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Suppose we observe n i.i.d. random vectors Yy,---,Y, from Y =
X + ¢, where € is a noise component with a known distribution,
and X has an unknown density f which belongs to a smooth
function class. This paper focuses on the relationship between
the dimension of Y to that of the minimax rate in which f(x) can
be estimated using Yi,...,Y, under squared error loss. The re-
sults obtained reveal that the effect of dimension on the minimax
rate depends crucially on the smoothness of the error distribu-
tion of £. In particular, the minimax rate is independent of the
dimension in extremely smooth cases.

1 Introduction

We begin our discussion with the model Y = X + ¢ where X and ¢ are
independent p-dimensional random vectors with densities f and f. respec-
tively. Here we assume that f. is known. In practice, X usually represents
a true value and ¢ is a measurement error. The observation Y can then be
thought of as the convolution of X and ¢. Suppose we observe a random
sample Y1, Y3, ...,Y, according to the above model, and we want to estimate
the unknown density f(x) at X = x.

In the univariate case (p = 1), this problem has been widely studied.
Many different estimators have been proposed and their consistency as well
as convergence rates under different loss functions have been obtained. Some
recent works include Stefanski (1990), Devroye (1989), Zhang (1990) among
others. It is well known that the convergence rate depends heavily on the
smoothness of the distribution of ¢ [see for example, Carroll and Hall (1988),
Stefanski and Carroll (1990), Zhang (1990) and Fan (1991a, b, 1993)]. In
particular, Fan exhibited a class of mixing density kernel estimators that
achieves the optimal convergence rates for a number of commonly encoun-
tered error distributions.

1 AMS 1991 subject classifications. Primary 62H12; secondary 62G05, 62G99.
Key words and phrases. Deconvolution, multivariate kernel estimation, optimal conver-
gence rate, characteristic function.
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In this paper, we consider the analogous problem of multivariate decon-
volution under squared error loss. Section 2 gives a brief review of some
multivariate distribution theory as well as a discussion of the kind of mul-
tivariate error distributions that we are concerned with here. In particular,
we define three classes of multivariate probability density functions, namely
classes A, B and C (see Definitions 1 to 3), based on the rate of decay of
their characteristic functions. This is illustrated by a number of examples.
Section 3 proposes a class of multivariate mixing density kernel estimators
for f(x). This class is a generalization of the 1-dimensional mixing density
kernel estimators of Fan (1991a). Upper bounds for the convergence rates
of these estimators are established for various error distributions and f be-
longing to a number of smooth function classes. In particular, Theorems
1, 2 and 3 give upper bounds for the convergence rates when ¢ belongs to
classes A, B and C respectively. Corresponding lower bounds for the opti-
mal convergence rates are also obtained in Section 4 (see Theorems 6, 7 and
8). The results of Sections 3 and 4 indicate that this class of multivariate
mixing density kernel estimators achieves the optimal convergence rates for
error distributions which belong to classes A and C. In particular, it is in-
teresting to note that if ¢ belongs to class A (i.e. extremely smooth), the
optimal convergence rate does not depend on the dimension p.

2 Definitions and examples

Throughout this paper, we shall use capital letters X,Y, etc., to denote p-
dimensional random vectors, bold faced letters x, y, t, a, etc., to denote
constant vectors in RP. || - || refers to the usual Euclidean norm on RP.

We first define three classes of density functions by the rate of decay of
their characteristic functions. Although these three classes do not exhaust
all possible multivariate densities, most commonly occurring densities are
included in these classes.

Let ¢.(t) = Eexp(it'c) denote the characteristic function of £, and
#2(s) = Eexp(isa’c), where s is a scaling constant and a is a fixed unit
vector (i.e. ||al| = 1).

Definition 1 A random vector ¢ is said to be in Class A of order B if its
characteristic function ¢. satisfies

B
S
dols exp(—%) < |42(s)
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as |s| — oo, for all unit vectors a, and if there exists a unit hypercube (e.g.
[1,2]7) which does not contain the origin such that for all lines through the
origin (having direction a) which goes through this hypercube, we have

B
S
42(6) < dalsf exp(~L)

as |s| — oo. Here 49 < 71 are positive numbers and kg, k1, do, di are
constants.

