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Abstract

The common unknown probability law P of a random sample Y;,...,Y, is
assigned a Dirichlet process prior with index a (Ferguson, 1973). It is shown that
the posterior joint density of several moments of P converges, as a(R) — 0, to
a multivariate B-spline, which is, therefore, the Bayesian Bootstrap joint density
(Rubin, 1981) of the moments.

The result provides the basis for possible default nonparametric Bayesian in-

ference on unknown moments.
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1 Introduction

The need for a default prior to represent vague initial information in nonparametric
Bayesian statistics is generally recognized. For this purpose, in the presence of a random
sample Yi,...,Y,, with unknown common probability law P, some researchers would
consider using a Dirichlet prior on P (Ferguson 1973) with a very small total mass
a(R) of the index a, or a limit as ¢(R) — 0. The reason is that, in such a limit
case, the posterior law of the infinite dimensional parameter P is centered around the
empirical measure. The results obtained are then comparable to standard frequentist
results, as illustrated by the applications in Section 5 of Ferguson (1973) and much of
the following literature on Dirichlet priors. This reconciliation between frequentist and
Bayesian approach is appealing to the scientist who feels opposed to the use of prior
information for philosophical reasons. It also provides a possible default choice for the
compilation of Bayesian software.

Limiting results from Dirichlet priors of the above nature have been referred to as
the Bayesian Bootstrap (BB) by Rubin (1981) and Lo (1987), among others. Such a
convention is followed in the present paper, where a few more applications of the BB are
illustrated. The focus is on the posterior limiting distribution - the BB distribution -
of the vector-valued functional of the parameter P composed of the first s moments:
w(P) = (p1, ..., ps)(P), where p;(P) := [y’ P(dy),j = 1,...,s.

Cifarelli and Regazzini (1990) obtain the proper distribution of the mean p,(P) when
P is chosen accordingly to a Dirichlet process satisfying minimal conditions. In partic-
ular, their results, applied to the posterior process on P, provide the researcher with a
bona fide nonparametric posterior distribution on 1 (P). Letting a(R) — 0, they obtain,
as a by-product, an expression for the BB density of p;(P), namely
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statistics, supposed distinct for sake of simplicity. Although the interest of the authors
is not on its applications to statistical practice, such a density turns out to be n — 3
times continuously differentiable, bell shaped, log-concave, centered around ¥ = 3. Y;/n
and with variance S%/(n + 1), where S = Y(Y; — Y)?/n is the sample variance. These
results are comparable to those derived by a classical sampling theoretical approach or
by bootstrap based inference on p;(P).

Generalizing the limit results of Cifarelli and Regazzini to more than one dimension is
of some relevance because of the possibility constructing, for example, joint BB regions for
unknown moments. Multidimensional results of this sort are actually already available in
the literature. Density (1) is in fact a well known classical univariate B-spline, introduced
first by Curry and Schoenberg (1966). Its natural extension to higher dimensions, the
multivariate B-splines, is precisely the BB density of the functional g(P). Multivariate
B-splines are nowadays a well understood object, see for example Dahmen and Micchelli
(1983).

Sections 2 and 3 contain a summary of the relevant definitions and results about
Dirichlet priors and multivariate B-splines. Section 4 is an application of these results

to the Bayesian nonparametric problem. Section 5 contains asymptotic results.

2 The Bayesian Bootstrap as a limit of Dirichlet
posterior processes

Let P, the unknown probability measure of real observanda Yi,...,Y,, be distributed a
priori as a Dirichlet process with index a, as in Ferguson (1973). Write P ~ D(a). A
fundamental property of Dirichlet process priors is that they are conjugate to random

sampling, in the sense expressed by the following;:



Theorem 1 (Ferguson, 1973) If P ~ D(a) and if, given P, Y1,...,Y, are i.i.d. P, then
the posterior law of P is again Dirichlet, namely
P|Y1:yla--~,m=yn’\’p(a+26yi) (2)
i=1

where 6, represents the unit mass measure at z.

