.21818
0.08696 0.20374 0.15709
4.0 0.21849 0.32770 0.30045
0.13898 0.26604 0.22093
4.5 0.31020 039749 0.36726
0.20139 0.32571 0.27451
5.0 0.41600 0.46584 0.45652
0.28622 0.38654 0.35060
5.5 0.49805 0.56707 0.53846
0.35507 0.48141 0.42510
6.0 0.57090 0.64940 0.62810
0.42264 0.56487 0.51464
6.5 0.68000 0.70866 0.71084
0.53876 0.62828 0.60776
7.0 0.77305 0.78378 0.78039
0.64940 0.71546 0.69469
7.5 0.84429 0.84601 0.85496
0.74590 0.79245 0.79909
8.0 0.90169 0.89474 0.90566
0.83193 0.85563 0.87037
8.5 0.94352 0.94238 0.93609
0.90517 0.92043 0.91163
9.0 0.96689 0.97032 0.97753
0.93939 0.95474 0.96729
9.5 1.00000 0.99632 0.99627
1.00000 0.99564 0.99531
9.8 1.00000 1.00000 1.00000
100000 1.00000 1.00000.
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5. DISCUSSION: THE SMALL SAMPLE CASE

While the advantages of the model with partially classified data
should be readily apparent, it is also evident that it will, in general, require
a larger amount of data than a similar situation with fully classified data.
This need increases with increased unclassification. Thus, while small
sample situations can certainly be considered, in practice, statistical
analyses based on partially classified data will require relatively large
amount of data to be meaningful, especially if the populations are many and
the unclassification is extensive.

The reader may have noticed that, when we are dealing with large
amount of data and relatively few unclassified or partially classified
observations, there is no practical difference between using the a-minimax
criterion or making a decision on the basis of the (unknown) empirical
reliability function 1-F. (E) (~1- B, (E)) In fact, it is immediate to notice
that, asymptotically, the a—m1mmax criterion (2.3) is equivalent to the

following;:
(). 5.1
somin B (5.1)
In other words, under the asymptotic conditions of our approximation,
our procedure tends to the most intuitive selection rule which we may think
of when dealing with fully classified data, consisting of choosing (one of) the
population(s) with highest empirical reliability at the fixed time ¢, and,
hence, by the Glivenko-Cantelli theorem:

P[ lim sup, | F - Fj(u) |=0]=1, (5.2)

V=% ue

it is asymptotically equivalent to

Fy(9). (53)

JE{l -, k}

We will refer to this property of our selection procedures as
consistency, in consideration of the fact that the probability of a correct

selection (PCS)
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PCS = P[F,(¢) < jeﬁl,i-‘-‘-, ) F(& | F(§ < jeﬁlf.‘.‘., Q Fj(é)(; y

increases to 1 as pj—0o.

The agreement with the intuitive rule (5.1) for choosing the most
reliable 5 at time ¢ with fully classified data assures us that, at least
asymptotically, the a-minimax criterion is justifiable and acceptable.

The fact that, asymptotically and with relatively small
unclassification, using a procedure substantially based on the Fj(f)’s to
make a decision is equivalent, to practical purposes, to using the (unknown)
Fj(ﬁ)’s should be intuitive and expected. However, our study yields a formal
elicitation of the analytical conditions under which this fact occurs. Several
problems, instead, arise in the small sample case, especially if the Vj’s are
very different and there is extensive unclassification. (By small or moderate
sample case, clearly, we mean a situation where the ratio n/k is small or
moderate). In fact, even if we assume that confidence intervals for the loss
function were available, their lengths would be affected by the values Vj’s, SO
that some confidence intervals could be relatively larger than others as a
result of small values of ;. Thus, the comparisons of the underlying
reliabilities would be disturbed by the circumstance that we possess interval
estimates for them which have different degrees of precision.