REMARK. The above definition implies that, in most directions, the
projection of £ has an exponentially decayed characteristic function of order
B. The unit hypercube can be replaced by any volume with a positive
Lebesgue measure. However for convenience we shall use the unit hypercube
and denote A(g) to be the set of unit vectors a which passes through this
hypercube. Note that A(e) is a connected area on the surface of unit sphere
which may depend on ¢.

Definition 2 A random vector ¢ is said to be in Class B of order § (> 1)
if there exist constants vo < ¥1, do,d1, ko, k1 such that

dols|™® exp(—(log s])° /70) < |¢2(s)]
for all unit vectors a and
[62(s)] < das|™ exp(~(log|s])’/m1), Va€ A(e),
as |s| — oo.

Definition 3 A random vector € is said to be in Class C of order 3 if there
exist constants do < dy such that

do|s| P < |¢2(s)|
for all unit vectors a and
|62(s)| < dals| ™, Va € A(e),

as |s| — oo.
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REMARK. Classes A and C are essentially generalizations of Fan’s (1991a)
supersmooth and ordinary smooth classes. However Class A is larger than
the supersmooth class in the 1-dimensional case. For example, ¢(t) =
exp(—t2/2 — |t|) belongs to Class A but not to Fan’s supersmooth class.
Also we note that Class C can be viewed as a continuous extension of Class
B for # = 1. This is significant because as we will see later, this is where
the optimal convergence rate stops depending on p.

Class B appears to be somewhat small but is nevertheless non-empty.
The lemma below proves this assertion.

Lemma 1 Let 8 > 1 andy > 0. Then there exists a characteristic function
with decay rate

exp(—(log[t))°/7),  as |t| — co.
ProoFr. Without loss of generality, let v = 1. Let g(t) = cexp(—(logt)?).
We observe that
log )81
00(1) = ~e8LBL exp(— (105 )

and

a)ﬂ(logt)f’ tlogi—(B-1)

g?(t) = cB(logt)’ 2 exp(—(log ) .

Since g(?)(t) > 0 for ¢ not too small, and g(1)(t) < 0, we can construct a
function f(t) such that

(a) f(t) = g(¢) for t not too small,
(b) f(0) =1 and that f(t) is convex on (0, 00).

Now extend f(t) to the whole real line by symmetrization. By Pélya’s
sufficient condition (see Lukacs (1970)), this is a characteristic function with
the desired decay rate. |

We shall now briefly look at a number of examples.

ExaMPLE 1. The characteristic function ¢(t) = exp(—t2/2 — [¢]) is in
Class A with order 2. This corresponds to the convolution of a normal and
a Cauchy distribution.

ExAMPLE 2. Let ¢ = (eq,:++,&p)', where €1,--+,€, are independent
random variables. If at least one of them belongs to Class A, then ¢.(t) is
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in Class A with order matching the highest Class A order among all these
sgs; if all €1,---,¢, are in class C, then ¢ belongs to Class C with order
matching the sum of the orders of the ¢;’s.
ExaMPLE 3. (Multivariate Gamma distribution of type I)
Let zg,21,**+,Zm be independent Gamma(f;) distributions. Denote
Yi = zj + &o,7 = 1,2,---,m. The distribution of (y1,---,yn) is called the
type I Gamma-Distribution in Johnson and Kotz (1972). Its characteristic
function is
m m
o(t) = (1= at;)"% [T —it;)™%,
j=1 j=1
which implies that it belongs to Class C of order ) 7% 6;.
EXAMPLE 4. We say that X possesses a symmetric Kotz type distribu-
tion if it has density

ClZ)™Y2(X — pY 27X = p)V L exp{~r[(X — p)'S(X — w)]*}

with 7,8 > 0,2N +n > 2. This is a very useful class from both practical and
theoretical viewpoints [see Fang, Kotz and Ng (1990)]. The characteristic
function of this distribution is

o(t) = exp(z't',u)tﬁn,N(t'Et; T)

where

N-1 u

This distribution belongs to Class A of order 2.

ExAMPLE 5. Another useful class of distributions is the symmetric Pear-
son type VII distributions. With a density generator g(t) = Cp(14t/m)~V
where N > n/2,m > 0, it has density

CalSI7/2(1 4 (X = p)'S7H(X — p)/m)~N.