The Bayesian Bootstrap describes the limit of the posterior law of P as a(R) — 0.
More formally, the Bayesian Bootstrap may be understood in terms of weak convergence
of probability laws if P is viewed as a random element taking values on the space P
of all probability measures on the real numbers, endowed with the topology of weak

convergence. We then have

Theorem 2 Under the same conditions of Theorem I, D(a + 3.7y 6y,), the posterior
law of P, converges weakly to D(3°7; 6,,), as o(R) — 0.

Proof. This is a corollary of Theorem 3.2 in Sethuraman and Tiwari (1982). il

D(Xr, by,) may be called the BB law of P. The result is equivalent to stating
that P is, in the limit, a random distribution with finite support {y1,...,ys} and masses
(I, ...,II,) distributed according to a Dirichlet distribution with parameter (1,1,...,1),
as defined, for example, in Wilks (1962).

The BB behavior of the random vector ¢(P) may also be related to Dirichlet posterior

processes in terms of weak convergence, as in the following:

Theorem 3 Under the same conditions of Theorem 1, if a = o(R)Q and Q is a prob-
ability measure such that [|y**|Q(dy) < oo, then, as a(R) — 0, pu(P) converges in
distribution to p = (X y.Il;, S y21L, ..., S yfIL), where (Iy,...,11,) is a random vec-

tor having a Dirichlet distribution with parameter (1,1,...,1).

Proof. By application of the Cramer-Wold device, consider a linear combination of

the components of p(P), say C = [¥.a;y"P(dy). Then C satisfies the conditions of



Corollary 2.7 of Hannum, Hollander and Langberg (1981) and converges in distribution
to the corresponding linear combination of the components of . B

A direct analysis of the convergence of the multivariate densities, possibly leading to
stronger results than Proposition 3, would require consideration of coalescent knots of
the corresponding B-spline and is avoided here, for sake of simplicity. Also, notice that
p#(P) is not an a.s. weakly continuous functional, so its weak convergence is not a direct

corollary of Theorem 2.

3 Multivariate B-splines.

Let the random vector Il = (IIy,...,II,)" have a Dirichlet distribution with parameter
(1,1, ..., 1). This is equivalent to saying that (II;,...,II,_1) has constant Lebesgue
density - equal to (n-1)! - over the simplex {(71,...,Tp-1);m; > 0,57 7; <1} and 0
otherwise. The mean vector of IT is E(II) = n~!(1,...,1) and its variance-covariance
matrix is V(II) = n=%(n 4+ 1)"'A where the matrix A has diagonal elements equal to
(n — 1) and off-diagonal elements equal to —1.

Let xq,...,%x, € R® be distinct and not restricted to a hyperplane.
Definition 1 The density of the random vector
po=ILx +...+1,x, (3)
is called the s-variate B-spline, or simplex spline, with knots Xi,...,%, and is denoted
by M(p;X1,...,Xz).

Such fundamental objects like densities of linear combinations of uniform variates
made various appearances in the statistical literature (see for example Watson (1956)
and related works) and were called multivariate B-splines in de Boor (1976), where a
geometrical interpretation, equivalent to the definition above, is given. This geometrical

interpretation is a multivariate extension of the work by Curry and Schoenberg (1966),
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where an explicit formula for the univariate B-spline is derived through a Peano repre-
sentation of the divided differences and a classical formula due to Hermite and Genocchi.
For s =1,

Mlianoya0) = (= )3 g - @

where (.)+ denotes positive part.

In the multivariate case, recursive formulae due to Dahmen and Micchelli (see the
bibliography in Dahmen and Micchelli (1983)), together with the computing power at-
tained in recent years, provide viable alternatives to cumbersome explicit formulae and
approximations of the earlier statistical literature. For an account of these formulae and
for other applications of multivariate B-splines in statistics and probability, see Dahmen
and Micchelli (1986) and Karlin, Micchelli and Rinolt (1986). For the present purposes,

the following result is sufficient:

Theorem 4 (Micchelli, 1980) For any g € R® and A; € R such that Y7, A\; = 1 and
Bm=737 1 x;, wehaveforn >s+1

n

Z)\M B X1,y Xi1, Xigds e - > Xn)- (5)

n—1
M(ﬂ;xl,---,xn)=m

From a practical point of view, in order to calculate a multivariate B-spline at a
specific point p, the recursion in (5) above is iterated down to n = s + 1, for which

s!
M(”’;xla"'vxs+1) = (6)
1

det
X1 ... X5

for g4 in the interior of the convex hull of xy,...,x, and 0 otherwise. See Micchelli (1979)

and Grandine (1988) for further discussion on evaluation problems.