In the small or moderate sample case, we turn, hence, to a different
selection criterion which also generalizes, as the a-minimax criterion, the
intuitive rule (5.1) we would apply if the data were fully classified and that,
furthermore, takes into account the “prior” distributions p;. In fact, as in
the small sample case the interval [ij(ﬁ), gj(ﬁ)] which contains f“J(f) is much
larger, the necessity of distinguishing, within such an interval, the value(s)
which, according to our prior beliefs, are most likely equal to the (unknown)
]f:‘j(é) becomes more impelling, while, when the amount of data is large, prior
beliefs do not count very much.

Bearing in mind the above considerations, in the small sample case,

we could consider the following empirical minimax type criterion:

: *
o el Y (6) (5.5)
where ¥ () is such that
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(5.6)

max
ye QJ(%)

PLE(6) = y5(0) | =

and {I_JJ(%) ={y | 3 p such that the consequent classification (PPY, --., PP})
yields FJ*({) =y}, ‘gj(%) C [Ij(f), SJ(E)], which consists in choosing (one of)
7. such that the most probable (a priori) value assumed

J A
by the unknown c.d.f. Fj(ﬁ) is minimum. In such a way, we include the prior

the population(s)

information in our analysis by using it to weight the various possible values
in the interval [ij(.f), gj(f)]

Virtually, problem (5.2) can always be solved since, clearly, the set
‘;)J(%) is finite, although, in practice, computational problems may arise
when n is large (especially if also k is large).

Recalling that the a-minimax criterion is asymptotically equivalent to
the intuitive rule (5.1) and that, by (3.9), the length of [ij(f), gj(f)] tends to
zero, clearly, the above criterion (5.2) is also asymptotically equivalent to

the o-minimax and, hence, consistent.

Example 5.1. Below, we show an example where we analyze the data
contained in Table IV, which can be thought of as the outcome of a life-test

conducted on 25 two-component series systems.

Table IV
Simulated Data
03028{1)}  43360{1}  7.7756{1}  9.2408{2)}  10.0576 {2}
1.9814{12) 48281{12} 8.1553{21} 9.3783{21} 10.1221{2}
35253 {1}  5.1428{12} 9.1514{2}  95131{21} 10.2950 {21}
37418{1}  7.3832{12} 9.2050{12} 9.9456{21} 11.1203{2}
42188{12) 75144{12} 9.2304{21} 9.9936{21} 117295 {2 ).

We suppose that we are interested in comparing the two populations

(lifelengths of the two components) at time ¢ = 7. For simplicity, we assume
that the prior distributions p;=(p;(1), p;(2))=p, for the unclassified

observations {x; | i€ {1, n}, |PP;| =2}, are constant w.r.t. i, and show in
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Tables V —VIII, the distribution of 13‘1(5) and F2(£) for various choices of
p=(p(1), p(2)). Clearly, the probability values in Tables V —VIII have

been computed as

PIEO)=y]= T Pl (PP}, -+ PPR) I I3 (FF(€)  (B.7)

where
P[ (PP*, . PP:) ] = Hl E P1 pP* (5'8)
i=1j=
We have processed the data also for p=(1, 0) and for p=(0, 1) and

obtained:

P[F,(6) = 04211 ] =1, P[ Fy(¢) =0 ] =1
in the first case and

P{Fy(¢)= 08]=1,P[Fy(¢)=02]=1

in the second case.

Analyzing the data for different choices of the prior distributions, as
we have done below, allows the user to control in part the effect of his prior
beliefs and to find out at what extent the decision that the outcome of the
procedure suggests is influenced by his own prior information. This 1is
important in presence of small samples, when it is clear that, especially in
situations in which the differences of the reliabilities at the fixed time are
not marked, wrong prior beliefs could easily result in incorrect decisions.