When N = (n 4+ m)/2, it reduces to the multivariate t-distribution; For
N = (n+1)/2 and m = 1, we have the multivariate Cauchy distribution.
The characteristic function is ¢(t) = exp(it'u)y(t'St) where

(N —(n—1)/2) [

1/2 2\—N+(n-1)/2
TN —1/2) oo cos(m/“tu)(1 + t*) dt.

P(u’) =
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For general N and m, the decay rate is complicated. For the above two
special cases, we have the following results.

(1) Multivariate t-distribution : N = (m + n)/2. For the odd degree of
freedom m, we have

T2T((m + 1)/2)

P(t) = 2m=1T(m,/2) exp(it'p — (tlzt)lﬂ)
(25 —r— 1) (2mt/2/St) !
% £[< s—r ) (r—1)! ]

where s = (m 4 1)/2. It is in Class A of order 1.
(2) Multivariate Cauchy. Now we have 9(u) = exp(—u!/?), and hence is
in Class A of order 1.

3 Mixing density kernel estimation

We shall first derive a class of multivariate mixing density kernel estimators
for f(x). From the model Y = X +¢, we have ¢y (t) = ¢x(t)¢:(t), where ¢y
and ¢x denote the characteristic function of Y and X respectively. Suppose
¢:(t) # 0 for all t and that [ [¢y(t)/P:(t)|dt < oo, then the inverse Fourier
transform gives

760 = (@17 [ exp(=it )y (O[ge(t)) dt. o

Let K : RP — R be a kernel satisfying

1. K(y)=K(-y)

2. [K(y)dy=1

3. [e¥K(x)dz; =0foralll <i<p,1<v<mandx € RP.
Writing .

F) = () K,
i

we get the following estimate for ¢y,

r®) = [exa(ity) i)y
= ¢k (ht)dn(t)
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where ¢,(t) = (1/n) > i1 exp(it'Y;) and ¢k is the Fourier transform of K.
Substituting X
¢x (t) = ¢x (ht)bn(t)[e(t)]

into (1), we have
fux) = @m)7 [ exp(=itx)gu(t)dn(D)ldc(O] ot
= #gmx;h,m @
where i
K(xih,Y) = (2m)7 [ exp(=it'(x = Y)/h)x()lde(s/)] dt.  (3)

We propose using f,(x) as an estimator for f(x). Let m be a non-negative
integer, 0 < @ <1 and B > 0. We shall investigate the convergence rate of
fn(x) with respect to the function class 7y, o,p Where F,, , g denotes the
class of p-dimensional densities whose elements satisfy

57 /)~ g < Bly -, ¥xyeR\Iisph (@

For f € Fr 0,8, using Taylor’s formula we have

L 0fx) |, 1 Z 2/,

fy+x)-flx) = Y =52 yi 4o
=1 Z
1 8’f(><) o1 o
+5 a1+Z+ap=l Fr .t R

1 O"f() w  a
+m' °‘1+"§;Yp=m 8:1:‘1’1 .. .aa;;‘p yl Yt

Hence by the conditions stated above, we have
Efn(x) - f(X)
1 n
B z; Kc(x;h,Y;) - f(x)
J:

- / (Fx = ¥) = 1)) K (y/)dy
= i [ KO- (o

i=1

- g NNy,
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The last equation holds because that [ K((y — x)/h) > (% — z;)™dy = 0.
Consequently, we have

~ B Yy —X . f_ s — &g m
1) = )] < H/IK( ) x lly = - em b= 57 gy
m!
< 2P / KEZE)) x |ly - x|[*mdy
_ a+m
= h sy (5)
This gives the bound for the bias term. For the variance term, we have
A 1 n
Var(fa(x)) = % Z;Var(Kc(x; h,Y;))
J=
< 2%
- nhZPEKC( h )
1 Y, oK (t)
- ' g ' (x-v)/n_PK(L) .12
n(2n k)% '/ st/
[¢x(t)] 1v2
= n(27rh)2p(/ |$:(t/R)] dt)' (6)

Theorem 1 Let the kernel K satisfy conditions 1 to 3 and that ¢k (t) =0
for t ¢ [—1,1]P; Also suppose that

(a) ¢(t) # 0 for any t;