4 FExact Bayesian Bootstrap densities of moments

The results described in Sections 2 and 3 can now be combined by considering x; =
(yi,y2,...,y8), for i = 1,...,n, where y;’s are distinct observed values. We conclude
that the BB density of p(P), is a multivariate B-spline with knots x1,...,X,. ?

For example, for s = 1, it is easy to secure the equivalence of formulae (4) and (1),
with 2; = y(;) - the order of the z;’s does not matter - by noticing that their difference
can be written as the divided difference of the polynomial (n — 1)(. — u)*~? at z4,...,Zn
and therefore equals 0.

The multivariate BB density of u(P) is logconcave and of global continuity class
C"=*=2 if every s + 1 knots span a convex hull of positive volume in R? (see references in
Section 3). Multivariate B-splines are therefore very smooth even for a small sample size.
This is particularly relevant, since critics of the use of Dirichlet priors have often empha-

sized their essentially discrete character ( and consequently their inappropriateness) for

the analysis of continuous data.

Let m; := Y¥* . y!/n be the j-th sample moment, j = 1,...,s. Then, since p =
[X1, ..., %Xy, its mean is given
E(p) = [x1,...,X,]E(IT) = (myq,...,m,) =t m (7)

and its variance-covariance matrix is

V() = bty XalV Dl = g —mmdoe (8)

Figure 1 contains contour and perspective plots of BB joint densities of first and
second moments (g1, pa)(P) for two samples of size n = 5 and n = 10 simulated from
a Normal(0,1) distribution. Figure 2 contains contour plots for analogous samples from

an exponential distribution with mean 1. The convex hull of points (y;,y?),i=1,...,n

2The theory could be extended to the case of coincident observations by defining B-splines with

coalescent knots appropriately, but it is not done here, for sake of simplicity.



supports the BB density and is drawn on the contour plots. Clearly, edge effects are
attenuated as the sample size increases and the posterior density approaches normality.
The exact computations described so far are in fact applicable to small sample size
problems, whereas for large n normal asymptotic approximations described in the next
Section are appropriate, under the usual moment conditions.

It is clear how to use computations of this sort to obtain numerically HPD regions
and decision theoretical quantities for unknown moments and smooth transformations
of them, like the variance up — p?.

The methodology illustrated here extends to the joint posterior density of functionals
of the form [ ;(y)P(dy), for smooth real measurable functions ;s = 1,...,s, as in

Corollary 1 of Cifarelli and Regazzini (1990).

5 Asymptotic Bayesian Bootstrap densities of mo-
ments

A frequentist asymptotic analysis of the results obtained in the previous sections may be
carried out by supposing Yj,...,Y, are independent and identically distributed random
variables with unknown “true” distribution Fp, unknown “true” mean uo; etc... From
this point of view, the BB density of several moments is to be viewed as a random

multivariate B-spline, since its knots are random.

Theorem 5 If Fy possesses finite moments po3, .. ., fo,2s, then the BB density of p* =
Vn(p — m) converges weakly, a.s.-Fy X Fy X ..., to an s-variate normal with mean

(0,...,0) and variance-covariance matriz [fo j+k — Ho,jHok]sxs-

Proof. The standardized vector p* has a multivariate B-spline density, since it can
be written as pu* = 3 II;x},,, with x¥,, := \/n(x; —m). It suffices to show that conditions
of Corollary 4 of Dahmen and Micchelli (1981) hold almost surely.



Condition (a) holds a.s. since

1 * 2 1 2
( max | x5, )° = - max || xi —m [~ 0

and poas < oo implies maxo<i<n || ¥i [|** /n — 0 a.s., by the strong law of large
numbers.

Condition (b) holds a.s., trivially, with y = (0,...0).

Condition (c) holds a.s. with A equal to half of the variance-covariance matrix in the
statement of the Theorem, since g2, < 00, by the strong law of large numbers. Nl

Theorem 5, parallel to standard normal asymptotic theory (see for example Serfling

(1980), page 68), is also a generalization of Theorem 4.1 of Lo (1987).
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