The following are the values of yJ’-" (€) obtained in correspondence of the

various prior distributions considered with £ =7, cf., Tables V - VIII:

yi(€) =0.4211, y5(&)=0 with p = (1, 0)
yi(6) = y3(€) =0 with p = (0.6, 0.4)
yi(§) =0 5455 y3(£) =0.2 with p = (0.4, 0.6)
Y’f(f) y;({) =0.2 with p = (0, 1).

For all the prior distributions considered, we have obtained
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y1(€) > y3(é)-

Thus, if our prior beliefs are well represented by either one of the above four
distributions, we should decide, according to (5.2), that the second
component has a (probable) maximum MRFR(7) lower than the first
because the most probable value of F2(7) is lower than the most probable
value of Fl(7). This is, we think, also the decision that any user would
intuitively make just on the basis of the data in Table IV, without any
further statistical analysis beyond the simple observation that all the fully
classified x;’s which are less than ¢=7 are due to failure of the first
component.

We should, also, be aware that our decision is certainly influenced by
the assumption of constancy of the p;’s of the unclassified observations and
that certainly there exist some distributions which would make us change
our decision, even though we may retain that such distribution are not

reasonable. In fact, by Lemma 1, there must exist two distribution such that

yH(€) =1;(€) = 0.2667 and y3(¢£) = S4() =04

or, conversely,

yH(€) = $1(€) = 0.8889 and y3(é) =15(¢) =0.
In particular, by (3.6) and (3.7), such distributions clearly are:

p; = (0, 1) for all unclassified x; <u, p;= (1, 0) for all unclassified x; >u

p; = (1, 0) for all unclassified x; <u, p; = (0, 1) for all unclassified x; >u,
respectively. In fact, it can easily be verified from Table IV that, if we
assign the ,\j(f) =4 unclassified observations less than £ =7 to =, and the
remaining pj(f) =10 unclassified observations greater than =7 to =, as
dictated by the first of the two above distributions, we have

Fi(7) = ﬁﬁ =0.2667, and Fo(7) = ﬁ—ﬁ = 0.4,

while, if we assign the ,\j(f) = 4 unclassified observations less than £ =7 to =,
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and the remaining pj(ﬁ) =10 unclassified observations greater than {=7 to

7o, as dictated by the second prior distribution, we obtain

Note that the assumption of constancy of the p;’s of the unclassified
observations w.r.t. i could be justified, for instance, in a situation where our
prior beliefs (or information drawn from previous experiments) make us
think that the failure rates functions /\j(u), j=1, 2, of the Fj(u)’s remain
constant (at least approximately) w.r.t. the time. In this case, our prior
beliefs about the relative magnitude of the failure rate X could be
represented by p;(j) =X (A +2A9) = o /As; for every unclassified x;. Clearly,
different beliefs about the failure rate functions (increasing, decreasing,

bathtub shaped) can be reflected through appropriate choices of the p;’s.

Table V
Possible values for F1(7) and corresponding probabilities when p = (0.6, 0.4)

.2667 0.00015479
.2857 0.00103196 .5333 0.03250662
.3077 0.00309587 5385 0.06934745
.3125 0.00092876 .5455 0.03852636
.3333 0.01169550 .5556 0.00652298
.3529 0.00208971 5714 0.02627708
3571 0.01857521 .5833 0.03852636
.3636 0.00642106 .6000 0.01467671
.3750 0.01393141 .6154 0.01444738
.3846 0.03302259 .6250 0.00163075
.3889 0.00208971 .6364 0.01467671
.4000 0.04693107 .6667 0.00921321
4118 0.01393141 .7000 0.00366918
4167 0.03852636 7143 0.00024159
4211 0.00078364 7273 0.00137594
.4286 0.07430084 .7500 0.00054358
4375 0.04179422 7778 0.00054358
4444 0.00807808 .8000 0.00020653
.4545 0.03082109 .8333 0.00001611
4615 0.08668431 8571 0.00003624
4667 0.07430084 .8750 0.00003624
.4706 0.01567283 .8889 0.00001359.
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Table VI
Possible values for F2(7) and corresponding probabilities when p = (0.6, 0.4)