(b) |¢2(1)|]t| =P exp([t|® /7o) > do for all unit vectors a as |t| — .
Then

sup  E(fa(x) — f(x))? = O((log n)~2(m+e)/B), (7)

Efm,a,B

with the bandwidth h = (4/70)'/P(logn)~1/8,
PRroor. According to (5) and (6), we have
sup  E(fa(x) =~ f(x))* = suwp (Efa(x) - f(x))* + Var(fu(x))

m,a,B € m,a,B
A2
< h2(m+a)( 1)2 O(eXP(2h ? 170))
where ¢ = 2p if Oy > 0 ; otherwise @ = 2p — 28y. The proof is completed
by choosing h = (4/70)'/P(logn)~*/8. 0

REMARK. It is interesting to note that the right hand side of (7) does
not depend on the dimension p. As we will see in the next section, this rate
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cannot be improved upon (up to a multiplying constant) by any estimate
based only on the n i.i.d. observations. This implies that the kernel estimator
f(x) as given in (2) is optimal.

For ¢ in the Class B, we have the following result.
Theorem 2 Let the kernel K satisfy conditions 1 to 3 and that ¢ (t) =0
for t ¢ [—1,1]P; Also suppose that

(a) ¢(t) # 0 for any t;
(b) dolt|* exp(—(log |¢|)?/70) < |#2(t)| for all unit vector a as |t| — oo.
Then

sup  E(fu(x) - f(%))* < C exp(~2(70/2)/P(m + a)(log n)'/?),

€ m,a,B
with bandwidth h = exp(—(7yo/c)/#(logn)'/P).
ProoF. We observe that

A—2 sup  Var(fa(x)).

sup  E(fu(x)— f(x))? < h‘Z(m-I-a)(m!)2 * f€Fma,B

ej:m,a,B

by virtue of Theorem 1. ;From (6), we have

1 |¢K(t)| 2
n(27rh)2p(/ |¢€(t/h)|dt)
n(2fh)2p h* exp(2(| loghl)” /70).

Let ¢ > 2 be a constant. Then by taking h = exp(—(7o/c)/?(log n)/#), we
have

sup  E(fa(x) - £(x))* < O(1) exp(=2(m + a)(70/¢)"/?(log n)"/7).

e}-m,a,B

Var(fn(x))

O
Next we consider the case when ¢ belongs to Class C.

Theorem 3 Let the kernel K satisfy conditions 1 to 3 and that ¢ (t) =0
fort ¢ [—1,1]P; Also suppose that

(@) () # 0 for any t;

() |62(D11t]P > do for all unit vectors a as |t| — oc.
Then by choosing the bandwidth h = dn=1/(2k+8)+p)  we have

sup  E(fa(x) - f(x))? = o(n—2k/(2k+2ﬁ+p))’

e}-m,a,B

where k = m + «a.
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PROOF. Since f,(x) = (1/n) Yi=1 Kc((x — Y;)/h), with K. as defined in
(3), we have

ERACES = (KT

[ K2 (x - by )Py

< ow [ K(y)ay
o [ 1)
N | 1e.ce/mE

The inequality holds because that sup;cr|f(x)| < C [Similar to that in
Bickel and Ritov (1988)]. Because ¢.(t) # 0, hence for fixed M, 3 Co such
that |¢c(t/h)| > Cp for t/h € [-M, M]P. Observing that

P () / o (1) ]2 _28
PR g4 < dt < C1h=28,
/RP\[—hM,hM]P |6:(t/R)2 = Jro\j—harpmpe doh28 =

we get supscr.  Var(fu(z)) < D/(nh?*?P). Combining with the bias
term, we complete the proof by taking h = dn~1/(*+5)+p) Here Cy, C;,and
D are constants. O

4 Lower bounds on the optimal convergence rate

In this section we are concerned with the establishment of lower bounds for
the optimal rate of convergence, i.e. infs supser, . E(Th— f(x))%, where

the infimum is over all estimators 7}, based on the = i.i.d. observations.
We start with a brief review of the method for getting a lower bound for
a general nonparametric estimation problem, A detailed discussion can be
found in Donoho, Liu (1987), (1991a) and (1991b).