.1818 0.07430084
.0588 0.00003624 1875 0.00652298
.0625 0.00054358 .2000 0.05891973
.0667 0.00366918 .2105 0.00004027
0714 0.01467671 2143 0.03082109
0769 0.03852636 2222 0.01420320
.0833 0.06934745 .2308 0.03852636
.0909 0.08668431 .2353 0.00108716
.1000 0.07430084 .2500 0.03796611
111 0.04183046 .2667 0.00513685
1176 0.00054358 2727 0.01857521
.1250 0.01760058 2857 0.00642106
.1333 0.01467671 3000 0.00619174
.1429 0.04061607 3077 0.00550377
.1538 0.06934745 3333 0.00402463
1579 0.00001611 .3636 0.00103196
.1667 0.08692590 .4000 0.00015479.
1765 0.00163075
Table VII

Possible values for 13‘1(7) and corresponding probabilities when p = (0.4, 0.6)

.2667 0.00001359 .5000 0.20210456
.2857 0.00020384 5333 0.00285380
.3077 0.00137594 .5385 0.03082109
.3125 0.00003624
.3333 0.00604735 .5556 0.07430084
.3529 0.00003624 5714 0.02080968
3571 0.00366918 .5833 0.03852636
.3636 0.01444738 .6000 0.07430084
.3750 0.00054358 6154 0.00642106
.3846 0.01467671 .6250 0.04179422
.3889 0.00001611 .6364 0.03302259
.4000 0.02967447 .6667 0.05252226
4118 0.00024159 .7000 0.01857521
4167 0.03852636 7143 0.01393141
4211 0.00000268 7273 0.00309587
.4286 0.01467671 7500 0.01393141
4375 0.00163075 7778 0.00619174
.4444 0.03254688 .8000 0.00181560
.4545 0.06934745 .8333 0.00208971
4615 0.03852636 .8571 0.00208971
4667 0.00652298 .8750 0.00092876
4706 0.00027179 .8889 0.00015479.
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Table VIII
Possible values for F2(7) and corresponding probabilities when p = (0.4, 0.6)

.0000 0.02560000 .1818 0.01467671

.0588 0.00092876 .1875 0.07430084

.0625 0.00619174
.0667 0.01857521 .2105 0.00522428

0714 0.03302259 .2143 0.06934745

.0769 0.03852636 .2222 0.01621641

.0833 0.03082109 .2308 0.03852636

.0909 0.01712283 .2353 0.02786281

.1000 0.00652298 .2500 0.04721956

1111 0.00372046 .2667 0.02600529

1176 0.01393141 2727 0.00366918

.1250 0.04203581 .2857 0.01444738

.1333 0.07430084 .3000 0.00054358

.1429 0.08670042 .3077 0.00550377

.1538 0.06934745 .3333 0.00141218

1579 0.00208971 .3636 0.00020384

.1667 0.05245777 .4000 0.00001359.
1765 0.04179422

Finally, it may be interesting to compare the previous results with the
decision made using the o-minimax criterion, although, in this case, all the
reservations and criticisms made previously for this method in presence of
small samples apply fully. To this purpose, in Table IX we have reported
the values of the I:&a(j)’s and ﬂf,a(j)’s, with o = 0.05, computed according
to formulae (3.12), (3.13), and (3.14). In table X, confidence intervals are
computed by (3.15) and (3.16), which take into account a correction for

continuity.
Table IX
Confidence intervals
i3 ﬁf,a(l)&f’f,a(l) ﬁ&,a(z)&f’ﬁ,a@) selected population
0.3 0.00000 0.00000 {lor2}
0.00000 0.00000
1.0 0.41751 0.00000 {2}
0.00000 0.00000
2.0 0.54135 0.27750 {2}
0.00000 0.00000
3.0 0.54135 0.27750 {2}
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0.00000 0.00000