Let F3, be a sequence of distributions that converges to a distribution
Fp in a certain sense. Let P; , be the product measure with marginal dis-
tribution Fj 5, and Py, be the product measure with marginal distribution
Fy. We denote the likelihood ratio as L, = dPy n/dPo,

For a measurable set S, define

T(Poyny Prin) = igf(Po,n(S) + P1a(59))
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In the setting of testing whether a set of random variables comes from Fj
or Iy, m is the minimum of the sum of type I and type II errors over all
possible tests.

For sequences of product measures (Fy ) and (P; ), we say that there
exists no perfect test between {Py,} and {P;,} if there exists & > 0 such
that

7I'(P0,n, P]_,n) >, Yn > ng.

Furthermore we say that there is a good test between (P ) and (P ) if
there is a # > 0 such that

1- ,3 > W(Poyn,PLn), Yn > ng.

Note that this bounds the sum of errors uniformly in n.

These concepts are important for deriving the lower bound, because from
them, we can derive a lower bound for a certain very useful probability in-
equality given below. Let T'(-), a functional defined on a space of probability
distributions, be the quantity we want to estimate and 7, is any estimator
based only on n ii.d. observations distributed according to the true (but
unknown) distribution.

Theorem 4 If there is no perfect test between (Po ) and (P ,), then

inf Pe(|IT,-T " 2
inf max P ([Tu=T(F)|> An) > of

where A, = |T(Fy ) —T(F)|/2. Hence supg Ep(T, — T(F))? > (o2/4)AL.
Proor. Let § = {T), - T(Fp) < A,}. Since

{Tn = T(F1) > —An} > {Tn = T(Fo) > A},
we have

Pr {Ty — T(Fy) < Ap} + Pr{T, - T(F) > -A,}
> Pr(S)+ Pr,(5°) > (P, P1y) > c.

Using the inequality max(a,b) > ave(a,b) = (a + b)/2, we conclude that

inf Pe{|T, - T(F)| > A
in Fe{%ﬁﬁ,n} F{|Tn — T(F)| > An}

> inf a;VGFe{FO,FLn}PF{|Tn —T(F)| > A} > a/2.
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There are now many known sufficient conditions that would ensure the
non-existence of a perfect test. The theorem below is due to Farrell (1972).
Similar results can also be found in Donoho and Liu (1987).

Theorem 5 Let A, = |T(Fy,)—T(Fo)|/2. If {F1 .} satisfies the constraint
Ep,, L2 < ¢o < 00, then there is no perfect test between (Po) and (Pyy,).

There are several equivalent conditions to Ep, , L2 < ¢o < co. In Stone
(1980), the condition Ep, ,|log L,| < ¢ was used; Hasminskii (1979) used
log L, —p N(1/2c¢g,c}) to derive the lower bound. Here we will use the x2
distance.

Let the distributions Fy and F; have densities fy and f; respectively.
The x? distance between Fy and Fj is defined to be

X(Fo, ) = [(f = 0/ fo
Lemma 2 With the above notation,

1+ XZ(PO,m Pl,n) = EPo’nL?z

and

Xz((P01n7P11n) = (Xz(F11n’F0) + l)n - 1'
Hence x*(Fy,n, Fo) < c/n implies that Ep, L2 < (14 ¢/n)" < €°.

Proor. We observe that

Be, 2t = [(I A T1 fole)
j=1 Jj=1

= [ D) ZThahole) g 1] gy
Jj=1 fo(ilfj) j=1

[T5=1 fu(zs) — The fo(25) |
/( [17-1 fo(=;) ) J].;.[l folzj) +1

X2(P0,n’ Pl,n) + 1,
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and
n N\ 2
X*(Pi,n, Pon) /(HJ_l fl(w] ~ Lo Jolz))
_7 =1 fo(il?])
Hj:l f1 (z;) _
H;L 1 Jo(z;)
fie) .
( -14+1)"-1
e
= (X (Flyn,F()) + l)n —1.
This proves the lemma. i
Suppose now we observe a random sample Y7,Y3, - -, Y, from the model

Y = X +¢ where ¢ is a noise component with known distribution, and X has
an unknown density f which belongs to the smooth function class Fy, » B.
We are interested in estimating T'(f) = f(x). Without loss of generality, we
assume that x = 0 and hence T'(f) = f(0).

Select a fo € Fpp 0,8 and define

fu(%) = fo(x) + 6% H(x/6,), Vx € RP,

where k = m+a and H : RP — Ris a function which satisfies that H(0) # 0,
J H(x)dx = 0, and that the mth derivatives of H satisfy the Lipschitz’s
condition of order «, that is, H satisfies (4). By a further suitable choice of
the tails of H and fy, the function f, will also be a density in fm,é,B for
small §,. We will choose 8, such that x%(fy,, fv,) < ¢/n, where fy, is the
convolution of ¢ and f,, and fy, is the convolution of € and fo.

If X2(fY0,fYn) < C/TI,, we have

inf swp Py([Ta— T(F)| > [T(fa) ~ T(o)I/2) > da,
Tn FE€{frfo}

and hence by Tchebycheff’s inequality,
sup  E(Tn — T(f))* > dIT(fo) — T(fa)|?/4 = 67F|H(0)|d3/4.

e}_m,a,B

This gives us a lower bound 63’“. Now we apply this argument to the case
where ¢ belongs to Class A.

Theorem 6 Suppose that the tail of ¢. satisfies
|21t~ exp(|t)°/7) < du (8)
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as |t| — oo for alla € A(e) ,where B,7 > 0,d; > 0 and B, are all constants,
and
P{lle = x| < |[x[|*} = O(||x||~(>==0)) 9)
as ||x|| — oo for some 0 < a9 < 1, a > p+ ag. Then
inf sup EpT,—T(f))?> d(logn)=2m+e)/P
Tn fe}-m,a,B
for some constant d > 0.

Without loss of generality we shall assume that A(¢) corresponds to the
hypercube [1,2]?. To prove Theorem 6, we need the following two lemmas.

Lemma 3 Suppose that F is a p-dimensional distribution function. Then
by choosing r such that 2r > p,

c,
go(x :/ —dF(y
0= ] Ty Y
satisfies go(x) > D||x||=%" as ||x|| — oo for some constant D > 0, where C,
is the constant such that C(1+ ||x||?)™" is a density function.

ProoF. To ensure that C,(1+ ||x||?)~" is a density, we must have

[ dx <
(14 {lx2) '

Under L? norm, this is equivalent to

o0 pp—l d
o A+py P
This can be true only if 2r > p. By the triangular inequality we have
1 N 1
(I+[x-yl2) = 1+ (IIXJI +llylD2)r

> .

(1422 + 2||y]12)

Let ||x|| > 1, we then have

1 1

dF / dF(y

[ are ) AT 2E + a2yt @)
1

el 272 + {1l 12 + 2{Ix] |~y [}=2)"

1
x _27/—————-—dF y
=™ | G @)
Dljx||~?".

v

dF(y)

v
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This proves Lemma 3. m|

Lemma 4 Suppose P{le - xI| < [[x]|} = O([jx]|~~*9)) as [[x|| — oo
for some 0 < ap < 1 and a > p+ ap. Suppose H : RP — R be a bounded
Junction satisfying H(x) = O(||x||=™°). Then there exist constants M and
C such that whenever ||6x|| > M, we have

/ H(x — y)dFy(6y) < C(|l6x||)"**®, Vé<1, (10)

provided (mo + 1)ag > a.

ProoOF. We observe that

[ Hx-y)arey) = H(x - y/)dE(y)

/IIX—Y/ﬁIISIIXII"‘O

+ H(x~ y/6)dE(y)
lix=y/él|>Ix||>

CoP{Jix = y/811 < [Ix=} + O(x]| =)
CoP{18x - 1| < 8'°0]|6x][°*} + O(l x| ~>™)
Cal 8x]| =429 + O(]x|| =),

IA IAIN

Since (mg + 1)ag > a, we have
/ H(x - y)dF(6y) < C||6x||~(¢==0)
whenever ||6x|| > M. _

REMARK. We observe that (10) says the tail probability of € goes to 0
at a polynomial rate of order greater than p.

Proor oF THEOREM 6. First we construct a function H : RP — R
which satisfies

(i) H(x) = O(]|x||7™), for some given mq such that(mo + 1)ap > a;
(i) [ H(x)dx = 0;

(iii) ¢m(t) = 0 whenever t ¢ [1,2]?, where ¢y is the Fourier transform of
H;

(iv) H(x) have all bounded continuous derivatives.
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The existence of such a function was proved in Fan (1991a) when p = 1.
For the sake of completeness, we shall now construct such a H.