4.0 0.84881 0.27750 {2}
0.00000 0.00000

5.0 0.99733 0.46487 {2}
0.12767 0.00000

6.0 1.00000 0.52007 {2}
0.14484 0.00000

7.0 1.00000 0.52007] {2}
0.14484 0.00000

8.0 1.00000 0.59648 {2}
0.28775 0.00000

9.0 1.00000 0.62415 {2}
0.30992 0.00000

10.0 1.00000 0.93654 {2}
0.67440 0.13864

11.0 1.00000 1.00000 {1}
1.00000 0.45369

12.0 1.00000 1.00000 {lor2}
1.00000 1.00000.

Table X
Corrected confidence intervals
¢ ﬁe’a(l)&fls,a(l) ﬂ&,a(z)&f‘g,am) selected population

0.4 0.64559 0.48319 {2}
0.00000 0.00325

1.0 0.64559 0.48319 {2}
0.00000 0.00325

2.0 0.69719 0.55262 {2}
0.00024 0.00000

3.0 0.69719 0.55262 {2}
0.00024 0.00000

4.0 0.83890 0.55262 {2}
0.07186 0.00000

5.0 0.91148 0.63518 {2}
0.14235 0.00189

6.0 0.91812 0.66187 {2}
0.15066 0.00955

70 0.01812 0.66187) {2}
0.15066 0.00955

8.0 0.96132 0.70001 {2}
0.21837 0.02393

9.0 0.96636 0.71411 {2}
0.22862 0.03027

10.0 0.99962 0.88049 {2}
0.38092 0.15527

11.0 0.98132 0.97965 {2}
0.45376 0.31965.
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Table XI, gives the upper and lower bound of the unknown empirical
c.df’s F (u) for some values of u. In this case, the influence of the prior
mformatlon is much more important, due to the great lengths of the

intervals [Ij(u), Sj(u)].

Table XI
Ezact bounds for the empirical c.d.f.’s
u S1(w)&ly(u) S2(u)&12(u)
0.3 0.00000 0.00000
0.00000 0.00000
1.0 0.20000 0.00000
0.05263 0.00000
2.0 0.33333 0.14286
0.05556 0.00000
3.0 0.33333 0.14286
0.05556 0.00000
4.0 0.66667 0.14286
0.16667 0.00000
5.0 0.87500 0.33333
0.25000 0.00000
6.0 0.88889 0.40000
0.26667 0.00000
(7.0 0.88389 0.40000]
[0:26667 0.00000]
8.0 1.00000 0.50000
0.38462 0.00000
9.0 1.00000 0.563846
0.41667 0.00000
10.0 1.00000 0.78947
0.83333 0.28571
11.0 1.00000 0.90000
1.00000 0.66667
12.0 1.00000 1.00000
1.00000 1.00000.

The main difficulty we have encountered in our attempts of making
inferences about the underlying distributions Fj(u)’s was the absence of any
kind of assumptions about them, which has as a consequence the fact that
we cannot say much more than giving an interval [ij(u), Sj(u)] which
certainly contains F( ). In order to be able to say something more about
the probability of the points in [I (u), S( )] to be equal to the (unknown)
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empirical c.d.f., we had to introduce some prior knowledge about the
probability of each value x; being generated by each one of the populations
5 The introduction of additional information was done in this way in order
to remain within a nonparametric framework. Another way could have been
that one of considering a parametric set-up, by making some distributional
hypotheses on the Fj(u)’s. The approach with prior probabilities has the
advantage to express explicitly the probability of each x; being from ;,
while, in a parametric approach, the additional information we need is
somehow incorporated in the parametric model. On the other hand, it has
the disadvantage to put the user in the condition to have to express
explicitly his degree of belief of each value being from each 5 which can be
more embarrassing and may seem more arbitrary than making some
distributional assumption. We have, however, seen in Example 5.1 that this
arbitrariness may be partially controlled by considering various alternative

prior distributions and comparing the results.
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