Take a symmetric bounded function ¢(t) which vanishes outside [1,2] for
t > 0, and let ¢ has continuous first mg derivatives.

Let g(z) be the Fourier inversion of ¢(t) defined by

g(z) = % /1 * cos(tz)(t)dt. (11)

Define h(z) = g(z) — g(z + 1), then its Fourier transform #x(t) = (1 —
e *")¢(t) = 0 for ¢ outside [1,2]. Also such a h has the following properties:

1. [h(z)dz = 0 because that ¢,(0) =0,

2. g(z) have all bounded derivatives. This follows from (11) and that ¢
is bounded,

3. That ¢(t) has mo continuous derivatives implies that ¢()(1) = ¢()(2) =
Ofori=1,.--,mo. Thus

o(z) = % /1 " cos(ta) (1)t
= 7r—1:c 12 &(t)dsin(tz)
= —71_—137/12 sin(tz )¢ (¢)dz

= —#/2 cos(tz)pD(t)dz
1

= etc,,

which implies that g(z) = O(2~™°) when |z| — co. Now define

H(x)= ]_:_[ h(z;).

It is straightforward to verify (ii) to (iv). For (i), notice that

lim H(x) lim ﬁ h(z;)
i=1

||x|]~00 max ;|00 1
O{(max |z])™™)
O([x[]™™).
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The last equality holds because all norms in RP are equivalent. Now consider
the pair of densities

fo(x) = Cr/(L+ |Ix|I?)",  Vx € R,

and
fu(x) = fo(x) + c6ﬁH(x/6n), Vx € RP,

where 0.5p < r < min[p,a — ap — 0.5p]. We observe that fo € Fpno5. By
choosing ¢ properly and making é, small, we can ensure that f, € Fra,B
provided that £ > m + «a.

Let fy, = go = fox F. and fy, = fn * F,. Then

s fe) = [(fox Fu = fus F) g5
2 [([ H((x=3)/8.)4F.(3)) 05" (x)ax

2+ [([ Bx = 9)dFu(6,y)Pa5™ (6.)dx

Using Parseval’s identity, we have

/(/H(X—Y)dFs(5ny))2dx = (27")_p/|¢H(t)¢5(t/5n)|2dt

= )7 [ on(t)a.e/) e
O(82% exp(~26,° /).

IA

The last inequality holds because every t passes through A(e). Consequently
we observe from Lemmas 3 and 4 that

/ (/H(x —~ }’)dFs(‘SnY)>2go_1(5nx)dx

< [ (- Ry g )i
[6nX|<Mn |6nX|>Mp,
2 C?|6,x|~2e+2a0
<MzrD/(/H — ¥)dF.(6, )d " i
>~ n / (X Y) ( y) X+ 162X[> Mo D|6nx|-2r

06,21 MY exp(—26,P /) + 677 M%)
= 0(4),
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where ¢g = 2(a — ag — r) — p. Now by taking M, = exp(£6;7/y) with
€< 1/r, we get

A = 6;%Prexp(—26;7 /v +2r€67° [v) + 677 exp(—eot, P /7)
= o(exp(—&18,7)),

where €1 = min((1 — r€)/7v,€0€/7v). Hence
/(le - fYo )2(fYo )—ldx = 0(67%,k+p exp(—el(?;ﬁ)).

Taking 6, = s}/ p (logn)~1/8, we conclude that the x? distance is of order
o(1/n), no matter what k is. However in order to make f, € Fp 0,8, We
must have k > m + a. Thus

| £2(0) — fo(0)] = O(8%) = O((log n)~(m+)/B),

This completes the proof of Theorem 6. a
Next we consider the case when ¢ is in Class B.

Theorem 7 Suppose (9) holds and

|62(t)] < dalt]™ exp(—(log [¢])°/m1)

for all a € A(e). Then there exists a constant d > 0 such that

inf sup Ef(Tn - T(f))? > dexp(-2¢7 /P (m + a)(logn)/?),  (12)
Tn fe}-m,a,B

where 1 = min((1 — r€)/v1,€0€/271), 7, € and g¢ are as in the proof of
Theorem 6.

Proor. The proof is similar to that of Theorem 6. By choosing

M, = exp((|1og6])~?¢ /1),

we have

X*(ftor fr) < o(exp(—e1(|log 8)~7).

Then x2(fy,, fr,) < 1/n if we take § = exp(—¢1/?(log n)~1/P). O

REMARK. We observe from Theorem 2 that the convergence rate for the
mixing density kernel estimator is exp(—2(70/¢)"/?(m + a)(logn)'/?). It
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follows from ¢ > 2, 9 < 71 and the definition of ¢y that yo/c < 1/v;. This
implies that the right hand side of (12) is asymptotically strictly smaller
than the upper bound of Theorem 2.

When ¢ is in class C, we have the following result.

Theorem 8 Suppose that the characteristic function ¢, satisfies
tPl2(0l < i, Yae A(e), (13)

for some constant dy and also

ak
ok 14
|6 at?l,,_at;p¢e(t/5)l<0k (14)

for allt € [1,2]7, and 1 < k < 2p. Here a1 + ---+ ap = k, and Cy, are
constants. Then there exists a constant d > 0 such that

inf sup E;(T, - T(f))?> dn—2(m+a)/(@m+2a+26+p)
Ty fe}-m,a,B

ProoFr. We only need to estimate

XS fr) = 8247 [([ Hx - 9)aF6,y)Pg5 )ik, (15)

We shall use the same notation as in the proof of Theorem 6 with the
exception of gg. Define

00) = [ CATTI + (i~ Ry (16)
=1

As in the proof of Lemma 3, we observe that for x ¢ [-M, M]P as M — oo,
go(x) 2 Dla1|*--Jz,[%,
for some constant D. By the Fourier inversion formula, we have

1
2y

/ H(x — y)dF,(6y) = / XS (£) e (/6)ds.

Define ¢°(t) = (1/27)P¢u(t)¢e(t/6), Note that ¢z posesses very good prop-
erties, hence condition ( 14) can be passed to ¢g. Also note that ¢z and its
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derivatives are 0 outside the hypercube [1,2]P. Hence whenever x ¢ [—1, 1]?,
we have

/ H(x - y)dF.(6y)
= [ et wan
1.2

. i 2
— / e—z(t2z2+---+tpxp)(— 1/(27rw%)e"lt1z1 aa_t%¢6(t))dt

CChp e,

21 i -2 ot} - 0t2

Now we divide the right hand side of (15) into two terms. For the first term
we get

TERM,

/[_1’1],,( / H(x —y)dF(6y))*g5" (6x)dx
1 /(/ H(x - y)dF,(6y))%dx

C1 [ lon(®)st/8)dt
= 0(6%).

IN

The second last and final equalities use Parseval’s identity and (13) respec-
tively, where C; is the maximum of g5 '(x) over [-1, 1].
For the second term, we have

TERM,
/RP\[—1,1]P(/ H(x - y)dF:(8y))*g5 " (6x)dx

0*P¢l(t) _
2 _2p 2 o 2\—2 dt 2 1 d
/RP\[—I,I]p( ’ﬂ') (171 -'I’p) | 1,2 at% . 6t§ | 9 (6){) X

— 062[3 9 -~2p 2_“‘7:2—2 _16 d
G N R CRE RGOS
= 0(6%).
Consequently, the x? distance in (15) is of order

§**P(TERM, + TERM,) = O(n™ ")
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if we take § = n—1/(2(m+a)+p+26) Ip this case a lower bound will be

O (n~2(m+0)/(2(mt0)+26+)),

This proves Theorem 8. a
(14) is not an unnatural requirement. Because of (13), we expect that
for t far away from the origin, ¢.(t) ~ D/(t} -- -ti,” ), and taking a partial
derivative of ¢.(t) will decrease the power of the corresponding ¢; by 1.
Hence (14) holds. The following example illustrates this.
EXAMPLE. Let ¢ = (e1,-:,€,)" where €1,---,€, are i.i.d. exponential
random variables with mean A. Thus

bul(t) = :

(1= iM1) (L= irty)’

In this instance we have ¢2(s) =~ s~P. Hence § = p,

0¢:(t) —1
ot (I —iAtg)? - (1 —dAtL,)’
0°¢e(t) _ —i
010t (1 —idt1)2(1 —iAt2)2 - (1 — i)t,)’

etc., and we conclude that (14) holds.
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